留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光雷达选址对飞机尾涡特征参数反演的影响

庄南剑 赵丽雅 谷润平 魏志强

庄南剑, 赵丽雅, 谷润平, 魏志强. 激光雷达选址对飞机尾涡特征参数反演的影响[J]. 交通运输工程学报, 2022, 22(1): 229-239. doi: 10.19818/j.cnki.1671-1637.2022.01.019
引用本文: 庄南剑, 赵丽雅, 谷润平, 魏志强. 激光雷达选址对飞机尾涡特征参数反演的影响[J]. 交通运输工程学报, 2022, 22(1): 229-239. doi: 10.19818/j.cnki.1671-1637.2022.01.019
ZHUANG Nan-jian, ZHAO Li-ya, GU Run-ping, WEI Zhi-qiang. Effects of lidar location on retrieval of aircraft wake vortex characteristic parameter[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 229-239. doi: 10.19818/j.cnki.1671-1637.2022.01.019
Citation: ZHUANG Nan-jian, ZHAO Li-ya, GU Run-ping, WEI Zhi-qiang. Effects of lidar location on retrieval of aircraft wake vortex characteristic parameter[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 229-239. doi: 10.19818/j.cnki.1671-1637.2022.01.019

激光雷达选址对飞机尾涡特征参数反演的影响

doi: 10.19818/j.cnki.1671-1637.2022.01.019
基金项目: 

国家自然科学基金项目 U1533116

中央高校基本科研业务费专项资金项目 3122017069

详细信息
    作者简介:

    庄南剑(1987-),男,湖南汨罗人,中国民航大学讲师,工学博士,从事飞机尾流间隔与安全研究

    通讯作者:

    魏志强(1979-),男,河南三门峡人,中国民航大学教授

  • 中图分类号: V212

Effects of lidar location on retrieval of aircraft wake vortex characteristic parameter

Funds: 

National Natural Science Foundation of China U1533116

Fundamental Research funds for the Central Universities 3122017069

More Information
  • 摘要: 为了提高距离高度显示器模式激光雷达的尾涡探测与反演精度,提出了基于涡核区域分割的机场激光雷达最佳选址求解算法,研究了激光雷达横向和纵向安装位置对尾涡反演精度的影响;考虑尾涡消散和下沉影响,建立了激光雷达动态回波数据仿真模型;推导了尾涡区域分割径向距离公式,根据区域分割后的速度极值点确定了尾涡涡核位置;对涡核位置进行探测时间差修正后代入诱导速度方程,利用涡核附近的特征点径向速度构建了联立方程组,求解了尾涡环量相对误差;结合机场的机型占比数据,设计了激光雷达最佳选址的计算流程;基于国内某机场一周的运行数据,提取了5种典型机型数据进行机场激光雷达选址影响分析,确定了该机场的最佳激光雷达布局位置。研究结果表明:激光雷达选址的横向距离对反演精度影响较大,且存在最佳横向距离,大约为飞机翼展的10倍;最佳横向距离附近大约200 m是较佳的选择范围,该范围内探测精度变化不大;纵向距离选择存在最小值,最小值与尾涡下沉速度成正相关,对于典型民航大型飞机,大约为800 m;当纵向距离大于最小值时,其变化基本不影响尾涡探测精度;机场激光雷达的最佳选址区域为横向位置在最佳横向距离附近、纵向距离大于最小值的长条形区域。可见,机场激光雷达最佳选址求解算法是有效的,可以应用于尾涡探测试验或动态尾流间隔系统的激光雷达选址决策分析。

     

  • 图  1  激光雷达摆放位置

    Figure  1.  Lidar installation location

    图  2  激光雷达尾涡探测剖面

    Figure  2.  Lidar wake vortex detection profile

    图  3  激光雷达扫描区域分割

    Figure  3.  Segmentation of lidar scanning area

    图  4  环量计算数据点选取范围

    Figure  4.  Selection range of data points for circulation calculation

    图  5  激光雷达最佳选址计算流程

    Figure  5.  Calculation process for lidar optimal location

    图  6  纵向位置对探测精度的影响

    Figure  6.  Influences of longitudinal position on detection accuracy

    图  7  横向位置对探测精度的影响

    Figure  7.  Influence of lateral position on detection accuracy

    图  8  A320探测误差等值线

    Figure  8.  A320 detection error contours

    图  9  各机型探测误差等值线

    Figure  9.  Detection error contours of various aircraft types

    图  10  某机场机型分布

    Figure  10.  Distribution of aircraft types at an airport

    图  11  多机型探测误差均值等值线

    Figure  11.  Detection mean error contours of multiple aircraft types

    表  1  A320飞行参数

    Table  1.   Flight parameters of A320

    飞行参数 取值
    着陆重力/N 645 120
    翼展/m 33.9
    进近速度/(m·s-1) 59.6
    初始环量/(m2·s-1) 325.7
    初始下沉速度/(m·s-1) 1.95
    下载: 导出CSV

    表  2  各机型飞行参数

    Table  2.   Flight parameters of various aircraft types

    机型 B737 A330 B777 A380
    着陆重力/N 663 610 1 850 340 2 018 510 3 860 000
    翼展/m 34.3 60.3 60.9 79.8
    进近速度/(m·s-1) 69.4 68.4 66.8 68.4
    初始环量/(m2·s-1) 284.4 457.7 506.2 721.4
    初始下沉速度/(m·s-1) 1.68 1.54 1.69 1.83
    下载: 导出CSV
  • [1] 韩红蓉, 李娜, 魏志强. 飞机遭遇尾涡的安全性分析[J]. 交通运输工程学报, 2012, 12(1): 45-49. doi: 10.3969/j.issn.1671-1637.2012.01.008

    HAN Hong-rong, LI Na, WEI Zhi-qiang. Safety analysis of aircraft encountering wake vortex[J]. Journal of Traffic and Transportation Engineering, 2012, 12(1): 45-49. (in Chinese) doi: 10.3969/j.issn.1671-1637.2012.01.008
    [2] 徐肖豪, 赵鸿盛, 王振宇. 尾流间隔缩减技术综述[J]. 航空学报, 2010, 31(4): 655-662. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201004002.htm

    XU Xiao-hao, ZHAO Hong-sheng, WANG Zhen-yu. Overview of wake vortex separation reduction systems[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 655-662. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201004002.htm
    [3] 魏志强, 屈秋林, 刘薇, 等. 飞机尾涡流场参数的仿真计算方法研究综述[J]. 空气动力学学报, 2019, 37(1): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201901003.htm

    WEI Zhi-qiang, QU Qiu-lin, LIU Wei, et al. Review on the artificial calculating methods for aircraft wake vortex flow field parameters[J]. Acta Aerodynamica Sinica, 2019, 37(1): 33-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201901003.htm
    [4] 冯力天, 周杰, 范琪, 等. 应用于民航机场风切变探测与预警的三维激光测风雷达[J]. 光子学报, 2019, 48(5): 186-196. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201905022.htm

    FENG Li-tian, ZHOU Jie, FAN Qi, et al. Three-dimensional lidar for wind shear detection and early warning in civil aviation airport[J]. Acta Photonica Sinica, 2019, 48(5): 186-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201905022.htm
    [5] 李健兵, 高航, 王涛, 等. 飞机尾流的散射特性与探测技术综述[J]. 雷达学报, 2017, 6(6): 653-672. https://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201706010.htm

    LI Jian-bing, GAO Hang, WANG Tao, et al. A survey of the scattering characteristics and detection of aircraft wake vortices[J]. Journal of Radars, 2017, 6(6): 653-672. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201706010.htm
    [6] 潘卫军, 栾天, 康贤彪, 等. 飞机尾流观测研究进展[J]. 空气动力学学报, 2019, 37(4): 511-521. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201904001.htm

    PAN Wei-jun, LUAN Tian, KANG Xian-biao, et al. Progress in observational studies of aircraft wake vortex in ground proximity[J]. Acta Aerodynamica Sinica, 2019, 37(4): 511-521. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201904001.htm
    [7] 徐世龙, 胡以华, 赵楠翔. 基于激光雷达回波的飞机尾涡参量提取[J]. 光子学报, 2013, 42(1): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201301010.htm

    XU Shi-long, HU Yi-hua, ZHAO Nan-xiang. Extrication of wake vortex parameters based on lidar echo[J]. Acta Photonica Sinica, 2013, 42(1): 54-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201301010.htm
    [8] 胡以华, 吴永华. 飞机尾涡特性分析与激光探测技术研究[J]. 红外与激光工程, 2011, 40(6): 1063-1069. doi: 10.3969/j.issn.1007-2276.2011.06.015

    HU Yi-hua, WU Yong-hua. Study on the characteristic of aircraft wake vortex and lidar detection technique[J]. Infrared and Laser Engineering, 2011, 40(6): 1063-1069. (in Chinese) doi: 10.3969/j.issn.1007-2276.2011.06.015
    [9] 潘卫军, 张庆宇, 张强, 等. 多普勒激光雷达的飞机尾涡识别方法[J]. 激光技术, 2019, 43(2): 233-237. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201902016.htm

    PAN Wei-jun, ZHANG Qing-yu, ZHANG Qiang, et al. Identification method of aircraft wake vortex based on Doppler lidar[J]. Laser Technology, 2019, 43(2): 233-237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201902016.htm
    [10] 潘卫军, 段英捷, 易文豪, 等. 基于YOLO的人工智能飞机尾涡识别研究[J]. 兵器装备工程学报, 2020, 41(11): 242-247. doi: 10.11809/bqzbgcxb2020.11.044

    PAN Wei-jun, DUAN Ying-jie, YI Wen-hao, et al. Research on aircraft wake vortex recognition based on YOLO artificial intelligence[J]. Journal of Ordnance Equipment Engineering, 2020, 41(11): 242-247. (in Chinese) doi: 10.11809/bqzbgcxb2020.11.044
    [11] 王筱晔, 吴松华, 刘晓英, 等. 基于相干多普勒激光雷达的飞机尾涡观测[J]. 光学学报, 2021, 41(9): 9-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202109002.htm

    WANG Xiao-ye, WU Song-hua, LIU Xiao-ying, et al. Observation of aircraft wake vortex based on coherent Doppler lidar[J]. Acta Optica Sinica. 2021, 41(9): 9-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202109002.htm
    [12] WU Song-hua, ZHAI Xiao-chun, LIU Bing-yi. Aircraft wake vortex and turbulence measurement under near-ground effect using coherent Doppler lidar[J]. Optics Express, 2019, 27(2): 1142-1163. doi: 10.1364/OE.27.001142
    [13] WU Song-hua, LIU Bing-yi, LIU Jin-tao. Aircraft wake vortex measurement with coherent Doppler lidar[J]. EPJ Web of Conferences, 2016, DOI: 10.1051/epjconf/201611914008.
    [14] LIU Xiao-ying, ZHANG Xin-yu, ZHAI Xiao-chun, et al. Observation of aircraft wake vortex evolution under crosswind conditions by pulsed coherent Doppler lidar[J]. Atmosphere, 2020, DOI: 10.3390/atmos12010049.
    [15] HON K, CHAN P. Aircraft wake vortex observations in Hong Kong[J]. Journal of Radars, 2017, 6(6): 709-718. https://www.researchgate.net/publication/322491582_Aircraft_wake_vortex_observations_in_Hong_Kong
    [16] CHUN S, BING L J, LIN Z F, et al. Two-step locating method for aircraft wake vortices based on Gabor filter and velocity range distribution[J]. IET Radar, Sonar and Navigation, 2020, 14(12): 1958-1967. doi: 10.1049/iet-rsn.2020.0319
    [17] PENKIN M S, BOREISHO A S, KONYAEV M A, et al. Detection of the aircraft vortex wake with the aid of a coherent Doppler lidar[J]. Journal of Engineering Physics and Thermophysics, 2017, 90(4): 951-957. doi: 10.1007/s10891-017-1642-6
    [18] YOSHIKAWA E, MATAYOSHI N. Aircraft wake vortex retrieval method on lidar lateral range-height indicator observation[J]. AIAA Journal, 2017, 55(7): 2269-2278. doi: 10.2514/1.J055224
    [19] SMALIKHO I N, BANAKH V A, FALITS A V. Measurements of aircraft wake vortex parameters by a stream line Doppler lidar[J]. Atmospheric and Oceanic Optics, 2017, 30(6): 588-595. doi: 10.1134/S1024856017060136
    [20] FREHLICH R, SHARMAN R. Maximum likelihood estimates of vortex parameters from simulated coherent Doppler lidar data[J]. American Meteorological Society, 2005, 22(2): 117-130. https://journals.ametsoc.org/view/journals/atot/22/2/jtech-1695_1.xml
    [21] SMALIKHO I N, BANAKH V A, HOLZÄPFEL F, et al. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar[J]. Optics Express, 2015, 23(19): 1194-1207. doi: 10.1364/OE.23.0A1194
    [22] SMALIKHO I N, BANAKH V A. Estimation of aircraft wake vortex parameters from data measured with a 1.5-μm coherent Doppler lidar[J]. Optics Letters, 2015, 40(14): 3408-3411. doi: 10.1364/OL.40.003408
    [23] GAO Hang, LI Jian-bing, CHAN P W, et al. Parameter- retrieval of dry-air wake vortices with a scanning Doppler lidar[J]. Optics Express, 2018, 26(13): 16377-16392. doi: 10.1364/OE.26.016377
    [24] KÖPP F, RAHM S, SMALIKHO I. Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar[J]. American Meteorological Society, 2004, 21(2): 194-206. https://journals.ametsoc.org/view/journals/atot/21/2/1520-0426_2004_021_0194_coawvb_2_0_co_2.xml
    [25] HOLZÄPFEL F, GERZ T, KÖPP F, et al. Strategies for circulation evaluation of aircraft wake vortices measured by lidar[J]. American Meteorological Society, 2003, 20(8): 1183-1195. https://www.researchgate.net/publication/224780255_Strategies_for_Circulation_Evaluation_of_Aircraft_Wake_Vortices_Measured_by_Lidar
    [26] 吴永华, 胡以华, 戴定川, 等. 基于1.5 μm多普勒激光雷达的飞机尾涡探测技术研究[J]. 光子学报, 2011, 40(6): 811-817. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201106004.htm

    WU Yong-hua, HU Yi-hua, DAI Ding-chuan, et al. Research on the technique of aircraft wake vortex detection based on 1.5 μm Doppler lidar[J]. Acta Photonica Sinica, 2011, 40(6): 811-817. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201106004.htm
    [27] 赵丽雅, 谷润平, 魏志强. 基于激光雷达回波的动态尾涡特征参数计算[J]. 武汉科技大学学报, 2018, 41(5): 388-394. doi: 10.3969/j.issn.1674-3644.2018.05.012

    ZHAO Li-ya, GU Run-ping, WEI Zhi-qiang. Calculation of characteristic parameters of dynamic wake vortex based on lidar echo[J]. Journal of Wuhan University of Science and Technology, 2018, 41(5): 388-394. (in Chinese) doi: 10.3969/j.issn.1674-3644.2018.05.012
    [28] 谷润平, 赵丽雅, 魏志强. 飞机尾涡流场特征参数估算方法研究[J]. 航空计算技术, 2017, 47(6): 14-17, 23. doi: 10.3969/j.issn.1671-654X.2017.06.004

    GU Run-ping, ZHAO Li-ya, WEI Zhi-qiang. Study on estimation method of characteristic parameters of aircraft wake vortex[J]. Aeronautical Computing Technique, 2017, 47(6): 14-17, 23. (in Chinese) doi: 10.3969/j.issn.1671-654X.2017.06.004
    [29] LI Jian-bing, SHEN Chun, GAO Hang, et al. Path integration (PI) method for the parameter-retrieval of aircraft wake vortex by lidar[J]. Optics Express, 2020, 28(3): 4286-4306. doi: 10.1364/OE.382968
    [30] GAO Hang, LI Jian-bing, CHAN P W, et al. Parameter retrieval of aircraft wake vortex based on its max-min distribution of Doppler velocities measured by alidar[J]. The Journal of Engineering, 2019, 2019(20): 6852-6855. doi: 10.1049/joe.2019.0539
    [31] 沈淳, 高航, 王雪松, 等. 基于激光雷达探测的飞机尾流特征参数反演系统[J]. 雷达学报, 2020, 9(6): 1032-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-LDAX202006008.htm

    SHEN Chun, GAO Hang, WANG Xue-song, et al. Aircraft wake vortex parameter-retrieval system based on lidar[J]. Journal of Radars, 2020, 9(6): 1032-1044. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDAX202006008.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  521
  • HTML全文浏览量:  205
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回