留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑多前车作用势的混行交通流车辆跟驰模型

宗芳 王猛 曾梦 石佩鑫 王力

宗芳, 王猛, 曾梦, 石佩鑫, 王力. 考虑多前车作用势的混行交通流车辆跟驰模型[J]. 交通运输工程学报, 2022, 22(1): 250-262. doi: 10.19818/j.cnki.1671-1637.2022.01.021
引用本文: 宗芳, 王猛, 曾梦, 石佩鑫, 王力. 考虑多前车作用势的混行交通流车辆跟驰模型[J]. 交通运输工程学报, 2022, 22(1): 250-262. doi: 10.19818/j.cnki.1671-1637.2022.01.021
ZONG Fang, WANG Meng, ZENG Meng, SHI Pei-xin, WANG Li. Vehicle-following model in mixed traffic flow considering interaction potential of multiple front vehicles[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 250-262. doi: 10.19818/j.cnki.1671-1637.2022.01.021
Citation: ZONG Fang, WANG Meng, ZENG Meng, SHI Pei-xin, WANG Li. Vehicle-following model in mixed traffic flow considering interaction potential of multiple front vehicles[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 250-262. doi: 10.19818/j.cnki.1671-1637.2022.01.021

考虑多前车作用势的混行交通流车辆跟驰模型

doi: 10.19818/j.cnki.1671-1637.2022.01.021
基金项目: 

国家重点研发计划 2018YFB1600500

国家自然科学基金项目 61873109

详细信息
    作者简介:

    宗芳(1979-),女,吉林长春人,吉林大学教授,工学博士,从事交通流理论研究

    通讯作者:

    王力(1978-),男,安徽肥东人,北方工业大学教授,工学博士

  • 中图分类号: U491.2

Vehicle-following model in mixed traffic flow considering interaction potential of multiple front vehicles

Funds: 

National Key Research and Development Program of China 2018YFB1600500

National Natural Science Foundation of China 61873109

More Information
  • 摘要: 基于自动驾驶车辆(AV)和常规人驾车辆(RV)混合行驶的情况,在全速度差(FVD)模型的基础上考虑了多前车和一辆后车的车头间距、速度、速度差、加速度差等因素,建立了适用于AV和RV 2种车辆的混行车辆跟驰模型;引入分子动力学理论定量化表达了周围车辆对主体车辆的影响程度;利用RV和AV混行场景跟车数据,以模型拟合精度最高为目标,对所有参数遍历寻优,进行标定;对比分析了混行车辆跟驰模型和FVD模型控制下交通流的稳定性,解析了车速对交通流稳定性的影响;设计了数值仿真试验,模拟了城市道路和高速公路2种常见场景,分析了混行车辆跟驰模型的拟合精度。研究结果表明:考虑周围多车信息有利于提高交通流的稳定性;车辆速度越低交通流稳定性越差;考虑多车信息的分子动力学混行车辆跟驰模型可以提前获得整个车队的运行趋势,更好地模拟AV的动力学特征;与FVD模型相比,在城市道路条件下混行车辆跟驰模型中的RV平均最大误差与平均误差分别减小了0.18 m·s-1和13.12%,拟合精度提高了4.47%;与PATH实验室的ACC模型相比,在高速公路条件下混行车辆跟驰模型中的AV平均最大误差和平均误差分别减小了7.78%和26.79%,拟合精度提高了1.21%。可见,该模型可用于混行环境下AV的跟驰控制与队列控制,以及AV和RV的跟驰仿真。

     

  • 图  1  反应时间-速度关系

    Figure  1.  Relationship between reaction time and velocity

    图  2  不同λ1取值下RV的仿真结果

    Figure  2.  Simulation results of RV at different λ1

    图  3  λ1=0.13时的RV仿真结果

    Figure  3.  Simulation result of RV at λ1=0.13

    图  4  混行跟驰模型AV速度曲线

    Figure  4.  Velocity curves of AV in mixed-vehicle-following model

    图  5  车辆在不同速度下的开环幅相特性

    Figure  5.  Open loop amplitude-phase characteristics of vehicles at different velocities

    图  6  RV模型验证结果

    Figure  6.  Validation result of RV model

    图  7  AV模型验证结果

    Figure  7.  Validation result of AV model

    表  1  不同λ1参数对应的拟合结果分析

    Table  1.   Analysis of fitting results at different λ1

    λ1 0.12 0.13 0.14 0.15 0.16
    平均最大误差/(m·s-1) 0.826 4 0.812 8 0.822 8 0.798 7 0.802 5
    平均误差/(m·s-1) -0.181 5 -0.181 1 -0.188 0 -0.189 7 -0.202 2
    均方误差/(m·s-1) 0.100 7 0.097 4 0.100 2 0.089 0 0.103 4
    平均绝对误差/(m·s-1) 0.242 6 0.238 0 0.248 1 0.244 8 0.248 8
    决定系数 0.988 570 0.991 012 0.989 011 0.989 892 0.987 921
    差异指标 0.621 5 0.636 4 0.619 7 0.623 2 0.630 3
    组间均方 0.244 2 0.240 7 0.243 1 0.247 7 0.251 1
    组间均方临界值 3.877 4 3.877 4 3.877 4 3.877 4 3.877 4
    下载: 导出CSV
  • [1] 王殿海, 金盛. 车辆跟驰行为建模的回顾与展望[J]. 中国公路学报, 2012, 25(1): 115-127. doi: 10.3969/j.issn.1001-7372.2012.01.018

    WANG Dian-hai, JIN Sheng. Review and outlook of modeling of car following behavior[J]. China Journal of Highway and Transport, 2012, 25(1): 115-127. (in Chinese) doi: 10.3969/j.issn.1001-7372.2012.01.018
    [2] TOLEDO T. Driving behaviour: model and challenges[J]. Transport Reviews, 2007, 27(1): 65-84. doi: 10.1080/01441640600823940
    [3] CHAI Chen, WONG Y D. Micro-simulation of vehicle conflicts involving right-turn vehicles at signalized intersections based on cellular automata[J]. Accident Analysis and Prevention, 2014, 63: 94-103. doi: 10.1016/j.aap.2013.10.023
    [4] 李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1): 1-14. doi: 10.3969/j.issn.1674-8484.2017.01.001

    LI Ke-qiang, DAI Yi-fan, LI Sheng-bo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 1-14. (in Chinese) doi: 10.3969/j.issn.1674-8484.2017.01.001
    [5] 王祺, 谢娜, 侯德藻, 等. 自适应巡航及协同式巡航对交通流的影响分析[J]. 中国公路学报, 2019, 32(6): 188-197, 205. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906020.htm

    WANG Qi, XIE Na, HOU De-zao, et al. Effects of adaptive cruise control and cooperative adaptive cruise control on traffic flow[J]. China Journal of Highway and Transport, 2019, 32(6): 188-197, 205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906020.htm
    [6] BANSAL P, KOCKELMAN K M. Forecasting Americans' long-term adoption of connected and autonomous vehicle technologies[J]. Transportation Research Part A: Policyand Practice, 2017, 95(1): 49-63. https://www.sciencedirect.com/science/article/pii/S0965856415300628
    [7] XIE Dong-fan, ZHAO Xiao-mei, HE Zheng-bing. Heterogeneous traffic mixing regular and connected vehicles: modeling and stabilization[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2060-2071. doi: 10.1109/TITS.2018.2857465
    [8] NGODUY D. Analytical studies on the instabilities of heterogeneous intelligent traffic flow[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(10): 2699-2706. doi: 10.1016/j.cnsns.2013.02.018
    [9] ZHU Wen-xing, ZHANG H M. Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model[J]. Physica A: Statistical Mechanics and its Applications, 2018, 496: 274-285. doi: 10.1016/j.physa.2017.12.103
    [10] ZONG Fang, WANG Meng, TANG Ming, et al. An improved intelligent driver model considering the information of multiple front and rear vehicles[J]. IEEE Access, 2021, 9: 66241-66252 doi: 10.1109/ACCESS.2021.3072058
    [11] 唐亮, 孙棣华, 彭光含. 基于多车信息的交通流跟驰模型与数值仿真[J]. 系统仿真学报, 2012, 24(2): 293-296. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201202008.htm

    TANG Liang, SUN Di-hua, PENG Guang-han. Car-following model of traffic flow and numerical simulation based on multiple information of preceding cars[J]. Journal of System Simulation, 2012, 24(2): 293-296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201202008.htm
    [12] TANG Tie-qiao, SHI Wei-fang, SHANG Hua-yan, et al. A new car-following model with consideration of inter-vehicle communication[J]. Nonlinear Dynamics, 2014, 76(4): 2017-2023. doi: 10.1007/s11071-014-1265-9
    [13] OU Hui, TANG Tie-qiao. An extended two-lane car-following model accounting for inter-vehicle communication[J]. Physica A: Statistical Mechanics and its Applications, 2018, 495: 260-268. doi: 10.1016/j.physa.2017.12.100
    [14] LI Yong-fu, SUN Di-hua, LIU Wei-ning, et al. Modeling and simulation for microscopic traffic flow based on multiple headway, velocity and acceleration difference[J]. Nonlinear Dynamics, 2011, 66(1/2): 15-28. doi: 10.1007/s11071-010-9907-z
    [15] 华雪东, 王炜, 王昊. 考虑车与车互联通讯技术的交通流跟驰模型[J]. 物理学报, 2016, 65(1): 52-63. doi: 10.3969/j.issn.1672-7940.2016.01.009

    HUA Xue-dong, WANG Wei, WANG Hao. A car-following model with the consideration of vehicle-to-vehicle communication technology[J]. Acta Physica Sinica, 2016, 65(1): 52-63. (in Chinese) doi: 10.3969/j.issn.1672-7940.2016.01.009
    [16] 曲大义, 邴其春, 贾彦峰, 等. 基于分子动力学的车辆换道交互行为特性及其模型[J]. 交通运输系统工程与信息, 2019, 19(3): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201903011.htm

    QU Da-yi, BING Qi-chun, JIA Yan-feng, et al. Molecular dynamics characteristics and models of vehicle lane changing interaction behavior[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(3): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201903011.htm
    [17] 李娟, 曲大义, 刘聪, 等. 基于分子动力学的跟驰特性及其模型[J]. 公路交通科技, 2018, 35(3): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201803017.htm

    LI Juan, QU Da-yi, LIU Cong, et al. Car-following characteristics and its models based on molecular dynamics[J]. Journal of Highway and Transportation Research and Development, 2018, 35(3): 126-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201803017.htm
    [18] MILANÉS V, SHLADOVER S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C: Emerging Technologies, 2014, 48(11): 285-300. https://www.sciencedirect.com/science/article/abs/pii/S0968090X14002447
    [19] 秦严严, 王昊, 王炜, 等. 混有CACC车辆和ACC车辆的异质交通流基本图模型[J]. 中国公路学报, 2017, 30(10): 127-136. doi: 10.3969/j.issn.1001-7372.2017.10.016

    QIN Yan-yan, WANG Hao, WANG Wei, et al. Fundamental diagram model of heterogeneous traffic flow mixed with cooperative adaptive cruise control vehicles and adaptive cruise control vehicles[J]. China Journal of Highway and Transport, 2017, 30(10): 127-136. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.10.016
    [20] YAO Zhi-hong, HU Rong, WANG Yi, et al. Stability analysis and the fundamental diagram for mixed connected automated and human-driven vehicles[J]. Physica A: Statistical Mechanics and its Applications, 2019, 533: 121931. doi: 10.1016/j.physa.2019.121931
    [21] HU Rong, YAO Zhi-hong, JIANG Yang-sheng, et al. Stability and safety evaluation of mixed traffic flow with connected automated vehicles on expressways[J]. Journal of Safety Research, 2020, 75: 262-274. doi: 10.1016/j.jsr.2020.09.012
    [22] ZHAO Xiao-mei, GAO Zi-you. A new car-following model: full velocity and acceleration difference model[J]. The European Physical Journal B: Condensed Matter and Complex Systems, 2005, 47(1): 145-150. doi: 10.1140/epjb/e2005-00304-3
    [23] PENG Guang-han. Stabilisation analysis of multiple car- following model in traffic flow[J]. Chinese Physics B, 2010, 19(5): 434-441. doi: 10.1287/opre.7.1.86
    [24] 李林恒, 甘婧, 曲栩, 等. 智能网联环境下基于安全势场理论的车辆跟驰模型[J]. 中国公路学报, 2019, 32(12): 76-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201912009.htm

    LI Lin-heng, GAN Jing, QU Xu, et al. Car-following model based on safety potential field theory under connected and automated vehicle environment[J]. China Journal of Highway and Transport, 2019, 32(12): 76-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201912009.htm
    [25] 杨凯, 龙佳, 马雪燕, 等. 移动机器人改进人工势场的路径规划方法研究[J]. 现代电子技术, 2020, 43(7): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ202007035.htm

    YANG Kai, LONG Jia, MA Xue-yan, et al. Research on mobile robot path planning method based on improved artificial potential field[J]. Modern Electronics Technique, 2020, 43(7): 141-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ202007035.htm
    [26] 王建强, 吴剑, 李洋. 基于人-车-路协同的行车风险场概念、原理及建模[J]. 中国公路学报, 2016, 29(1): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201601015.htm

    WANG Jian-qiang, WU Jian, LI Yang. Concept, principle and modeling of driving risk field based on driver-vehicle-road interaction[J]. China Journal of Highway and Transport, 2016, 29(1): 105-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201601015.htm
    [27] 蔡晓禹, 蔡明, 张有节, 等. 基于车联网环境的驾驶员反应时间研究[J]. 计算机应用, 2017, 37(S2): 270-273. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2017S2065.htm

    CAI Xiao-yu, CAI Ming, ZHANG You-jie, et al. Research on driver reaction time in Internet of vehicles environment[J]. Journal of Computer Applications, 2017, 37(S2): 270-273. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2017S2065.htm
    [28] JIANG Rui, WU Qing-song, ZHU Zuan-jian. Full velocity difference model for a car-following theory[J]. Physical Review E, 2001, 64(1): 017101. doi: 10.1103/PhysRevE.64.017101
    [29] 孙棣华, 张建厂, 赵敏, 等. 考虑后视效应和速度差信息的跟驰模型[J]. 四川大学学报(自然科学版), 2012, 49(1): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201201021.htm

    SUN Di-hua, ZHANG Jian-chang, ZHAO Min, et al. Effect of backward looking and velocity difference in an extended car following model[J]. Journal of Sichuan University (Natural Science Edition), 2012, 49(1): 115-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201201021.htm
    [30] 陈秀锋. 基于分子动力学的车辆运行安全特性研究[D]. 长春: 吉林大学, 2013.

    CHEN Xiu-feng. A study on vehicle operating safety characteristics based on molecular dynamics[D]. Changchun: Jilin University, 2013. (in Chinese)
    [31] 曲大义, 杨建, 陈秀锋, 等. 车辆跟驰的分子动力学特性及其模型[J]. 吉林大学学报(工学版), 2012, 42(5): 1198-1202. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201205022.htm

    QU Da-yi, YANG Jian, CHEN Xiu-feng, et al. Molecular kinetics behavior of car-following and its model[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(5): 1198-1202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201205022.htm
    [32] 李萌萌. 微通道气体流动的分子动力学模拟[D]. 西安: 西安电子科技大学, 2005.

    LI Meng-meng. Molecule dynamics simulation on gas flow in microchannels[D]. Xi'an: Xidian University, 2005. (in Chinese)
    [33] 石蕊. 信号控制交叉口行车场建立及车辆通行行为优化[D]. 长春: 吉林大学, 2021.

    SHI Rui. The construction of risk field and optimization of driving behaviors for signalized intersections[D]. Changchun: Jilin University, 2021. (in Chinese)
    [34] 曲昭伟, 潘昭天, 陈永恒, 等. 基于最优速度模型的改进安全距离跟驰模型[J]. 吉林大学学报(工学版), 2019, 49(4): 1092-1099. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201904009.htm

    QU Shao-wei, PAN Shao-tian, CHEN Yong-heng, et al. Car-following model with improving safety distance based on optimal velocity model[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1092-1099. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201904009.htm
    [35] HELBING D, TILCH B. Generalized force model of traffic dynamics[J]. Physical Review E, 1998, 58(1): 133-138. doi: 10.1103/PhysRevE.58.133
    [36] 秦严严, 王昊, 王炜, 等. 自适应巡航控制车辆跟驰模型综述[J]. 交通运输工程学报, 2017, 17(3): 121-130. http://transport.chd.edu.cn/article/id/201703013

    QIN Yan-yan, WANG Hao, WANG Wei, et al. Review of car-following models of adaptive cruise control[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 121-130. (in Chinese) http://transport.chd.edu.cn/article/id/201703013
    [37] SHLADOVER S E, SU Dong-yan, LU Xiao-yun. Impacts of cooperative adaptive cruise control on freeway traffic flow[J]. Transportation Research Record, 2012, 2324: 63-70. http://sage.cnpereading.com/paragraph/article/?doi=10.3141/2324-08
    [38] VANDERWERF J, SHLADOVER S, KOURJANSKAIA N, et al. Modeling effects of driver control assistance systems on traffic[J]. Transportation Research Record. 2001, 1748: 167-174. https://www.hindawi.com/journals/jat/2019/2162568/
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1155
  • HTML全文浏览量:  375
  • PDF下载量:  231
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-01
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回