-
摘要: 从铁道车辆车轮扁疤对轨道的冲击效应及其对车辆零部件造成的损伤出发,系统梳理了检测车轮扁疤的多种方案,对各类车轮扁疤故障检测方法特点进行了讨论,对比了不同检测方法的优缺点,对车轮扁疤故障检测技术体系的发展方向进行了预测。分析结果表明:车轮扁疤故障检测技术可分为车载检测法和地面检测法,其中地面检测法运用较为广泛;现阶段较为成熟的车轮扁疤检测技术按检测手段可主要分为轮轨冲击检测法、超声波检测法、噪声检测法、踏面位移法、振动加速度检测法、图像检测法、光学检测法、轨道电路中断法等;近年来,随着科学技术的发展,又涌现了如多普勒效应法、超声波回声定位法等;随着现代智能算法的进步,应用神经网络等智能算法对设备进行故障识别训练能大大简化设备开发进程和结构,智能算法或将成为车轮扁疤故障识别的主要发展方向;随着时间推移,检测设备的多故障集成化趋势越发明显,多故障检测集成化与功能多样化已是智能化检测设备发展的重要方向之一;未来,操作系统方面的提升也将主要集中于平台的人性化和智能化方面;检测体系建议由正线实时监测、车辆段入库精准检测、数据信息化平台三部分组成,未来发展方向会集中在装置简易化、算法精准化与操作智能化等方面。Abstract: From the impact effect of wheel flat of railway vehicle on track and its damage to vehicle parts, several schemes for the wheel flat detection were systematically combed out.The characteristics of various kinds of wheel flat fault detection methods were discussed, the advantages and disadvantages of different methods were compared, and the development trend of the system for wheel flat fault detection technologies was predicted. Analysis results reveal that the wheel flat fault detection technologies can be divided into the vehicle-mounted detection method and wayside detection method, among which the wayside detection method is widely used. At present, the relatively mature wheel flat detection technologies are mainly divided into the wheel and rail impact detection method, ultra-sonic detection method, noise detection method, wheel tread displacement detection method, vibration acceleration detection method, image detection method, optical detection method, track circuit interruption method and so on.In recent years, with the development of science and technology, methods such as the Doppler effect method, ultrasonic echolocation method and so on have emerged.With the progress of modern intelligent algorithms, intelligent algorithms such as the neural networks are employed to the train equipment for the fault identification, which can greatly simplify the equipment development process and device structure. Therefore, intelligent algorithms may become the main development direction of wheel flat fault identification. As time goes by, the trend of multi-fault integration of detection equipment becomes more prominent, and multi-fault detection integration and functional diversification have become one of the important directions in the development of intelligent detection equipment. In the future, the improvements in operating systems will also focus on the humanization and intelligence of platforms. Suggestions on the detection system are put forward from three aspects, namely, real-time monitoring of the operation line, accurate detection of depot entry, and information-based data platforms. Future development should emphasize simple devices, accurate algorithms, and intelligent operation. 3 tabs, 22 figs, 79 refs.
-
Key words:
- railway vehicle /
- wheel flat /
- review /
- detection technology /
- intelligence /
- monitoring
-
图 7 TODS轮轨力测试与连续原理[42]
Figure 7. TODS wheel-rail force test and continuous principle
表 1 车载检测法的优势与不足
Table 1. Advantages and disadvantages of vehicle-mounted detection methods
检测方法 优点 不足 轮轨力检测法 技术较为成熟,车辆低速段识别精准 成本高昂,整列车采用测力轮对基本不太现实,高速时轮轨力冲击与扁疤故障线性化程度低 超声波检测法 故障识别精准,兼顾车轮其他故障识别 成本较高,仅适用于单个车轮,无法对全部车辆进行监测 声学检测法 结构简单,对车速没有限制要求 识别精度一般,抗干扰性较低,仅适用单侧转向架车轮 振动检测法 结构相对简单,安装简便,识别精准度高,安装于车体时可检测单个车辆所有车轮 暂时无法解决车载法的检测范围局限性,即无法对所有车辆进行监测 表 2 地面检测法的优势与不足
Table 2. Advantages and disadvantages of wayside detection methods
检测方法 优点 不足 轮轨力检测法 车辆低速时识别精准,轮轨力测试手段成熟,可靠性高 高速段故障与轮轨力冲击线性化程度低,需借助辅助手段识别;连续轮轨力采集方法复杂,一定程度上提高了设备成本 声学检测法 结构简单,成本较低,对车速没有限制要求 识别精度一般,抗干扰性较低 地面振动检测法 结构简单,成本低 信号强度随车辆位置变化有不同,限制了检测精度,常用于辅助识别 超声波检测法 故障识别精准,且兼顾其他车轮故障 造价高昂,对车速有限制要求,无法安装于正线 位移检测法 结构相对简单,识别精准度较高 需限制通过车速,无法安装于正线 图像检测法 结构简单,成本较低,对车速没有限制要求 识别精度受环境影响较大,无法识别扁疤长度 光学检测法 测试准确,可靠性高,对车速有一定限制 结构较为复杂,精度一般,受雨雪等环境影响 轨道电路中断法 车辆高速通过时识别精准度较高 结构复杂,需要对轨道进行改造,仅能检测单侧钢轨 表 3 地面检测法综合特点对比
Table 3. Comparison of comprehensive characteristics of wayside detection methods
检测方法 结构复杂程度 实时监测 成本 检测项点 应用国家 轮轨力检测法 一般 可以 中等 轮轨冲击 中国、美国、德国 超声波检测法 复杂 否 较高 几何缺陷 中国、德国、日本 噪声检测法 简单 可以 较低 振动冲击 中国、日本、美国、澳大利亚 位移检测法 一般 否 中等 几何缺陷 中国、美国 车载振动检测法 简单 可以 较高 振动冲击 中国、希腊、德国、意大利 地面振动检测法 简单 可以 较低 振动冲击 中国、希腊、意大利 图像检测法 简单 可以 较低 几何缺陷 中国、日本、美国、德国 光学检测法 复杂 可以 较高 几何缺陷 美国、德国、爱沙尼亚、捷克 轨道电路中断法 一般 可以 较高 几何缺陷 俄罗斯、瑞典 -
[1] SARIKAVAK Y, GODA K. Dynamic wheel/rail interactions for high-speed trains on a ballasted track[J]. Journal of Mechanical Science and Technology, 2022, 36(2): 689-698. doi: 10.1007/s12206-022-0117-7 [2] WEN Ze-feng, XIAO Guang-wen, XIAO Xin-biao, et al. Dynamic vehicle-track interaction and plastic deformation of rail at rail welds[J]. Engineering Failure Analysis, 2009(16): 1221-1237. [3] SHEN Zhi-yun. On the principles and methods to reduce the wheel/rail forces for rail freight vehicles[J]. Vehicle System Dynamics, 1992(20): 584-595. [4] 王其昌. 车轮扁疤冲击分析[J]. 西南交通大学学报, 1991, 26(4): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT199104006.htmWANG Qi-chang. Analysis of impact influence of wheel tread flat spot on railway track[J]. Journal of Southwest Jiaotong University, 1991, 26(4): 45-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT199104006.htm [5] 翟婉明. 铁路车轮扁疤的动力学效应[J]. 铁道车辆, 1994(7): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL407.000.htmZHAI Wan-ming. Dynamic effect of railway wheel flat[J]. Rolling Stock, 1994(7): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL407.000.htm [6] GULLERS P, ANDERSSON L, LUNDEN R. High-frequency vertical wheel-rail contact forces-field measurements and influence of track irregularities[J]. Wear, 2008, 265(10): 1472-1478. [7] ISHIDA H, MATSUO M, TEZUKA K et al. Method of measuring wheel and rail contact forces and derailment quotients continuously (development of a measuring device)[J]. Transactions of the Japan Society of Mechanical Engineers, 1997, 63(614): 3417-3423. doi: 10.1299/kikaic.63.3417 [8] HAM Y, LEE D, KWON S, et al. Continuous measurement of interaction forces between wheel and rail[J]. International Journal of Precision Engineering and Manufacturing. 2009, 10(1): 35-39. doi: 10.1007/s12541-009-0006-3 [9] DWYER-JOYCE R S, YAO C, LEWIS R, et al. An ultra-sonic sensor for monitoring wheel flange/rail gauge corner contact[J]. Journal of Rail Rapid Transit, 2013, 227(2): 188-195. doi: 10.1177/0954409712460986 [10] FRANKENSTEIN B, HENTSCHEL D, PRIDOEHL E, et al. Hollow shaft integrated health monitoring system for railroad wheels[J]. Proceedings of SPIE: 2005, 5770(5): 46-55. [11] 高瑞鹏, 尚春阳, 江航. 遗传算法结合小波神经网络的列车车轮扁疤故障检测方法[J]. 西安交通大学学报, 2013, 47(9): 88-91, 111. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201309015.htmGAO Rui-peng, SHANG Chun-yang, JIANG Hang. A fault detection strategy for wheel flat scars with wavelet neural network and genetic algorithm[J]. Journal of Xi'an Jiaotong University, 2013, 47(9): 88-91, 111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201309015.htm [12] 江航, 尚春阳, 高瑞鹏. 基于EMD和神经网络的轮轨故障噪声诊断识别方法研究[J]. 振动与冲击, 2014, 33(17): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201417008.htmJIANG Hang, SHANG Chun-yang, GAO Rui-peng. Wheel/rail fault noise diagnosis method based on EMD and neural network[J]. Journal of Vibration and Shock, 2014, 33(17): 34-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201417008.htm [13] YAMAMOTO S, SATORU S. Automatic wheelset inspection device[J]. Foreign Locomotive and Rolling Stock Technology, 1990(6): 33-36. [14] 小田博基. 踏面擦伤检测装置的开发[J]. 国外内燃机车, 1992(12): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ199212001.htmODA B. Development of detecting device for tread abrasion[J]. Foreign Diesel Locomotive, 1992(12): 3-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ199212001.htm [15] 渡边直史. 车辆踏面损伤新的评判方法[J]. 国外机车车辆工艺, 2003(3): 25-31.NAOMI W. Development of detection device for tread abrasions[J]. Foreign Locomotive and Rolling Stock Technology, 2003(3): 25-31. (in Chinese) [16] 董伟. 基于轨旁振动信号的城轨列车扁疤故障检测[D]. 南京: 南京理工大学, 2018.DONG Wei. Fault detection of urban rail track flat scar based on rail side vibration signal[D]. Nanjing: Nanjiing University of Science and Technology, 2018. (in Chinese) [17] SKARLATOS D, KARAKASIS K, TROCHIDIS A. Railway wheel fault diagnosis using a fuzzy-logic method[J]. Applied Acoustics, 2004, 65(10): 951-966. doi: 10.1016/j.apacoust.2004.04.003 [18] 陈学文, 丑武胜, 刘静华, 等. 基于PC的机车车轮在线故障检测系统[J]. 计算机工程与应用, 2004, 40(28): 188-190, 197. doi: 10.3321/j.issn:1002-8331.2004.28.058LIU Xue-wen, CHOU Wu-sheng, LIU Jing-hua, et al. PC based on-line fault detection system for locomotive wheel[J]. Computer Engineering and Applications, 2004, 40(28): 188-190, 197. (in Chinese) doi: 10.3321/j.issn:1002-8331.2004.28.058 [19] 王鹏飞. 车轮扁疤检测系统开发与算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.WANG Peng-fei. Development of wheel-flat detection system and algorithm research[D]. Harbin: Harbin Engineering University, 2009. (in Chinese) [20] 赵蓉. 高速列车轮对踏面擦伤轨上感知算法研究[D]. 北京: 北京交通大学, 2017.ZHAO Rong. Research on on-rail sensing algorithm for wheel flat of high-speed train[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese) [21] 李忠继, 魏来, 戴焕云, 等. 基于Hilbert-Huang变换的车轮扁疤识别方法[J]. 交通运输工程学报, 2012, 12(4): 33-41. doi: 10.3969/j.issn.1671-1637.2012.04.005LI Zhong-ji, WEI Lai, DAI Huan-yun, et al. Identification method of wheel flat based on Hilbert-Huang transform[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 33-41. (in Chinese) doi: 10.3969/j.issn.1671-1637.2012.04.005 [22] LIANG B, IWNICKI S D, ZHAO Y, et al. Railway wheel-flat and rail surface defect modelling and analysis by time-frequency techniques[J]. Vehicle System Dynamics, 2013, 51(9): 1403-1421. doi: 10.1080/00423114.2013.804192 [23] 戴文远. 高速列车轮对故障诊断方法的研究[D]. 沈阳: 东北大学, 2014.DAI Wen-yuan. Trouble shooting research of high-speed train wheels[D]. Shenyang: Northeastern University, 2014. (in Chinese) [24] 李奕璠, 刘建新, 林建辉, 等. 基于自适应多尺度形态学分析的车轮扁疤故障诊断方法[J]. 交通运输工程学报, 2015, 15(1): 58-65. doi: 10.3969/j.issn.1671-1637.2015.01.008LI Yi-fan, LIU Jian-xin, LIN Jian-hui, et al. Fault diagnosis method of railway vehicle with wheel flat based on self-adaptive multi-scale morphology analysis[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 58-65. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.01.008 [25] BOSSO N, GUGLIOTTA A, NICOLO Z. Wheel flat detection algorithm for onboard diagnostic[J]. Measurement, 2018(123): 193-202. [26] 刘继, 冯铭. 车轮踏面擦伤在线自动检测方法的研究和试验[J]. 铁道车辆, 1995, 33(2): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL502.005.htmLIU Ji, FENG Ming. Research and test of on-line automatic detection method for wheel tread abrasions[J]. Rolling Stock, 1995, 33(2): 28-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL502.005.htm [27] 农汉彪, 林建辉. 基于钢轨应变轮轨垂直作用力连续测量方法[J]. 仪表技术与传感器, 2012(12): 95-98, 102. doi: 10.3969/j.issn.1002-1841.2012.12.032NONG Han-biao, LIN Jian-hui. Continuous measurement method for wheel /rail vertical force based on strain of rail[J]. Instrument Technique and Sensor, 2012(12): 95-98, 102. (in Chinese) doi: 10.3969/j.issn.1002-1841.2012.12.032 [28] 李家林, 刘慕哥, 罗林, 等. 轨道负荷、车辆状态安全监测系统的应用[J]. 中国铁路, 1999(10): 35-37, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG199910013.htmLI Jia-lin, LIU Mu-ge, LUO Lin, et al. Application of track load and vehicle state safety monitoring system[J]. Chinese Railways, 1999(10): 35-37, 49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG199910013.htm [29] 冯毅杰, 张格明. 车辆运行状态地面安全监测系统研究的新进展[J]. 中国铁道科学, 2002, 23(3): 138-142. doi: 10.3321/j.issn:1001-4632.2002.03.028FENG Yi-jie, ZHANG Ge-ming. The new development of the research on the earth surface safety monitoring system of vehicle operation estate[J]. China Railway Science, 2002, 23(3): 138-142. (in Chinese) doi: 10.3321/j.issn:1001-4632.2002.03.028 [30] 潘振, 冯毅杰. 货车运行状态地面安全监测系统(TPDS)设置框架式测试平台的必要性分析[J]. 铁道建筑, 2008, 48(8): 103-105. doi: 10.3969/j.issn.1003-1995.2008.08.036PAN Zhen, FENG Yi-jie. Analysis on the necessity of setting frame test platform for truck performance detect system (TPDS)[J]. Railway Engineering, 2008, 48(8): 103-105. (in Chinese) doi: 10.3969/j.issn.1003-1995.2008.08.036 [31] 凌烈鹏, 李旭伟, 柴雪松, 等. 高速铁路动车组运行状态地面监测系统的研制[J]. 铁道建筑, 2015, 55(1): 71-75, 83. doi: 10.3969/j.issn.1003-1995.2015.01.16LING Lie-peng, LI Xu-wei, CHAI Xue-song, et al. Research and manufacture of ground monitoring system for supervising high speed railway EMU running state[J]. Railway Engineering, 2015, 55(1): 71-75, 83. (in Chinese) doi: 10.3969/j.issn.1003-1995.2015.01.16 [32] 周志华, 陈世福. 神经网络集成[J]. 计算机学报, 2002, 25(1): 1-8. doi: 10.3321/j.issn:0254-4164.2002.01.001ZHOU Zhi-hua, CHEN Shi-fu. Neural network ensemble[J]. Chinese Journal of Computers, 2002, 25(1): 1-8. (in Chinese) doi: 10.3321/j.issn:0254-4164.2002.01.001 [33] 李奕璠, 刘建新, 王开云, 等. 测力钢轨轮轨力连续输出算法[J]. 交通运输工程学报, 2011, 11(4): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201104005.htmLI Yi-fan, LIU Jian-xin, WANG Kai-yun, et al. Wheel/rail force continuous exporting algorithm of instrumented rail[J]. Journal of Traffic and Transportation Engineering, 2011, 11(4): 36-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201104005.htm [34] 李奕璠, 林建辉, 刘建新. 基于组合预测模型的轮轨力连续测试[J]. 西南交通大学学报, 2012, 47(4): 597-604. doi: 10.3969/j.issn.0258-2724.2012.04.010LI Yi-fan, LIN Jian-hui, LIU Jian-xin. Wheel-rail force continuous measurement based on combinational forecast model[J]. Journal of Southwest Jiaotong University, 2012, 47(4): 597-604. (in Chinese) doi: 10.3969/j.issn.0258-2724.2012.04.010 [35] 李奕璠. 轮轨力连续测试方法及车轮失圆的检测与识别研究[D]. 成都: 西南交通大学, 2013.LI Yi-fan. Wheel-rail force continuous measurement method and out-of-round wheel detection and identification[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese) [36] 李奕璠, 林建辉, 王开云, 等. 测力钢轨轮轨力解耦研究[J]. 机械工程学报, 2013, 49(4): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201304019.htmLI Yi-fan, LIN Jian-hui, WANG Kai-yun, et al. Study of wheel-rail force decouple based on instrumented rail[J]. Journal of Mechanical Engineering, 2013, 49(4): 96-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201304019.htm [37] 李奕璠, 林建辉, 刘建新, 等. 车轮踏面擦伤识别方法[J]. 振动与冲击, 2013, 32(22): 21-27. doi: 10.3969/j.issn.1000-3835.2013.22.004LI Yi-fan, LIN Jian-hui, LIU Jian-xin, et al. Identification method of wheel tread flat[J]. Journal of Vibration and Shock, 2013, 32(22): 21-27. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.22.004 [38] PARTINGTON W. Wheel impact load monitoring[J]. Process of Instrument Civil Engineering and Transportation, 1993(100): 243-245. [39] RICHARD J, RILEY J, YU Q, et al. Quantification of loading environment and flexural demand of pre-stressed concrete crossties under shared corridor operating conditions[J]. Transportation Research Record, 2018(10): 136-145. [40] STRATMAN B, LIU Y, MAHADEVAN S. Structural health monitoring of railroad wheels using wheel impact load detectors[J]. Journal of Failure Analysis and Prevention, 2007, 7(3): 218-225. doi: 10.1007/s11668-007-9043-3 [41] OLEGAS L, STASYS D, STASYS S, et al. Analysis of freight wagon wheel failure detection in Lithuanian railways[J]. Procedia Engineering, 2016(134): 64-71. [42] PENG Xin-yu, ZENG Jing, WANG Jian-bin, et al. Wayside wheel-rail vertical contact force continuous detecting method and its application[J]. Measurement, 2022(193): 1-13. [43] CHEN Long, CHOY Y, WANG Tian-gang, et al. Fault detection of wheel in wheel/rail system using kurtosis beamforming method[J]. Structural Health Monitoring, 2020, 19(2): 495-509. doi: 10.1177/1475921719855444 [44] 王方程, 迟宝全. 平轮在线自动检测方法综述[J]. 城市轨道交通研究, 2006, 9(1): 31-33. doi: 10.3969/j.issn.1007-869X.2006.01.010WANG Fang-cheng, CHI Bao-quan. On the on-line automatic detection method of flat wheel[J]. Urban Mass Transit, 2006, 9(1): 31-33. (in Chinese) doi: 10.3969/j.issn.1007-869X.2006.01.010 [45] SAWA M. Research on the present conditions of metro wheel tread damage and sliding mechanism[J]. Foreign Railway Vehicles, 2000, 37(3): 33-37, 39. [46] THAKKAR N, STEEL J, REUBEN R, et al. Monitoring of rail-wheel interaction using acoustic emission (AE)[J]. Advanced Materials Research, 2006, 13(14): 161-168. [47] BRACCIALI A, CASCINI G. Detection of corrugation and wheel flats of railway wheels using energy and cep-strum analysis of rail acceleration[J]. Journal of Rail Rapid Transit, 1997(211): 109-116. [48] BELOTTI V, CRENNA F, MICHELINI R, et al. Wheel-flat diagnostic tool via wavelet transform[J]. Mechanical Systems and Signal Processing, 2006(20): 1953-1966. [49] LEE M, CHIU W. Determination of railway vertical wheel impact magnitudes: field trials[J]. Structure Health Monitor, 2007(6): 49-65. [50] 史红梅, 赵蓉, 余祖俊, 等. 基于钢轨振动响应分析的车轮扁疤检测方法研究[J]. 振动与冲击, 2016, 35(10): 24-28, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201610004.htmSHI Hong-mei, ZHAO Rong, YU Zu-jun, et al. Detection method for wheel flats based on rail vibration responses analysis[J]. Journal of Vibration and Shock, 2016, 35(10): 24-28, 54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201610004.htm [51] 刘宪. 机车整体辗钢车轮裂损及探伤方法[J]. 机车电传动, 2009(1): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC200901026.htmLIU Xian. Crack and detection method of locomotive's solid rolled steel wheel[J]. Electric Drive for Locomotives, 2009(1): 66-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC200901026.htm [52] 陈永疆. 超声波阵列探伤技术在机车车轮在线检测上的应用[J]. 铁道机车与动车, 2015(10): 31-33. doi: 10.3969/j.issn.1003-1820.2015.10.010CHEN Yong-jiang. Application of flaw detection technology of ultrasonic wave array on the locomotive wheel on-line inspection[J]. Railway Locomotive and Motor Car, 2015(10): 31-33. (in Chinese) doi: 10.3969/j.issn.1003-1820.2015.10.010 [53] 任明照, 高东海, 郑韵娴. 铁路车轮超声波B型检测的图像分割算法[J]. 无损检测, 2017, 39(7): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201707002.htmREN Ming-zhao, GAO Dong-hai, ZHENG Yun-xian. Image segmentation method in ultrasonic B-scan for railway wheels[J]. Nondestructive Testing, 2017, 39(7): 8-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201707002.htm [54] 王浩, 王黎, 高晓蓉. 车轮电磁超声探伤技术的研究[J]. 中国测试技术, 2006, 32(2): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS200602020.htmWANG Hao, WANG Li, GAO Xiao-rong. Technique of electromagnetic ultrasonic surface wave for wheel flaw detection[J]. China Measurement Technology, 2006, 32(2): 66-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS200602020.htm [55] 李逸民. 超声波在运行车轮踏面检查中的应用[J]. 中国铁路, 1982(3): 31-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG198203007.htmLI Yi-min. Application of ultrasonic wave in wheel tread inspection in operation[J]. Chinese Railways, 1982(3): 31-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG198203007.htm [56] SALZBURGER H, SCHUNPPMANN M, WANG Li, et al. In-motion ultrasonic testing of the tread of high-speed railway wheels using the inspection system AUROPA Ⅲ[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2009, 51(7): 1-8. [57] 陈宁宁, 滕永平, 王科. 机车车轮在线超声波检测方法研究[J]. 无损检测, 2007, 29(7): 402-403, 428. doi: 10.3969/j.issn.1000-6656.2007.07.013CHEN Ning-ning, TENG Yong-ping, WANG Ke. Research on online ultrasonic testing method of engine wheels[J]. Nondestructive Testing, 2007, 29(7): 402-403, 428. (in Chinese) doi: 10.3969/j.issn.1000-6656.2007.07.013 [58] 彭朝勇, 王黎, 高晓蓉. 基于超声波探伤的车轮动态检测系统研究[J]. 中国铁路, 2010(9): 40-43. doi: 10.3969/j.issn.1001-683X.2010.09.011PENG Chao-yong, WANG Li, GAO Xiao-rong. Research on wheel dynamic detection system based on ultrasonic flaw detection[J]. Chinese Railways, 2010(9): 40-43. (in Chinese) doi: 10.3969/j.issn.1001-683X.2010.09.011 [59] 赵阳, 梅劲松, 吕岑. 机车车轮超声波探伤信号检测方法研究[J]. 计算机技术与发展, 2013, 23(2): 211-214. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201302055.htmZHAO Yang, MEI Jin-song, LYU Cen. Research on detection method of locomotive wheels' ultrasonic testing signal[J]. Computer Technology and Development, 2013, 23(2): 211-214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201302055.htm [60] 杨巨平. 铁路货车车轮超声波在线检测中的缺陷识别算法[J]. 中国铁道科学, 2016, 37(5): 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201605016.htmYANG Ju-ping. Defect recognition algorithm in online ultrasonic inspection for railway freight car wheel[J]. China Railway Science, 2016, 37(5): 102-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201605016.htm [61] 李远哲, 孙守光, 康建宏, 等. 机车轮对踏面磨耗自动检测新方法[J]. 铁道机车车辆, 1998, 18(1): 51-53. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC199801011.htmLI Yuan-zhe, SUN Shou-guang, KANG Jian-hong, et al. A new method for automatic detection of locomotive wheelset tread wear[J]. Railway Locomotive and Car, 1998, 18(1): 51-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC199801011.htm [62] 李景泉, 刘继. 车轮踏面擦伤自动检测方法的研究和试验[J]. 同济大学学报(自然科学版), 2003, 31(4): 473-476. doi: 10.3321/j.issn:0253-374X.2003.04.021LI Jing-quan, LIU Ji. Research and experiment of the method for checking and measuring tread flats of wheels automatically[J]. Journal of Tongji University (Natural Science), 2003, 31(4): 473-476. (in Chinese) doi: 10.3321/j.issn:0253-374X.2003.04.021 [63] 徐志军. 车轮几何参数检测及误差分析[D]. 成都: 西南交通大学, 2017.XU Zhi-jun. Wheels geometric parameters detection method and error analysis[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese) [64] 兰红, 方治屿. 零样本图像识别[J]. 电子与信息学报, 2020, 42(5): 1188-1200. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202005018.htmLAN Hong, FANG Zhi-yu. Recent advances in zero-shot learning[J]. Journal of Electronics and Information Technology, 2020, 42(5): 1188-1200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202005018.htm [65] HONDA A. Development of automatic measurement device for wheel tread shape[J]. Foreign Locomotive and Rolling Stock Technology, 1999(2): 43-46. [66] 卢湖川, 卢渝斌, 杨光. 基于CCD的火车轮对智能测量系统[J]. 吉林大学学报(信息科学版), 2003, 21(5): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-CCYD2003S1012.htmLU Hu-chuan, LU Yu-bin, YANG Guang. Design and implementation of measuring geometrical size[J]. Journal of Jilin University (Information Science Edition), 2003, 21(5): 58-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CCYD2003S1012.htm [67] 任宏伟, 李声. 基于图像的轮对在线动态检测应用研究[J]. 机车车辆工艺, 2004(5): 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JCCL200405012.htmREN Hong-wei, LI Sheng. Research on on-line dynamic detection of wheel set based on image[J]. Locomotive and Rolling Stock Technology, 2004(5): 29-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCCL200405012.htm [68] 田丽丽, 方宗德, 赵勇. 铁路货车车轮踏面伤损检测中剥离与擦伤定位方法[J]. 铁道学报, 2009, 31(5): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200905005.htmTIAN Li-li, FANG Zong-de, ZHAO Yong. Locating methods of peeling and flat spots in detection of wheel tread damages of railway wagons[J]. Journal of the China Railway Society, 2009, 31(5): 31-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200905005.htm [69] 杨雪荣, 张湘伟, 成思源, 等. 基于物理模型的计算机视觉轮对踏面擦伤检测方法[J]. 机械工程学报, 2009, 45(5): 214-219. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200905036.htmYANG Xue-rong, ZHANG Xiang-wei, CHENG Si-yuan, et al. Method of physical-based computer vision detection for tread surface flats of wheelsets[J]. Journal of Mechanical Engineering, 2009, 45(5): 214-219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200905036.htm [70] 杨凯. 车轮踏面擦伤及不圆度检测技术的研究[D]. 成都: 西南交通大学, 2015.YANG Kai. Research on detecting method of the wheel tread flat and out-of-roundness[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese) [71] 李宗渝. ΚΡАΠ-2车轮踏面故障检测装置[J]. 国外铁道车辆, 1984(5): 31-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD198405006.htmLI Zong-yu. ΚΡАΠ-2 wheel tread fault detection device[J]. Foreign Railway Vehicles, 1984(5): 31-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD198405006.htm [72] 宋忠明. ΠΚ型接触器的技术维修与保养[J]. 国外机车车辆工艺, 2018(6): 22-26, 30. https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ201806006.htmSONG Zhong-ming. ΠΚ contactor technology of repair and maintenance[J]. Foreign Locomotive and Rolling Stock Technology, 2018(6): 22-26, 30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ201806006.htm [73] 冉茂盛. 车轴检知器的研究和现状[J]. 中国铁路, 1982(8): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG198208007.htmRAN Mao-sheng. Research and actuality of axle detector[J]. Chinese Railways, 1982(8): 32-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG198208007.htm [74] 范婷. 计轴绘图及监测的仿真研究[D]. 成都: 西南交通大学, 2014.FAN Ting. Simulation research on axle mapping and monitoring[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese) [75] BRIZUELA J, FRITSCH C, IBANEZ A. Railway wheel-flat detection and measurement by ultra-sound[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(6): 975-984. [76] MOSLEH A, MONTENEGRO P, ALVES COSTA P, et al. An approach for wheel flat detection of railway train wheels using envelope spectrum analysis[J]. Structure and Infrastructure Engineering, 2021, 17(12): 1710-1729. [77] BRIZUELA J, ALBERTO I, PATRICIA N, et al. Railway wheel-flat detector using Doppler effect[J]. Physics Procedia, 2010(3): 811-817. [78] BRIZUELA J, ALBERTO I, FRITSCH C. NDE system for railway wheel inspection in a standard FPGA[J]. Journal of Systems Architecture, 2010(56): 616-622. [79] ALEMI A, CORMAN F, LODEWIJKS G. Condition monitoring approaches for the detection of railway wheel defects[J]. Journal of Rail Rapid Transit, 2016, 231(8): 961-981.