留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑性能衰退的燃料电池汽车自适应优化能量管理策略

王亚雄 余庆港 王薛超 孙逢春

王亚雄, 余庆港, 王薛超, 孙逢春. 考虑性能衰退的燃料电池汽车自适应优化能量管理策略[J]. 交通运输工程学报, 2022, 22(1): 190-204. doi: 10.19818/j.cnki.1671-1637.2022.01.016
引用本文: 王亚雄, 余庆港, 王薛超, 孙逢春. 考虑性能衰退的燃料电池汽车自适应优化能量管理策略[J]. 交通运输工程学报, 2022, 22(1): 190-204. doi: 10.19818/j.cnki.1671-1637.2022.01.016
WANG Ya-xiong, YU Qing-gang, WANG Xue-chao, SUN Feng-chun. Adaptive optimal energy management strategy of fuel cell vehicle by considering fuel cell performance degradation[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 190-204. doi: 10.19818/j.cnki.1671-1637.2022.01.016
Citation: WANG Ya-xiong, YU Qing-gang, WANG Xue-chao, SUN Feng-chun. Adaptive optimal energy management strategy of fuel cell vehicle by considering fuel cell performance degradation[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 190-204. doi: 10.19818/j.cnki.1671-1637.2022.01.016

考虑性能衰退的燃料电池汽车自适应优化能量管理策略

doi: 10.19818/j.cnki.1671-1637.2022.01.016
基金项目: 

国家重点研发计划 2017YFB0103000

中国工程院院地合作项目 2020-FJ-XY-12

中国博士后科学基金项目 2019M650505

详细信息
    作者简介:

    王亚雄(1988-),男,湖北宜城人,福州大学教授,工学博士,从事载运工具与新能源动力系统技术研究

  • 中图分类号: U469.72

Adaptive optimal energy management strategy of fuel cell vehicle by considering fuel cell performance degradation

Funds: 

National Key Research and Development Program of China 2017YFB0103000

Project of Cooperation of Chinese Academy of Engineering and Local Governments 2020-FJ-XY-12

China Postdoctoral Science Foundation 2019M650505

More Information
  • 摘要: 为了提高系统效率与降低因不利运行条件导致的燃料电池使用寿命缩短风险,提出了考虑燃料电池性能衰退的自适应庞特里亚金极小值原理(PMP)能量管理策略,用于城市公交车燃料电池/超级电容混合动力系统;分析了离线式PMP燃料电池/超级电容混合动力系统在5种不同循环工况下的能量分配结果,获取了在3种典型城市公交循环工况下初始协态变量随能量管理系统的状态量,即超级电容荷电状态始、末时刻差值的变化关系,插值出在线式PMP初始协态变量与荷电状态的对应关系,结合PMP正则方程计算每一时刻的协态变量,形成具有维持荷电状态稳定的在线PMP协态变量自适应更新方法;将影响燃料电池性能衰退的功率变化率、启停次数和最大功率作为约束条件,并在自适应PMP的成本函数中引入燃料电池功率变化率,获取满足约束条件且混合动力系统燃料经济性较好的能量管理策略;开展控制器硬件在环(HIL)仿真测试,验证该能量管理策略的实际应用效果。研究结果表明:在不同于确定协态变量的公交工况SC03和纽约城市循环(NYCC)工况下,自适应PMP末态荷电状态稳定在目标值附近,且与离线PMP相比,燃料经济性损失分别仅为1.27%和0.93%;在不同于确定协态变量和成本函数权重系数的运行工况即中国公交行驶循环(CBDC)综合测试工况下,该自适应优化能量管理策略可实现满足约束条件的能量分配,且燃料经济性保持为离线最优经济性的90.76%;在CBDC和纽伦堡公共汽车(NurembergR36)测试工况下,HIL仿真结果与数值仿真结果平均误差均小于5%。综上,该自适应优化能量管理策略考虑了燃料电池性能衰退,可实现混合动力系统的高效运行,具有长寿命使用潜力。

     

  • 图  1  燃料电池汽车混合动力系统

    Figure  1.  Hybrid power system of fuel cell vehicle

    图  2  不同循环工况下λ0和ΔS关系

    Figure  2.  Relationships between λ0 and ΔS under different driving cycles

    图  3  三种典型循环工况下车速和加速度信息

    Figure  3.  Vehicle speed and acceleration information under three typical driving cycles

    图  4  三种典型循环工况λ0和ΔS关系

    Figure  4.  Relationships between λ0 and ΔS under three typical driving cycles

    图  5  荷电状态及其插值曲线

    Figure  5.  State-of-charge and its interpolation curve

    图  6  燃料电池/超级电容混合动力系统自适应PMP能量管理策略

    Figure  6.  Adaptive PMP energy management strategy of fuel cell/supercapacitor hybrid power system

    图  7  CBDBUS工况下燃料电池功率和功率变化率

    Figure  7.  Output power and power change rate of fuel cell under CBDBUS driving cycle

    图  8  NewYorkBus工况下未考虑和考虑燃料电池性能衰退能量管理结果

    Figure  8.  Energy management results without and with fuel cell performance degradation under NewYorkBus driving cycle

    图  9  NurembergR36工况下未考虑和考虑燃料电池性能衰退能量管理结果

    Figure  9.  Energy management results without and with fuel cell performance degradation under NurembergR36 driving cycle

    图  10  CBDC工况下能量管理结果

    Figure  10.  Energy management result under CBDC driving cycle

    图  11  NurembergR36工况下能量管理结果

    Figure  11.  Energy management result under NurembergR36 driving cycle

    图  12  基于DSP控制器硬件在环仿真测试验证平台

    Figure  12.  Simulation test verification platform based on DSP-based controller hardware-in-the-loop

    图  13  CBDC和NurembergR36工况下基于DSP控制器的HIL仿真与数值仿真结果对比

    Figure  13.  Comparison of HIL and numerical simulation results based on DSP-based controller under CBDC and NurembergR36 driving cycles

    表  1  燃料电池城市公交车主要参数

    Table  1.   Main parameters of fuel cell city bus

    整车整备质量/kg 12 000
    载客人数 33
    迎风面积/m2 6.06
    传动系统效率/% 90
    旋转质量换算系数 1.1
    空气阻力系数 0.7
    车轮半径/m 0.54
    滚动阻力系数 0.012
    最高车速/(km·h-1) 70
    下载: 导出CSV

    表  2  三种典型循环工况的特征参数

    Table  2.   Characteristic parameters of three typical driving cycles

    典型循环工况总时间/s平均车速/(km·h-1)平均加速度/(m·s-2)停车次数
    CBDBUS 574 12.55 0.28 14
    NewYorkBus 600 3.68 0.19 11
    NurembergR36 1 089 8.91 0.25 23
    下载: 导出CSV

    表  3  自适应式和离线式PMP仿真条件

    Table  3.   Adaptive and offline PMP simulation conditions

    S(t0)εSmaxSminPFC_maxlimit/kW
    0.700 0.05 0.950 0.500 90.0
    下载: 导出CSV

    表  4  燃料电池/超级电容混合动力系统自适应式与离线式PMP能量分配结果

    Table  4.   Adaptive and offline PMP energy distribution results of fuel cell/supercapacitor hybrid power system

    工况 能量管理策略 混合动力系统等效氢耗/g 末态荷电状态 最大荷电状态 最小荷电状态 最高运行功率/kW
    SC03 在线式PMP 71.63 0.713 0.801 0.688 90.0
    离线式PMP 70.53 0.704 0.793 0.685 90.0
    NYCC 在线式PMP 29.22 0.730 0.730 0.703 90.0
    离线式PMP 28.95 0.684 0.704 0.652 90.0
    下载: 导出CSV

    表  5  考虑燃料电池性能衰退的能量管理约束

    Table  5.   Energy management constraints by considering fuel cell performance degradation

    参数名称 运行条件描述 数值
    功率变化率Δ PFC/(kW·s-1) 剧烈的动态加载工况下,易造成氧饥饿,导致质子交换膜受损,加速燃料电池性能衰退[26],通常限制功率变化率在最大净功率的2%~20%之间[24] 7.50
    每小时启停次数nos 燃料电池启动和停机过程所形成的氧气空气界面是引起性能衰减和耐久性恶化的重要因素[27]。燃料电池在实际车况下寿命须达到5 000 h,在这期间能承受30 000次启停循环和300 000次负载周期循环[28]。计燃料电池有输出功率和0之间切换为一次启停,燃料电池冷启动不作为启停次数考虑范围内。 6
    最高运行功率PFC_maxlimit/kW 燃料电池处于深功率放电状态时会导致大电流超载输出,易造成质子交换膜破损和性能衰退,降低质子传导能力[29] 90.0
    下载: 导出CSV

    表  6  CBDBUS工况下能量管理结果

    Table  6.   Energy management result under CBDBUS driving cycle

    参数 α=0 α=1.0×10-11 α=7.0×10-9
    nos 84 144 6
    ΔPFC/(kW·s-1) [-36.25, 28.46] [18.63, 20.17] [-0.37, 0.48]
    PFC_max/kW 46.8 56.7 20.7
    Meq/g 40.27 42.61 43.49
    下载: 导出CSV

    表  7  NewYorkBus工况下能量管理结果

    Table  7.   Energy management result under NewYorkBus driving cycle

    参数 α=0 α=7.0×10-9 α=5.0×10-8
    nos 66 18 6
    ΔPFC/(kW·s-1) [-82.23, 72.02] [-0.63, 1.19] [-0.08, 0.26]
    PFC_max/kW 90.0 26.4 11.9
    Meq/g 19.83 21.38 21.42
    下载: 导出CSV

    表  8  NurembergR36工况下能量管理结果

    Table  8.   Energy management result under NurembergR36 driving cycle

    参数α=0α=9.5×10-9
    nos 138 6
    ΔPFC/(kW·s-1) [-80.42, 55.06] [-0.40, 0.63]
    PFC_max/kW 80.4 25.0
    Meq/g 53.41 57.61
    下载: 导出CSV

    表  9  自适应优化能量管理策略仿真结果

    Table  9.   Simulation results of adaptive optimization energy management strategy

    工况 启停次数/(次·h-1) 功率变化率/(kW·s-1) 最高运行功率/kW 混合动力系统等效氢耗/g 始末荷电状态差值
    CBDBUS 0 [-0.100, 0.180] 19.1 43.66 -0.023
    NewYorkBus 6 [-0.078, 0.260] 11.9 21.42 -0.005
    NurembergR36 0 [-0.085, 0.150] 12.4 57.71 0.007
    下载: 导出CSV
  • [1] 王骞, 李顶根, 苗华春. 基于模糊逻辑控制的燃料电池汽车能量管理控制策略研究[J]. 汽车工程, 2019, 41(12): 1347-1355. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201912001.htm

    WANG Qian, LI Ding-gen, MIAO Hua-chun. Research on energy management strategy of fuel cell vehicle based on fuzzy logic control[J]. Automotive Engineering, 2019, 41(12): 1347-1355. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201912001.htm
    [2] TENG Teng, ZHANG Xin, DONG Han, et al. A comprehensive review of energy management optimization strategies for fuel cell passenger vehicle[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20293-20303. doi: 10.1016/j.ijhydene.2019.12.202
    [3] LYU Xue-qin, QU Yan, WANG Yu-dong, et al. A comprehensive review on hybrid power system for PEMFC-HEV: issues and strategies[J]. Energy Conversion and Management, 2018, 171: 1273-1291. doi: 10.1016/j.enconman.2018.06.065
    [4] SULAIMAN N, HANNAN M A, MOHAMED A, et al. A review on energy management system for fuel cell hybrid electric vehicle: issues and challenges[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 802-814. doi: 10.1016/j.rser.2015.07.132
    [5] ZHANG Ri-dong, TAO Ji-li, ZHOU Hui-yu. Fuzzy optimal energy management for fuel cell and supercapacitor systems using neural network based driving pattern recognition[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(1): 45-57. doi: 10.1109/TFUZZ.2018.2856086
    [6] WANG Yu-jie, SUN Zhen-dong, CHEN Zong-hai. Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine[J]. Applied Energy, 2019, 254: 113707. doi: 10.1016/j.apenergy.2019.113707
    [7] MEBARKI N, REKIOUA T, MOKRANI Z, et al. PEM fuel cell/battery storage system supplying electric vehicle[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20993-21005. doi: 10.1016/j.ijhydene.2016.05.208
    [8] 雷霄, 戴朝华, 陈维荣, 等. 基于ADVISOR的燃料电池混合动力机车建模与仿真[J]. 电源技术, 2015, 39(12): 2643-2646. doi: 10.3969/j.issn.1002-087X.2015.12.025

    LEI Xiao, DAI Chao-hua, CHEN Wei-rong, et al. Dynamic modeling and simulation of fuel cell hybrid locomotives based on ADVISOR[J]. Chinese Journal of Power Sources, 2015, 39(12): 2643-2646. (in Chinese) doi: 10.3969/j.issn.1002-087X.2015.12.025
    [9] LYU Xue-qin, WU Yin-bo, LIAN Jie, et al. Energy management of hybrid electric vehicles: a review of energy optimization of fuel cell hybrid power system based on genetic algorithm[J]. Energy Conversion and Management, 2020, 205: 112474. doi: 10.1016/j.enconman.2020.112474
    [10] ZHOU Wei, YANG Lin, CAI Yi-shan, et al. Dynamic programming for new energy vehicles based on their work modes Part Ⅱ: fuel cell electric vehicles[J]. Journal of Power Sources, 2018, 407: 92-104. doi: 10.1016/j.jpowsour.2018.10.048
    [11] SHI De-hua, LIU Sheng, CAI Ying-feng, et al. Pontryagin's minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information[J]. Applied Energy, 2021, 286: 116467. doi: 10.1016/j.apenergy.2021.116467
    [12] LI Xi-yun, WANG Yu-jie, YANG Duo, et al. Adaptive energy management strategy for fuel cell/battery hybrid vehicles using Pontryagin's minimal principle[J]. Journal of Power Sources, 2019, 440: 227105. doi: 10.1016/j.jpowsour.2019.227105
    [13] SONG Ke, WANG Xiao-di, LI Fei-qiang, et al. Pontryagin's minimum principle-based real-time energy management strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability[J]. Energy, 2020, 205: 118064. doi: 10.1016/j.energy.2020.118064
    [14] GAO Hui-zhong, WANG Zhi-jie, YIN Shao-ping, et al. Adaptive real-time optimal energy management strategy based on equivalent factors optimization for hybrid fuel cell system[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4329-4338. doi: 10.1016/j.ijhydene.2020.10.205
    [15] ZHOU Yang, LI Han, RAVEY A, et al. An integrated predictive energy management for light-duty range-extended plug-in fuel cell electric vehicle[J]. Journal of Power Sources, 2020, 451: 227780. doi: 10.1016/j.jpowsour.2020.227780
    [16] XU Liang-fei, OUYANG Ming-gao, LI Jian-qiu, et al. Application of Pontryagin's minimal principle to the energy management strategy of plugin fuel cell electric vehicles[J]. International Journal of Hydrogen Energy, 2013, 38(24): 10104-10115. doi: 10.1016/j.ijhydene.2013.05.125
    [17] 王哲, 谢怡, 臧鹏飞, 等. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报(工学版), 2020, 50(1): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202001004.htm

    WANG Zhe, XIE Yi, ZANG Peng-fei, et al. Energy management strategy of fuel cell bus based on Pontryagin's minimum principle[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 36-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202001004.htm
    [18] 杜泽学. 车用燃料电池关键材料技术研发应用进展[J]. 化工进展, 2021, 40(1): 6-20. doi: 10.3969/j.issn.1009-8348.2021.01.002

    DU Ze-xue. Application advances of manufacturing technology for key materials of vehicle fuel cell stack[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 6-20. (in Chinese) doi: 10.3969/j.issn.1009-8348.2021.01.002
    [19] SONG Ke, CHEN Huan, WEN Pei-min, et al. A comprehensive evaluation framework to evaluate energy management strategies of fuel cell electric vehicles[J]. Electrochimica Acta, 2018, 292: 960-973. doi: 10.1016/j.electacta.2018.09.166
    [20] WANG Y X, OU K, KIM Y B. Power source protection method for hybrid polymer electrolyte membrane fuel cell/lithium-ion battery system[J]. Renewable Energy, 2017, 111: 381-391. doi: 10.1016/j.renene.2017.03.088
    [21] LIU Yong-gang, LIU Jun-jun, ZHANG Yuan-jian, et al. Rule learning based energy management strategy of fuel cell hybrid vehicles considering multi-objective optimization[J]. Energy, 2020, 207: 118212. doi: 10.1016/j.energy.2020.118212
    [22] AHMADI S, BATHAEE S M T, HOSSEINPOUR A H. Improving fuel economy and performance of a fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultra-capacitor) using optimized energy management strategy[J]. Energy Conversion and Management, 2018, 160: 74-84. doi: 10.1016/j.enconman.2018.01.020
    [23] LI Tian-yu, LIU Hui-ying, WANG Hui, et al. Hierarchical predictive control-based economic energy management for fuel cell hybrid construction vehicles[J]. Energy, 2020, 198: 117327. doi: 10.1016/j.energy.2020.117327
    [24] CARIGNANO M G, COSTA-CASTELLÓ R, RODA V, et al. Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand[J]. Journal of Power Sources, 2017, 360: 419-433. doi: 10.1016/j.jpowsour.2017.06.016
    [25] 苏波, 李奇, 王天宏, 等. 城轨交通用燃料电池/超级电容混合动力系统瞬时等效最小氢耗硬件在环方法研究[J]. 中国电机工程学报, 2019, 39(19): 5714-5723, 5899. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201919016.htm

    SU Bo, LI Qi, WANG Tian-hong, et al. Research on hardware-in-the-loop methods for instantaneous equivalent minimum hydrogen consumption of fuel cell/ultracapacitor hybrid systems for urban rail transit[J]. Proceedings of the CSEE, 2019, 39(19): 5714-5723, 5899. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201919016.htm
    [26] PEI Pu-cheng, CHANG Qian-fei, TANG Tian. A quick evaluating method for automotive fuel cell lifetime[J]. International Journal of Hydrogen Energy, 2008, 33(14): 3829-3836. doi: 10.1016/j.ijhydene.2008.04.048
    [27] 余意. 频繁启停对质子交换膜燃料电池堆性能的影响[J]. 电池, 2015, 45(2): 74-77. doi: 10.3969/j.issn.1001-1579.2015.02.005

    YU Yi. Performance decay of PEMFC stack after startup-shutdown cycles[J]. Battery Bimonthly, 2015, 45(2): 74-77. (in Chinese) doi: 10.3969/j.issn.1001-1579.2015.02.005
    [28] 王诚, 王树博, 张剑波, 等. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424-435. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201504010.htm

    WANG Cheng, WANG Shu-bo, ZHANG Jian-bo, et al. The durability research on the proton exchange membrane fuel cell for automobile application[J]. Progress in Chemistry, 2015, 27(4): 424-435. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201504010.htm
    [29] 张新丰, 杨代军, 周拓. 车用燃料电池系统的性能衰退机理及影响因素分析[J]. 汽车安全与节能学报, 2012, 3(3): 276-286. doi: 10.3969/j.issn.1676-8484.2012.03.011

    ZHANG Xin-feng, YANG Dai-jun, ZHOU Tuo. Review on degradation mechanism and in fluence factors for vehicular fuel cell systems[J]. Journal of Automotive Safety and Energy, 2012, 3(3): 276-286. (in Chinese) doi: 10.3969/j.issn.1676-8484.2012.03.011
  • 加载中
图(13) / 表(9)
计量
  • 文章访问数:  986
  • HTML全文浏览量:  358
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-20
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回