留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车车轮偏心磨耗的形成机理与发展规律

康熙 陈光雄 杨普淼 朱琪 宋启峰

康熙, 陈光雄, 杨普淼, 朱琪, 宋启峰. 高速列车车轮偏心磨耗的形成机理与发展规律[J]. 交通运输工程学报, 2022, 22(1): 168-176. doi: 10.19818/j.cnki.1671-1637.2022.01.014
引用本文: 康熙, 陈光雄, 杨普淼, 朱琪, 宋启峰. 高速列车车轮偏心磨耗的形成机理与发展规律[J]. 交通运输工程学报, 2022, 22(1): 168-176. doi: 10.19818/j.cnki.1671-1637.2022.01.014
KANG Xi, CHEN Guang-xiong, YANG Pu-miao, ZHU Qi, SONG Qi-feng. Formation mechanism and progression pattern of eccentric wear of high-speed train wheels[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 168-176. doi: 10.19818/j.cnki.1671-1637.2022.01.014
Citation: KANG Xi, CHEN Guang-xiong, YANG Pu-miao, ZHU Qi, SONG Qi-feng. Formation mechanism and progression pattern of eccentric wear of high-speed train wheels[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 168-176. doi: 10.19818/j.cnki.1671-1637.2022.01.014

高速列车车轮偏心磨耗的形成机理与发展规律

doi: 10.19818/j.cnki.1671-1637.2022.01.014
基金项目: 

国家自然科学基金项目 51775461

详细信息
    作者简介:

    康熙(1996-), 男, 山西运城人, 西南交通大学工学博士研究生, 从事车轮多边形磨耗研究

    陈光雄(1962-), 男, 广西玉林人, 西南交通大学教授, 工学博士

  • 中图分类号: U270.2

Formation mechanism and progression pattern of eccentric wear of high-speed train wheels

Funds: 

National Natural Science Foundation of China 51775461

More Information
  • 摘要: 为了研究高速列车车轮偏心磨耗的形成机理,根据现场测试和多体动力学仿真结果,建立了高速列车车轮-钢轨系统有限元模型,采用瞬时动态仿真分析了车轮残余静不平衡对轮轨法向接触力的影响;对最高速度为250 km·h-1动车组列车的运营速度进行现场测试,计算了列车匀速运行区间的平均速度;基于摩擦功周期性波动引起轮轨非均匀磨耗的观点,分析了车轮残余静不平衡量对轮轨接触力的影响,研究了车轮偏心磨耗的成因;通过改变轮轨有限元模型中车轮辐板上特定区域的材料密度来模拟残余静不平衡量,研究了偏心磨耗与残余静不平衡量大小的关系;通过重新编译有限元模型节点坐标来模拟偏心磨耗后车轮踏面的真实轮廓,研究了车轮偏心磨耗的发展规律。仿真结果表明:当高速列车以237 km·h-1的速度匀速运行时,车轮残余静不平衡会引起轮轨系统发生约24 Hz的振动,导致轮轨法向接触力周期性变化,引起车轮踏面发生1阶非圆磨耗,即车轮偏心磨耗;随着磨耗的不断加深,轮轨系统约48、72 Hz的振动被激励,引起2、3阶车轮多边形磨耗;当磨耗后的车轮踏面最大径跳大于0.15 mm时,在0~150 Hz的频率范围内,72 Hz的振动强度最大,导致车轮3阶多边形磨耗迅速增加;降低车轮残余静不平衡量可减缓1阶非圆车轮的形成。

     

  • 图  1  高速列车实测速度

    Figure  1.  Measured speed of high-speed train

    图  2  质量偏心车轮-钢轨系统有限元模型

    Figure  2.  Finite element model of mass eccentric wheel-rail system

    图  3  一阶非圆车轮有限元模型建模

    Figure  3.  Modeling of finite element model of 1-order out-of-roundness wheel

    图  4  轮轨接触模型

    Figure  4.  Wheel-rail contact model

    图  5  车轮质量偏心对轮轨系统振动的影响

    Figure  5.  Effect of wheel mass eccentricities on vibrations of wheel-rail system

    图  6  车轮质量偏心对轮轨法向接触力PSD的影响

    Figure  6.  Effect of wheel mass eccentricities on PSD of wheel-rail normal contact forces

    图  7  车轮残余静不平衡量对轮轨系统振动的影响

    Figure  7.  Effect of wheel residual static unbalance values on vibrations of wheel-rail system

    图  8  车轮残余静不平衡量对轮轨法向接触力PSD的影响

    Figure  8.  Effect of wheel residual static unbalance values on PSD of wheel-rail normal contact forces

    图  9  一阶非圆车轮有限元模型

    Figure  9.  Finite element model of 1-order out-of-roundness wheel

    图  10  一阶非圆车轮磨耗量对轮轨系统振动的影响

    Figure  10.  Effects of 1-order out-of-roundness wheel wear values on vibrations of wheel-rail system

    图  11  一阶非圆车轮磨耗量对轮轨法向接触力PSD的影响

    Figure  11.  Effects of 1-order out-of-roundness wheel wear values on PSD of wheel-rail normal contact forces

    表  1  质量偏心车轮-钢轨系统有限元模型参数

    Table  1.   Parameters of finite element model of mass eccentric wheel-rail system

    参数名称 符号 数值
    一系垂向悬挂力 F1/kN 68.358
    一系横向悬挂力 F2/kN 0
    轮轨间摩擦系数 μ 0.23
    区域E与车轮的中心距 r/m 0.29
    轨枕间距 LS/m 0.629
    区域E的体积 VE/m3 0.000 169
    区域E的材料密度 ρE/(kg·m-3) 8 834.633
    车轮和钢轨的材料密度 ρ/(kg·m-3) 7 800.000
    车轮和钢轨的杨氏模量 e/MPa 210 000
    车轮和钢轨的泊松比 p 0.3
    扣件垂向刚度 K1/(MN·m-1) 50
    扣件横向刚度 K2/(MN·m-1) 28
    扣件垂向阻尼 C1/[N·(m·s-1)-1] 30
    扣件横向阻尼 C2/[N·(m·s-1)-1] 20
    下载: 导出CSV

    表  2  车轮不同残余静不平衡量对应的区域E密度

    Table  2.   Area E's densities corresponding to different wheel residual static unbalance values

    |U|/(g·m) ρE/(kg·m-3)
    0 7 800.000
    10 8 018.760
    20 8 222.729
    30 8 426.697
    40 8 630.665
    50 8 834.633
    下载: 导出CSV
  • [1] 朱海燕, 胡华涛, 尹必超, 等. 轨道车辆车轮多边形研究进展[J]. 交通运输工程学报, 2020, 20(1): 102-119. doi: 10.19818/j.cnki.1671-1637.2020.01.008

    ZHU Hai-yan, HU Hua-tao, YIN Bi-chao, et al. Research progress on wheel polygons of rail vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 102-119. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.008
    [2] WANG Bin-jie, XIE Shu-qiang, JIANG Chao-yong, et al. An investigation into the fatigue failure of metro vehicle bogie frame[J]. Engineering Failure Analysis, 2020, 118: 104922. doi: 10.1016/j.engfailanal.2020.104922
    [3] SHEN Xun-liang, LU Lian-tao, ZENG Dong-fang. Fatigue failure analysis of high strength bolts used for high-speed railway vehicle braking discs[J]. Engineering Failure Analysis, 2020, 115: 104661. doi: 10.1016/j.engfailanal.2020.104661
    [4] CHEN Mei, SUN Yu, GUO Yu, et al. Study on effect of wheel polygonal wear on high-speed vehicle-track-subgrade vertical interactions[J]. Wear, 2019, 432/433: 102914. doi: 10.1016/j.wear.2019.05.029
    [5] WU Hao, WU Ping-bo, LI Fan-song, et al. Fatigue analysis of the gearbox housing in high-speed trains under wheel polygonization using a multibody dynamics algorithm[J]. Engineering Failure Analysis, 2019, 100: 351-364. doi: 10.1016/j.engfailanal.2019.02.058
    [6] WU Xing-wen, RAKHEJA S, QU Sheng, et al. Dynamic responses of a high-speed railway car due to wheel polygonalisation[J]. Vehicle System Dynamics, 2018, 56(12): 1817-1837. doi: 10.1080/00423114.2018.1439589
    [7] SHAN Wei, WU Ping-bo, WU Xing-wen, et al. Effect of wheel polygonization on the axle box vibrating and bolt self-loosening of high-speed trains[J]. Journal of Physics: Conference Series, 2019, 1213(5): 052044. doi: 10.1088/1742-6596/1213/5/052044
    [8] WANG Zhi-wei, MEI Gui-ming, ZHANG Wei-hua, et al. Effects of polygonal wear of wheels on the dynamic performance of the gearbox housing of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(6): 1852-1863. doi: 10.1177/0954409717752998
    [9] WANG Ping, LU Jun, ZHAO Cai-you, et al. Numerical investigation of the fatigue performance of elastic rail clips considering rail corrugation and dynamic axle load[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235(3): 339-352. doi: 10.1177/0954409720926016
    [10] KAEWUNRUEN S, REMENNIKOV A M. Effect of a large asymmetrical wheel burden on flexural response and failure of railway concrete sleepers in track systems[J]. Engineering Failure Analysis, 2008, 15(8): 1065-1075. doi: 10.1016/j.engfailanal.2007.11.013
    [11] 吴磊, 钟硕乔, 金学松, 等. 车轮多边形化对车辆运行安全性能的影响[J]. 交通运输工程学报, 2011, 11(3): 47-54. doi: 10.3969/j.issn.1671-1637.2011.03.009

    WU Lei, ZHONG Shuo-qiao, JIN Xue-song, et al. Influence of polygonal wheel on running safety of vehicle[J]. Journal of Traffic and Transportation Engineering, 2011, 11(3): 47-54. (in Chinese) doi: 10.3969/j.issn.1671-1637.2011.03.009
    [12] BROMMUNDT E. A simple mechanism for the polygonalization of railway wheels by wear[J]. Mechanics Research Communications, 1997, 24(4): 435-442. doi: 10.1016/S0093-6413(97)00047-5
    [13] MORYS B. Enlargement of out-of-round wheel profiles on high speed trains[J]. Journal of Sound and Vibration, 1999, 227(5): 965-978. doi: 10.1006/jsvi.1999.2055
    [14] MEYWERK M. Polygonalization of railway wheels[J]. Archive of Applied Mechanics, 1999, 69(2): 105-120. doi: 10.1007/s004190050208
    [15] MEINKE P, MEINKE S. Polygonalization of wheel treads caused by static and dynamic imbalances[J]. Journal of Sound and Vibration, 1999, 227(5): 979-986. doi: 10.1006/jsvi.1999.2590
    [16] SNYDER T, STONE D H, KRISTAN J. Wheel flat and out-of round formation and growth[C]//IEEE. Proceedings of the 2003 IEEE/ASME Joint Railroad Conference. New York: IEEE, 2003: 143-148.
    [17] JOHANSSON A. Out-of-round railway wheels—assessment of wheel tread irregularities in train traffic[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 795-806.
    [18] TSAI M S, CHEN S K. Analysis of high-speed railway vehicle trucks with worn and eccentric wheelset moving on curved tracks[J]. Journal of the Chinese Society of Mechanical Engineers, 2011, 32(4): 331-340.
    [19] WANG Yong, KANG Hong-jun, SONG Xiao-wen, et al. Influence of dynamic unbalance of wheelsets on the dynamic performance of high-speed cars[J]. Journal of Modern Transportation, 2011(3): 147-153.
    [20] JIN Xue-song, WU Lei, FANG Jian-ying, et al. An investigation into the mechanism of the polygonal wear of metro train wheels and its effect on the dynamic behaviour of a wheel/rail system[J]. Vehicle System Dynamics, 2012, 50(12): 1817-1834. doi: 10.1080/00423114.2012.695022
    [21] 刘启跃, 张波, 周仲荣, 等. 滚动轮波形磨损实验研究[J]. 摩擦学学报, 2003, 23(2): 132-135. doi: 10.3321/j.issn:1004-0595.2003.02.013

    LIU Qi-yue, ZHANG Bo, ZHOU Zhong-rong, et al. Experimental study on rolling wheel corrugation[J]. Tribology, 2003, 23(2): 132-135. (in Chinese) doi: 10.3321/j.issn:1004-0595.2003.02.013
    [22] 马卫华, 罗世辉, 宋荣荣. 地铁车辆车轮多边形化形成原因分析[J]. 机械工程学报, 2012, 48(24): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201224019.htm

    MA Wei-hua, LUO Shi-hui, SONG Rong-rong. Analyses of the form reason of wheel polygonization of subway vehicle[J]. Journal of Mechanical Engineering, 2012, 48(24): 106-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201224019.htm
    [23] TAO Gong-quan, WEN Ze-feng, LIANG Xi-ren, et al. An investigation into the mechanism of the out-of-round wheels of metro train and its mitigation measures[J]. Vehicle System Dynamics, 2019, 57(1): 1-16. doi: 10.1080/00423114.2018.1445269
    [24] 陈光雄, 金学松, 邬平波, 等. 车轮多边形磨耗机理的有限元研究[J]. 铁道学报, 2011, 33(1): 14-18. doi: 10.3969/j.issn.1001-8360.2011.01.003

    CHEN Guang-xiong, JIN Xue-song, WU Ping-bo, et al. Finite element study on the generation mechanism of polygonal wear of railway wheels[J]. Journal of the China Railway Society, 2011, 33(1): 14-18. (in Chinese) doi: 10.3969/j.issn.1001-8360.2011.01.003
    [25] 陈光雄, 崔晓璐, 王科. 高速列车车轮踏面非圆磨耗机理[J]. 西南交通大学学报, 2016, 51(2): 244-250. doi: 10.3969/j.issn.0258-2724.2016.02.004

    CHEN Guang-xiong, CUI Xiao-lu, WANG Ke. Generation mechanism for plolygonalization of wheel treads of high-speed trains[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 244-250. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.02.004
    [26] 赵晓男, 陈光雄, 崔晓璐, 等. 高速列车车轮多边形磨耗的形成机理及影响因素探究[J]. 表面技术, 2018, 47(8): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201808002.htm

    ZHAO Xiao-nan, CHEN Guang-xiong, CUI Xiao-lu, et al. Formation mechanism and influencing factors of the polygonal wear of high-speed train wheels[J]. Surface Technology, 2018, 47(8): 8-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201808002.htm
    [27] WU Yue, DU Xing, ZHANG He-ji, et al. Experimental analysis of the mechanism of high-order polygonal wear of wheels of a high-speed train[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics and Engineering), 2017, 18(8): 579-592. doi: 10.1631/jzus.A1600741
    [28] BROCKLEY C A, KO P L. An investigation of rail corrugation using friction-induced vibration theory[J]. Wear, 1988, 128(1): 99-106. doi: 10.1016/0043-1648(88)90256-6
    [29] 金学松, 吴越, 梁树林, 等. 高速列车车轮多边形磨耗、机理、影响和对策分析[J]. 机械工程学报, 2020, 56(16): 118-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202016014.htm

    JIN Xue-song, WU Yue, LIANG Shu-lin, et al. Characteristics, mechanism, influences and countermeasures of polygonal wear of high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(16): 118-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202016014.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  635
  • HTML全文浏览量:  199
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回