留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速动车组柔性转向架蛇行运动频谱分析

干锋 戴焕云 罗光兵 杨震寰 李涛

干锋, 戴焕云, 罗光兵, 杨震寰, 李涛. 高速动车组柔性转向架蛇行运动频谱分析[J]. 交通运输工程学报, 2022, 22(1): 155-167. doi: 10.19818/j.cnki.1671-1637.2022.01.013
引用本文: 干锋, 戴焕云, 罗光兵, 杨震寰, 李涛. 高速动车组柔性转向架蛇行运动频谱分析[J]. 交通运输工程学报, 2022, 22(1): 155-167. doi: 10.19818/j.cnki.1671-1637.2022.01.013
GAN Feng, DAI Huan-yun, LUO Guang-bing, YANG Zhen-huan, LI Tao. Spectrum analysis of hunting motion of flexible bogies in high-speed EMUs[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 155-167. doi: 10.19818/j.cnki.1671-1637.2022.01.013
Citation: GAN Feng, DAI Huan-yun, LUO Guang-bing, YANG Zhen-huan, LI Tao. Spectrum analysis of hunting motion of flexible bogies in high-speed EMUs[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 155-167. doi: 10.19818/j.cnki.1671-1637.2022.01.013

高速动车组柔性转向架蛇行运动频谱分析

doi: 10.19818/j.cnki.1671-1637.2022.01.013
基金项目: 

国家自然科学基金项目 51975485

牵引动力国家重点实验室自主课题 2019TPL_20

详细信息
    作者简介:

    干锋(1986-),男,湖北黄冈人,西南交通大学助理研究员,工学博士,从事轮轨接触关系研究

  • 中图分类号: U211.5

Spectrum analysis of hunting motion of flexible bogies in high-speed EMUs

Funds: 

National Natural Science Foundation of China 51975485

Independent Subject of State Key Laboratory of Traction Power 2019TPL_20

More Information
  • 摘要: 为分析高速动车组在不同运行速度下的转向架蛇行运动频谱,推导了自由轮对蛇行运动模型,建立了与纵向、横向速度和摇头角速度相关的3个一阶微分方程;建立了柔性转向架蛇行运动模型,给出了与轮对和构架的横移和摇头自由度相关的9自由度蛇行运动方程;结合车辆悬挂和实测轮轨接触关系等参数,联立自由轮对蛇行运动方程,求解不同轮对初始横移下的构架蛇行波长和频率;以某型动车组一个车轮镟修周期内实测的车轮踏面廓形为例,分析不同车轮镟后里程下的构架蛇行波长及频率的变化规律。分析结果表明:部分测点出现明显的2.9、14.9和33.6Hz振动频率,且这些频率随着车速的增加呈线性增长趋势;33.6 Hz来源于车辆通过CRTS Ⅱ型轨道板时频率;14.9 Hz来源于350 km·h-1运行时的车轮转动频率;当轮对初始横移为3 mm的等效锥度为0.14时计算的构架蛇行频率为3.0 Hz,与实测构架横向振动频率2.9 Hz接近,从而验证了微分方程的准确性;随着车轮镟后里程的增加,相同轮对横移下的等效锥度不断增大,构架蛇行波长不断减小,蛇行频率也随之增高;车轮镟修后20.6万公里,轮对横移1 mm时蛇行频率最大接近8 Hz。

     

  • 图  1  轮对蛇行运动及波长

    Figure  1.  Hunting motion and wavelength of wheelset

    图  2  350 km·h-1运行时轴箱、构架和车体枕梁振动加速度

    Figure  2.  Vibration accelerations of axle box, frame and car body bolster at 350 km·h-1

    图  3  实测轴箱、构架和车体枕梁振动频谱

    Figure  3.  Measured vibration spectra of axle box, frame and car body bolster

    图  4  实测轴箱、构架和车体枕梁振动随速度变化的短时频谱

    Figure  4.  Measured vibration short time spectra of axle box, frame and car body bolster varying with speed

    图  5  随速度变化的车辆通过轨道板频率和车轮转频曲线

    Figure  5.  Curves of vehicle passing through track plate frequency and wheel rotation frequency varying with speed

    图  6  轮对蛇行运动分析

    Figure  6.  Hunting motion analysis of wheelset

    图  7  轮对横移为3 mm时横移和摇头蛇行运动

    Figure  7.  Lateral displacements and yaw hunting motions of wheelset with 3 mm lateral displacement

    图  8  两种方法得到的等效锥度和蛇行波长对比

    Figure  8.  Comparison of equivalent conicities and hunting wavelengths obtained by two methods

    图  9  构架和轮对蛇行运动分析

    Figure  9.  Hunting motion analysis of frame and wheelset

    图  10  实测左右车轮踏面廓形

    Figure  10.  Measured profiles of left and right wheel tread

    图  11  实测车轮踏面与标准CHN60轨面匹配轮轨接触关系

    Figure  11.  Wheel-rail contact relationship between measured wheel tread and standard CHN60 rail

    图  12  转向架初始横移3 mm时的蛇行运动曲线(简化)

    Figure  12.  Hunting motion curves of bogie with initial lateral displacement of 3 mm (simplified)

    图  13  轮对横移、蛇行频率和运行速度之间的关系

    Figure  13.  Relationship among wheelset lateral displacement, hunting frequency and running speed

    图  14  不同镟后里程下的某型动车组车轮外形和磨耗

    Figure  14.  Profiles and wear of a certain EMUs wheel for different mileages after repair

    图  15  不同镟后里程下的轮对等效锥度

    Figure  15.  Equivalent conicities in different reprofile mileages

    图  16  不同镟后里程下的轮对蛇行波长

    Figure  16.  Hunting wavelengths of wheelset for different mileages after repair

    图  17  不同镟后里程下的构架蛇行频率和波长

    Figure  17.  Hunting frequencies and wavelengths of frame for different mileages after repair

    图  18  实测动车组构架横向加速度(0.5~10.0 Hz滤波)

    Figure  18.  Measured lateral accelerations of EMUs frame (0.5-10.0 Hz filtering)

    表  1  高速动车组转向架动力学参数

    Table  1.   Dynamics parameters of high-speed EMUs bogies

    参数 数值
    轮对质量/kg 1 901.8
    轮对惯量/(kg·m-2) 684.65
    构架质量/ kg 2 280
    构架惯量/(kg·m-2) 2 280
    轴距之半/m 1.25
    一系横向距离/m 1
    一系纵向刚度/(MN·m-1) 14.7
    一系横向刚度/(MN·m-1) 6.5
    下载: 导出CSV
  • [1] WICKENS A H. The dynamic stability of railway vehicle wheelsets and bogies having profiled wheels[J]. International Journal of Solids and Structures, 1965, 1(3): 319-341. doi: 10.1016/0020-7683(65)90037-5
    [2] PATER A D. The approximate determination of the hunting movement of a railway vehicle by aid of the method of Krylov and Bogoljubov[J]. Applied Scientific Research, 1961, 10(1): 205-228. doi: 10.1007/BF00411914
    [3] TRUE H. Multiple attractors and critical parameters and how to find them numerically: the right, the wrong and the gambling way[J]. Vehicle System Dynamics, 2013, 51(3): 443-459. doi: 10.1080/00423114.2012.738919
    [4] 曾京. 车辆系统的蛇行运动分叉及极限环的数值计算[J]. 铁道学报, 1996, 18(3): 13-19. doi: 10.3321/j.issn:1001-8360.1996.03.003

    ZENG Jing. Numerical calculation of hunting bifurcation and limit cycle of vehicle system[J]. Journal of the China Railway Society, 1996, 18(3): 13-19. (in Chinese) doi: 10.3321/j.issn:1001-8360.1996.03.003
    [5] POLACH O. Wheel profile design for target conicity and wide tread wear spreading[J]. Wear, 2011, 271(1/2): 195-202.
    [6] POLACH O. Characteristic parameters of nonlinear wheel/rail contact geometry[J]. Vehicle System Dynamics, 2010, 48(S): 19-36.
    [7] POLACH O, NICKISCH D. Wheel/rail contact geometry parameters in regard to vehicle behaviour and their alteration with wear[J]. Wear, 2016, 366/367: 200-208. doi: 10.1016/j.wear.2016.03.029
    [8] 张卫华, 罗仁, 宋春元, 等. 基于电机动力吸振的高速列车蛇行运动控制[J]. 交通运输工程学报, 2020, 20(5): 125-134. doi: 10.19818/j.cnki.1671-1637.2020.05.010

    ZHANG Wei-hua, LUO Ren, SONG Chun-yuan, et al. Hunting control of high-speed train using traction motor as dynamic absorber[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 125-134. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.010
    [9] 祁亚运, 戴焕云, 魏来, 等. 变刚度转臂定位节点对地铁车辆车轮磨耗的影响[J]. 振动与冲击, 2019, 38(6): 100-107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906015.htm

    QI Ya-yun, DAI Huan-yun, WEI Lai, et al. Influence of changing the rigid arm positioning node on the wheel wear of metro vehicles[J]. Journal of Vibration and Shock, 2019, 38(6): 100-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906015.htm
    [10] 李国栋, 曾京, 池茂儒, 等. 高速列车轮轨匹配关系改进研究[J]. 机械工程学报, 2018, 54(4): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804015.htm

    LI Guo-dong, ZENG Jing, CHI Mao-ru, et al. Study on the improvement of wheel-rail matching relationship for high speed train[J]. Journal of Mechanical Engineering, 2018, 54(4): 93-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804015.htm
    [11] ZHANG Ting-ting, DAI Huan-yun. On the nonlinear dynamics of a high-speed railway vehicle with nonsmooth elements[J]. Applied Mathematical Modelling, 2019, 76: 526-544. doi: 10.1016/j.apm.2019.06.027
    [12] GUO Jing-ying, SHI Huai-long, LUO Ren, et al. Bifurcation analysis of a railway wheelset with nonlinear wheel-rail contact[J]. Nonlinear Dynamics, 2021, 104(2): 989 -1005. doi: 10.1007/s11071-021-06373-8
    [13] 何旭升, 吴会超, 高峰. 高速动车组晃车机理试验研究[J]. 大连交通大学学报, 2017, 38(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201701005.htm

    HE Xu-sheng, WU Hui-chao, GAO Feng. Test study on carbody swing of high-speed EMUs[J]. Journal of Dalian Jiaotong University, 2017, 38(1): 21-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201701005.htm
    [14] 陈迪来, 沈钢, 宗聪聪. 基于模态追踪的地铁车辆低频横向晃动分析[J]. 铁道学报, 2019, 41(10): 47-52. doi: 10.3969/j.issn.1001-8360.2019.10.007

    CHEN Di-lai, SHEN Gang, ZONG Cong-cong. Analysis of low-frequency lateral swaying of metro vehicle based on mode tracing[J]. Journal of the China Railway Society, 2019, 41(10): 47-52. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.10.007
    [15] 陈经纬, 崔涛, 孙建锋, 等. 基于高速列车异常晃动的钢轨廓形打磨管理[J]. 机车电传动, 2020(5): 128-131, 137. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202005030.htm

    CHEN Jing-wei, CUI Tao, SUN Jian-feng, et al. Grinding management of rail profile based on abnormal hunting of high-speed train[J]. Electric Drive For Locomotives, 2020(5): 128-131, 137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202005030.htm
    [16] HUANG Cai-hong, ZENG Jing, LIANG Shu-lin. Carbody hunting investigation of a high speed passenger car[J]. Journal of Mechanical Science and Technology, 2013, 27(8), 2283-2292. doi: 10.1007/s12206-013-0611-z
    [17] 夏张辉, 周劲松, 宫岛, 等. 基于模态连续追踪的铁道车辆车体低频横向晃动现象研究[J]. 铁道学报, 2018, 40(12): 46-54. doi: 10.3969/j.issn.1001-8360.2018.12.007

    XIA Zhang-hui, ZHOU Jin-song, GONG Dao, et al. Research on low-frequency lateral sway of railway vehicle body based on modal continuous tracking[J]. Journal of the China Railway Society, 2018, 40(12): 46-54. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.12.007
    [18] QI Ya-yun, DAI Huan-yun, SONG Chun-yuan, et al. Shaking analysis of high-speed train's carbody when cross lines[J]. Journal of Mechanical Science and Technology, 2019, 33(3): 1055-1064. doi: 10.1007/s12206-019-0205-5
    [19] 崔利通, 李国栋, 宋春元, 等. 高速动车组悬挂参数优化研究[J]. 铁道学报, 2021, 43(4): 42-50. doi: 10.3969/j.issn.1001-8360.2021.04.006

    CUI Li-tong, LI Guo-dong, SONG Chun-yuan, et al. Study on optimization of suspension parameters of high-speed EMU trains[J]. Journal of the China Railway Society, 2021, 43(4): 42-50. (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.04.006
    [20] WEI Lai, ZENG Jing, CHI Mao-ru, et al. Carbody elastic vibrations of high-speed vehicles caused by bogie hunting instability[J]. Vehicle System Dynamics, 2017, 55(9): 1321-1342. doi: 10.1080/00423114.2017.1310386
    [21] 关庆华, 温泽峰, 池茂儒, 等. 轮对蛇行运动的相位同步模态分析[J]. 机械工程学报, 2021, 57(24): 279-288.

    GUAN Qing-hua, WEN Ze-feng, CHI Mao-ru, et al. Phase synchronization modal analysis of wheelset hunting motion[J]. Journal of Mechanical Engineering, 2021, 57(24): 279-288. (in Chinese)
    [22] SHI Huai-long, WU Ping-bo. Flexible vibration analysis for car body of high-speed EMU[J]. Journal of Mechanical Science and Technology, 2016, 30(1): 55-66. doi: 10.1007/s12206-015-1207-6
    [23] XU Kai, FENG Zheng, WU Hao, et al. Investigating the influence of rail grinding on stability, vibration, and ride comfort of high-speed EMUs using multi-body dynamics modelling[J]. Vehicle System Dynamics, 2019, 57(11): 1621-1642. doi: 10.1080/00423114.2018.1539234
    [24] 周清跃, 田常海, 张银花, 等. CRH3型动车组构架横向失稳成因分析[J]. 中国铁道科学, 2014, 35(6): 105-110. doi: 10.3969/j.issn.1001-4632.2014.06.16

    ZHOU Qing-yue, TIAN Chang-hai, ZHANG Yin-hua, et al. Cause analysis for the lateral instability of CRH3 EMU framework[J]. China Railway Science, 2014, 35(6): 105-110. (in Chinese) doi: 10.3969/j.issn.1001-4632.2014.06.16
    [25] 杨震寰, 戴焕云, 石俊杰, 等. 磨耗后轮轨型面接触关系及线路适应性分析[J]. 铁道学报, 2021, 43(5): 37-46. doi: 10.3969/j.issn.1001-8360.2021.05.005

    YANG Zhen-huan, DAI Huan-yun, SHI Jun-jie, et al. Analysis of worn wheel-rail contact relationship and line adaptability[J]. Journal of the China Railway Society, 2021, 43(5): 37-46. (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.05.005
    [26] 李凡松, 王建斌, 石怀龙, 等. 动车组车体异常弹性振动原因及抑制措施研究[J]. 机械工程学报, 2019, 55(12): 178-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201912020.htm

    LI Fan-song, WANG Jian-bin, SHI Huai-long, et al. Research on causes and countermeasures of abnormal flexible vibration of car body for electric multiple units[J]. Journal of Mechanical Engineering, 2019, 55(12): 178-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201912020.htm
    [27] WANG Qun-sheng, ZENG Jing, WU Yi, et al. Study on semi-active suspension applied on carbody underneath suspended system of high-speed railway vehicle[J]. Journal of Vibration and Control, 2020, 26(9/10): 671-679.
    [28] KOYANAGI S, 栾平景. 设计柔性转向架运行特性的方法(上): 柔性转向架的蛇行运动波长[J]. 国外铁道车辆, 1993, 30(5): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD199305005.htm

    KOYANAGI S, LUAN Ping-jing. A method for designing the operating characteristics of flexible bogies (Part 1)—hunting motion wavelength of flexible bogies[J]. Foreign Rolling Stock, 1993, 30(5): 23-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD199305005.htm
    [29] KOYANAGI S, 栾平景. 设计柔性转向架运行特性的方法(下)[J]. 国外铁道车辆, 1993, 30(6): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD199306012.htm

    KOYANAGI S, LUAN Ping-jing. A method for designing the operating characteristics of flexible bogies (Part 2)[J]. Foreign Rolling Stock, 1993, 30(6): 40-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD199306012.htm
    [30] 任尊松, 刘志明. 高速动车组振动传递及频率分布规律[J]. 机械工程学报, 2013, 49(16): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316002.htm

    REN Zun-song, LIU Zhi-ming. Vibration and frequency domain characteristics of high speed train[J]. Journal of Mechanical Engineering, 2013, 49(16): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316002.htm
    [31] 干锋, 戴焕云. 基于空间矢量映射的新型轮轨接触点算法[J]. 机械工程学报, 2015, 51(10): 119-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201510019.htm

    GAN Feng, DAI Huan-yun. New wheel-rail contact point algorithm method based on the space vector mapping principle[J]. Journal of Mechanical Engineering, 2015, 51(10): 119-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201510019.htm
    [32] 干锋, 戴焕云, 高浩, 等. 铁道车辆不同踏面等效锥度和轮轨接触关系计算[J]. 铁道学报, 2013, 35(9): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201309005.htm

    GAN Feng, DAI Huan-yun, GAO Hao, et al. Calculation of equivalent conicity and wheel-rail contact relationship of different railway vehicle treads[J]. Journal of the China Railway Society, 2013, 35(9): 19-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201309005.htm
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  659
  • HTML全文浏览量:  201
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-21
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回