留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于机载数据的民用航空器飞行阶段划分方法

王兵 张颖 谢华 李杰

王兵, 张颖, 谢华, 李杰. 一种基于机载数据的民用航空器飞行阶段划分方法[J]. 交通运输工程学报, 2022, 22(1): 216-228. doi: 10.19818/j.cnki.1671-1637.2022.01.018
引用本文: 王兵, 张颖, 谢华, 李杰. 一种基于机载数据的民用航空器飞行阶段划分方法[J]. 交通运输工程学报, 2022, 22(1): 216-228. doi: 10.19818/j.cnki.1671-1637.2022.01.018
WANG Bing, ZHANG Ying, XIE Hua, LI Jie. A flight phase identification method based on airborne data of civil aircraft[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 216-228. doi: 10.19818/j.cnki.1671-1637.2022.01.018
Citation: WANG Bing, ZHANG Ying, XIE Hua, LI Jie. A flight phase identification method based on airborne data of civil aircraft[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 216-228. doi: 10.19818/j.cnki.1671-1637.2022.01.018

一种基于机载数据的民用航空器飞行阶段划分方法

doi: 10.19818/j.cnki.1671-1637.2022.01.018
基金项目: 

国家自然科学基金项目 52172328

工业与信息化部中欧航空科技合作项目 MJ-2020-S-03

详细信息
    作者简介:

    王兵(1979-), 男, 河南洛阳人, 南京航空航天大学讲师, 工学博士, 从事民用航空器轨迹运行研究

    通讯作者:

    张颖(1978-), 女, 江苏靖江人, 南京航空航天大学讲师, 工学博士

  • 中图分类号: V247

A flight phase identification method based on airborne data of civil aircraft

Funds: 

National Natural Science Foundation of China 52172328

China and European Aviation Science and Technology Cooperation Project of the Ministry of Industry and Information Technology MJ-2020-S-03

More Information
  • 摘要: 为有效解决民用航空器的机载快速存取记录器(QAR)航迹数据中飞行阶段出现错误划分的情况,通过航空器气动构型和垂直运动态势变化提出了飞行阶段重新划分方法,具体分为4个步骤:数据预处理、垂直运动态势划分、飞行状态特征模型构建和飞行阶段重新划分;使用基于DBSCAN的局部遍历聚类方法对气压高度变化趋势进行聚类分析,划分垂直运动态势,并通过设置有效态势最短持续时间解决气压高度的局部抖动问题;考虑不同机型在不同飞行阶段时的襟翼位置和操纵各不相同,场面滑行时的场压抖动以及空速表在低速滑行时数值不准确等因素,根据航空器襟翼位置开关、起落架位置、地速和垂直态势等状态参数建立适合所有机型的飞行状态特征模型,并对QAR航迹划分飞行状态特征段;建立各飞行阶段与飞行状态特征的关系模型,结合起落架空地逻辑将所有飞行状态特征段识别为对应的飞行阶段。以3个典型的样本航班为例,计算结果表明:航班包含复飞在内的所有飞行阶段均被有效识别和划分,并与航空器飞行时的襟翼和起落架状态保持一致, 原QAR数据中的飞行阶段错误划分问题得到有效解决;对272 268个航班的QAR航迹进行了飞行阶段重新划分,成功率为99.7%,起飞、初始爬升、进近和着陆等非光洁构型飞行阶段的平均历时分别为0.6、1.9、6.1和4.0 min,平均距地高度分别为54、3 680、6 030和2 500 ft,符合航班实际运行规律。可见,所建立的飞行阶段重新划分方法可适用于大批量航班,为民用航空器的飞行阶段特征分析提供技术支撑。

     

  • 图  1  态势修正

    Figure  1.  Trend corrections

    图  2  样本航班1的垂直运动态势划分结果

    Figure  2.  Vertical movement identification result of sample flight

    图  3  样本航班1的飞行状态特征划分结果

    Figure  3.  Flight status characteristics identification result of sample flight 1

    图  4  飞行阶段与状态特征段的关系

    Figure  4.  Relation between flight phase and status characteristic phase

    图  5  基于状态特征段的飞行阶段划分算法流程

    Figure  5.  Flow of flight phase identification algorithm based on status characteristic phase

    图  6  飞行阶段重新划分结果

    Figure  6.  Re-identification results of flight phases

    图  7  QAR自带飞行阶段与重新划分后的结果对比

    Figure  7.  Comparison between QAR's original flight phases and re-identification results

    图  8  特征高度和历时分布

    Figure  8.  Distributions of characteristic levels and durations

    表  1  数据字段

    Table  1.   Data fields

    字段名 全称 描述
    FID Flight Identification 航班识别码
    TIME Time Stamp 时间戳
    LON Longitude 经度(WGS-84大地坐标系)
    LAT Latitude 纬度(WGS-84大地坐标系)
    PA Pressure Altitude 压力高度(基准为1 013 mb)
    GS Ground Speed 地速
    IAS Indicated Air Speed 表速
    TAS True Air Speed 真空速
    IVV Inertial Vertical Speed 垂直速度
    MACH Mach Number 马赫数
    TAT Total Air Temperature 总温
    TH True Heading 真航向
    FLAP Flaps Position 襟翼位置
    SLAT Slats Position 缝翼位置
    LDG_SELDW Gears Selection Down 起落架位置
    LDG_CMPRSD Gears Compression Sensor 起落架空地逻辑
    N1 Engine N1 Tachometer 发动机N1转速百分比
    N2 Engine N2 Tachometer 发动机N2转速百分比
    FF Fuel Flow 发动机燃油流率
    GW Gross Weight 航空器质量
    下载: 导出CSV

    表  2  姿态与构型特征定义

    Table  2.   Definitions of attitudes and configuration characteristics

    飞行阶段 起落架位置 起落架空地逻辑 襟翼 缝翼 垂直态势
    滑出 放下 关/小/中/全 关/中/全 LEV
    起飞 放下 地→空 小/中 LEV/CLM
    初始爬升 收起 小/中 CLM/LEV
    爬升 收起 CLM
    巡航 收起 LEV
    下降 收起 DES
    进近 收起 小/中/全 中/全 DES/LEV/CLM
    着陆 放下 空→地 中/全 中/全 DES/LEV
    着陆(取消) 放下 中/全 中/全 DES/LEV
    复飞爬升 放下 中/全 中/全 CLM
    滑入 放下 关/小/中/全 关/中/全 LEV
    下载: 导出CSV

    表  3  A320系列的襟翼和缝翼

    Table  3.   Flaps and slats of A320 series

    档位 形态 襟翼 缝翼 使用阶段
    0 0 0 0 巡航 等待
    1 1 0 18
    1+F 10 起飞
    2 2 15 22 进近
    3 3 20 22 着陆
    FULL FULL 35 27
    下载: 导出CSV

    表  4  飞行状态特征分类

    Table  4.   Classification of flight state characteristics

    特征 起落架位置 地速 襟翼开关 垂直运动态势
    1 放下 ≤ 40 kt
    2 放下 > 40 kt
    3 收起 ON CLM
    4 收起 ON LEV
    5 收起 ON DES
    6 收起 OFF
    下载: 导出CSV

    表  5  飞行阶段重新划分失败原因

    Table  5.   Reasons for failure to re-identify flight phases

    原因描述 影响范围 航班数量 占比/%
    襟翼和缝翼字段数值始终保持为0 起飞、初始爬升、进近、着陆、复飞 758 93.58
    QAR航迹不完整 滑出、起飞、初始爬升、进近、着陆、复飞、滑入 48 5.93
    起飞过程中先收襟翼、后收起落架 初始爬升 4 0.49
    下载: 导出CSV
  • [1] IMMER M, JURETZKO P G. Advanced aircraft performance analysis[J]. Aircraft Engineering and Aerospace Technology, 2018, 90(4): 627-638. doi: 10.1108/AEAT-11-2016-0205
    [2] SUN J Z, ELLERBROEK J, HOEKSTRA J M. WRAP: an open-source kinematic aircraft performance model[J]. Transportation Research Part C: Emerging Technologies, 2019, 98: 118-138. doi: 10.1016/j.trc.2018.11.009
    [3] SUN J Z, HOEKSTRA J M, ELLERBROEK J. Estimating aircraft drag polar using open flight surveillance data and a stochastic total energy model[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 391-404. doi: 10.1016/j.trc.2020.01.026
    [4] POLL D I A, SCHUMANN U. An estimation method for the fuel burn and other performance characteristics of civil transport aircraft during cruise. Part 2: determining the aircraft's characteristic parameters[J]. The Aeronautical Journal, 2021, 125(1284): 296-340. doi: 10.1017/aer.2020.124
    [5] POLL D I A, SCHUMANN U. An estimation method for the fuel burn and other performance characteristics of civil transport aircraft in the cruise. Part 1: fundamental quantities and governing relations for a general atmosphere[J]. The Aeronautical Journal, 2021, 125(1284): 257-295. doi: 10.1017/aer.2020.62
    [6] WANG Bing, LI Jie, LI Chi, et al. A method for computing flight operation fuel burn and emissions based on ADS-B trajectories[J]. Journal of Aeronautics, Astronautics and Aviation, 2020, 52(2): 183-196.
    [7] XUE Da-bin, LIU Zhi-zhao, WANG Bing, et al. Impacts of COVID-19 on aircraft usage and fuel consumption: a case study on four Chinese international airports[J]. Journal of Air Transport Management, 2021, 95: 102106. doi: 10.1016/j.jairtraman.2021.102106
    [8] SUN Jun-zi, DEDOUSSI I. Evaluation of aviation emissions and environmental costs in Europe using OpenSky and OpenAP[J]. Engineering Proceedings, 2021, 13(1): 1-9.
    [9] RAJEE O. Safety analysis of automatic dependent surveillance-broadcast (ADS-B) system[J]. International Journal of Aerospace and Mechanical Engineering, 2018, 5(2): 9-18.
    [10] TABASSUM A, SEMKE W. UAT ADS-B data anomalies and the effect of flight parameters on dropout occurrences[J]. Data, 2018, 3(2): 1-21. doi: 10.29147/dat.v3i2.84
    [11] ALI B S, TAIB N A. A study on geometric and barometric altitude data in automatic dependent surveillance broadcast (ADS-B) Messages[J]. Journal of Navigation, 2019, 72: 1140-1158. doi: 10.1017/S0373463319000201
    [12] SEMKE W, ALLEN N, TABASSUM A, et al. Analysis of radar and ADS-B influences on aircraft detect and avoid (DAA) systems[J]. Aerospace, 2017, 4(3): 1-14.
    [13] WANG Lei, WU Chang-xu, SUN Rui-shan. An analysis of flight quick access recorder (QAR) data and its applications in preventing landing incidents[J]. Reliability Engineering and System Safety, 2014, 127: 86-96. doi: 10.1016/j.ress.2014.03.013
    [14] WANG Lei, ZHANG Jing-yi, DONG Chuan-ting, et al. A method of applying flight data to evaluate landing operation performance[J]. Ergonomics, 2019, 62(2): 171-180. doi: 10.1080/00140139.2018.1502806
    [15] ZHANG Ming, HUANG Qian-wen, LIU Si-han, et al. Fuel consumption model of the climbing phase of departure aircraft based on flight data analysis[J]. Sustainability, 2019, 11(16): 4362. doi: 10.3390/su11164362
    [16] CHARLES J, ADRIAN R, ANTHONY B, et al. Phase of flight and rule of flight calculator[C]//ICRAT. 7th International Conference on Research in Air Transportation. Philadelphia: ICRAT, 2016: 1-8.
    [17] GOBLET V, FALA N, MARAIS K. Identifying phases of flight in general aviation operations[C]//AIAA. 15th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2015: 1-20.
    [18] FU T C. A review on time series data mining[J]. Engineering Applications of Artificial Intelligence, 2011, 24(1): 164-181. doi: 10.1016/j.engappai.2010.09.007
    [19] MIKE P, ROBERT O. Determination of horizontal and vertical phase of flight in recorded air traffic data[C]//AIAA. AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2006: 1-16.
    [20] 张余, 葛飞. 基于航迹数据的飞行状态识别方法研究[J]. 航空计算技术, 2017, 47(6): 45-48, 51. doi: 10.3969/j.issn.1671-654X.2017.06.011

    ZHANG Yu, GE Fei. Research on flight state recognition method based on track data[J]. Aeronautical Computing Technique, 2017, 47(6): 45-48, 51. (in Chinese) doi: 10.3969/j.issn.1671-654X.2017.06.011
    [21] NGUYEN T H, WARD D, NGUYEN T, et al. A neural-network based inference engine for a general aviation pilot advisor[C]//AIAA. 35th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1997: 1-10.
    [22] TIAN Feng, CHENG Xiao-ke, MENG Guang-lei, et al. Research on flight phase division based on decision tree classifier[C]//IEEE. 2017 2nd IEEE International Conference on Computational Intelligence and Applications. New York: IEEE, 2017: 372-375.
    [23] HARRAL V Q. Genetic algorithms for tuning fuzzy membership functions in flight control software[D]. Texas: Texas A&M University, 1995.
    [24] ZADEH L. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353. doi: 10.1016/S0019-9958(65)90241-X
    [25] KELLY W E, PAINTER J H. Flight segment identification as a basis for pilot advisory systems[J]. Journal of Aircraft, 2006, 43(6): 1628-1635. doi: 10.2514/1.20484
    [26] SUN Jun-zi, ELLERBROEK J, HOEKSTRA J. Large-scale flight phase identification from ADS-B data using machine learning methods[C]//TU Delft. 7th International Conference on Research in Air Transportation. Delft: TU Delft, 2016: 1-7.
    [27] SUN Jun-zi, ELLERBROEK J, HOEKSTRA J. Flight extraction and phase identification for large automatic dependent surveillance-broadcast datasets[J]. Journal of Aerospace Information Systems, 2017, 14(10): 566-571. doi: 10.2514/1.I010520
    [28] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//AIAA. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Reston: AIAA, 1996: 226-231.
    [29] 王兵. ADS-B历史飞行轨迹数据清洗方法[J]. 交通运输工程学报, 2020, 20(4): 217-226. doi: 10.19818/j.cnki.1671-1637.2020.04.018

    WANG Bing. Data cleaning method of ADS-B historical flight trajectories[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 217-226. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.018
    [30] SAXENA A, PRASAD M, GUPTA A, et al. A review of clustering techniques and developments[J]. Neurocomputing, 2017, 267: 664-681. doi: 10.1016/j.neucom.2017.06.053
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  1059
  • HTML全文浏览量:  272
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-10
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回