Review on convective heat transfer in internal channel of ventilated brake disc of vehicle
-
摘要: 总结了通风式制动盘内部通道对流换热的研究成果,从内部通道的质量流量、对流换热系数和有效散热表面积三方面,分析了不同结构设计对制动盘内部通道换热的影响;从解析法、数值分析法和试验测试法三方面,综述了国内外在对流换热分析和检测方法的研究概况。研究结果表明:在径向叶片制动盘通道内,主要存在2种流动方式,由紧邻叶片吸力侧气流分离引起的回流和在径向通道内部旋转的二次流,抑制回流区的形成可以提高泵送空气质量流量,使通道内的温度分布更加均匀,二次流将促进通道间的空气混合流动和湍流的发展,加强局部剪切应力,改善制动盘散热性能;综合应用射流冲击强化方式(多束流、旋流和多方向射流等)、高孔隙率和类柱状结构优化设计也能够改变流体在通道中的流动状态,这些措施都会使得通道内流体扰动增大,热边界层变薄,壁面附近的速度梯度增大,有效提高了制动盘的对流换热系数,增强了散热能力;采用解析法和数值分析法得到的结果具有很强的理论参考价值,而采用试验测试法所获得的结果更加接近制动盘实际内部温度和气体流速的变化,因此,若能将三者无缝结合,实现优势互补,则最具有科学研究价值;在对高速车辆制动盘结构进行优化设计时,为了获得最大的散热效率,往往忽略了通道内摩擦压降和流动阻力,因此,如何平衡散热与摩擦压降、流动阻力之间的关系,还需进一步深入探索与研究。Abstract: The research results of convective heat transfer in the internal channel of ventilated brake disc were summarized, and the influences of different structural designs on the heat transfer were analyzed from three aspects: mass flow, convective heat transfer coefficient and effective heat dissipation surface area. The analysis and detection methods of the convective heat transfer were reviewed at home and abroad from three aspects: analytical method, numerical analysis method and experimental test method. Research results show that there are two main flow modes in the channel of radial blade brake disc: the backflow caused by the airflow separation adjacent to the suction side of the blade and the secondary flow rotating in the radial channel. Restraining the formation of the backflow zone can increase the mass flow rate of the pumping air and make the temperature distribution in the channel more uniform. The secondary flow promotes the development of air mixed flow and turbulence between the channels, strengthens the local shear stress and improves the heat dissipation performance of the brake disc. In addition, the comprehensive application of jet impingement strengthening methods (multi-beam, swirl and multi-directional jets, etc.), high porosity and columnar-like structure optimization design can also change the flow state of the fluid in the channel. These measures increase the fluid disturbance in the channel, thin the thermal boundary layer and increase the velocity gradient near the wall, which effectively improve the convective heat transfer coefficient of the brake disc and enhance the heat dissipation capacity. The results obtained by the analytical method and numerical analysis method have strong theoretical reference, but the results obtained by the experimental test method are closer to the changes of the actual internal temperature and air flow rate of the brake disc. Therefore, if the three methods can be seamlessly combined to achieve complementary advantages, it will have the most scientific research value. Besides, in order to obtain the maximum heat dissipation efficiency, the friction pressure drop and flow resistance in the channel are often ignored in optimizing the brake disc structure of high-speed vehicle. Therefore, how to balance the relationship among heat dissipation, frictional pressure-drop and flow resistance needs further exploration and research. 3 tabs, 12 figs, 116 refs.
-
Key words:
- vehicle engineering /
- brake disc /
- convective heat transfer /
- mass flow /
- recirculation zone /
- secondary flow /
- friction pressure drop
-
表 1 不同类型制动盘通过的质量流量
Table 1. Mass flows through different types of brake discs
制动盘类型 直径向
叶片向后弯曲
叶片径向弯曲
叶片向前弯曲
叶片质量流量/(g·s-1) 39 37 40 41 表 2 制动盘对流传热系数方程
Table 2. Equations of convective heat transfer coefficient of brake disc
文献 研究对象 关联式 参数范围 [1] 制动系统 Nu∝Re0.8 Re≤1.0×106 [7] 通风气流 hch=h0+C1ur0.8 [27] 通风气流 Nu=0.045Re0.8(D/2)0.2[1+6.6(D/2)0.8] [31] 叶片角度 Nu=0.533 9(ωD2/4v)0.509 4 30°倾斜叶片层流 Nu=0.013 9(ωD2/4v)0.817 2 30°倾斜叶片湍流 [50] X晶格 Nu=CRen C=0.092 7,n=0.0580 6,SRV C=0.461 9,n=0.652 6,X晶格 [62] 内侧和外侧 Nu=0.043 6Re0.8 Re=UD/v [63] 空气横流 $N u=0.06\left[2 R e^{2}+4\left({Re}_{\mathrm{t}} \frac{R_{\mathrm{R}}}{R_{0}}\right)^{2}\right]^{1 / 3}$ Rew=ωR02/v
Ret=UsR0/v[64] 奈升华传热传质 Nu=0.667Rew0.814
Nur=0.709Nu(r/R0)-0.38Rew=ωR02/v [65] 奈升华传热传质 Nu=0.667Rew0.793 1ra-0.220 8Pr0.4 2 753≤Rew≤24 155
0.684≤ra≤0.909[66] 叶片 h=1.86(RePr)1/3(dh/l)0.33(λ/dh) Re≤1.0×104 Nu=0.023[1+(dh/l)0.67]Re0.8Pr0.33 Re>1.0×104 [67] 旋转圆盘 Nu=0.335Re0.5 1.0×105≤Re≤2.0×105 [68] 光滑对流 Nu=0.024[1+(dh/l)2/3]Re0.786Pr0.45 Re>2 350 [69] 径向叶片 Nu=A+BRe0.8Pr0.4 注:Ret为横流雷诺数;RR为滚动半径;Nur为局部努塞尔数;Us为横流速度;v为运动黏度;r为小轮半径;C、n为经验常数;其他变量在文中有解释。 表 3 制动盘数值分析方法
Table 3. Numerical analysis methods of brake disc
文献 湍流模型 数值仿真条件 研究类型 研究目的 [1] RNG k-ε 环境温度为26 ℃,列车最高运行速度为160 km·h-1 制动盘和垫片 描述制动盘内部温度分布 [4] RNG k-ε 环境温度为20 ℃,制动盘表面温度为500 ℃,列车行驶速度为140 km·h-1 整车制动系统 制动系统的总传热计算 [5] k-ε 环境温度为25℃,车辆行驶速度为300 km·h-1 径向叶片 温度和热应力分析 [6] k-ε 环境温度为30 ℃,考虑辐射额,发射率为0.55,漫反射率为1 径向叶片 分析通过制动盘的气流,计算传热系数 [15] SST k-ω 环境温度为300 K,压力为1 atm,制动盘表面温度为900 K 径向叶片和立柱类 分析不同速度下通道的换热系数和换热速率 [28] k-ε 环境温度为300 K,制动盘表面温度为800 K,制动盘转速为60 rad·s-1 长短叶片 优化叶片形状 [29] Standard k-ε 制动盘转速为44 rad·s-1,制动盘表面温度为900 K 径向叶片 计算传热速率 [45] SST k-ω 无量纲壁面距离小于1,进口角度为37.5° 叶片凸起 分析了不同形状凸起对压气机流场细节及损失特性的影响 γ-θ [46] SST k-ω 环境温度为300 K,无量纲壁面距离小于2,6 100<Re<13 800 凸肋通道 分析导流装置对传热和流动性能的影响 [47] k-ε 环境温度为20 ℃,制动盘表面温度为100 ℃,2.8×104≤Rew≤2.2×105 径向叶片 分析经过径向叶片的气流和对流冷却 [48] Standard k-ε 制动盘表面温度为800 K,制动盘转速范围为500~2 000 r·min-1 立柱 分析几何形状对内部流场特性影响 [53] k-ε 环境温度为20 ℃,制动盘表面温度为150 ℃, Re>2.0×105 径向叶片 获得平均对流传热系数 [74] SST k-ω 无量纲壁面距离小于1,空气流速范围为2.7~12.6 m·s-1 X晶格 研究X晶格对流传热 [81] Standard k-ε 制动盘表面温度为600 K 径向叶片 找到合适的湍流模型预测制动盘内部和周围的流场温度 SST k-ω Spalart-Allmaras [82] RNG k-ε 制动盘表面温度为600 ℃ 旋转车轮和通风制动盘 对整车瞬态温度场和流场进行研究 [83] Standard k-ε 制动盘转速为750 r·min-1 立柱和钻孔 预测排气的质量流量和内部通道传热系数 -
[1] JI Peng, WU Fan, ZHANG Guo-liang, et al. A novel numerical approach for investigation of the heat transport in a full 3D brake system of high-speed trains[J]. Numerical Heat Transfer, Part A: Applications, 2019, 75(12): 824-840. doi: 10.1080/10407782.2019.1608767 [2] PARISH D, MACMANUS D G. Aerodynamic investigations of ventilated brake discs[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2005, 219(4): 471-486. doi: 10.1243/095440705X11121 [3] BELHOCINE A, AFZAL A. Finite element modeling of thermomechanical problems under the vehicle braking process[J]. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2020, 3(1): 53-76. doi: 10.1007/s41939-019-00059-w [4] SCHUETZ T. Cooling analysis of a passenger car disk brake[C]//SAE. SAE 2009 Brake Colloquium and Exhibition. Washington DC: SAE, 2009: 1-8. [5] JIANG Lan, JIANG Yan-li, YU Liang, et al. Thermal analysis for brake disks of SiC/6061 Al alloy co-continuous composite for CRH3 during emergency braking considering airflow cooling[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(11): 2783-2791. doi: 10.1016/S1003-6326(11)61533-1 [6] PEVEC M, POTRC I, BOMBEK G, et al. Prediction of the cooling factors of a vehicle brake disc and its influence on the results of a thermal numerical simulation[J]. International Journal of Automotive Technology, 2012, 13(5): 725-733. doi: 10.1007/s12239-012-0071-y [7] NEWCOMB T P, MILLNER N. Cooling rates of brake drums and discs[J]. Proceedings of the Institution of Mechanical Engineers: Automobile Division, 1965, 180(1): 191-205. doi: 10.1243/PIME_AUTO_1965_180_019_02 [8] GUO Z Y, LI D Y, WANG B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221-2225. doi: 10.1016/S0017-9310(97)00272-X [9] 过增元. 对流换热的物理机制及其控制: 速度场与热流场的协同[J]. 科学通报, 2000, 45(19): 2118-2122. doi: 10.3321/j.issn:0023-074X.2000.19.020GUO Zeng-yuan. Physical mechanism and control of convective heat transfer: synergy of velocity field and heat flow field[J]. Chinese Science Bulletin, 2000, 45(19): 2118-2122. (in Chinese) doi: 10.3321/j.issn:0023-074X.2000.19.020 [10] 过增元, 庄文红. 对流换热的物理机制分析及其应用[J]. 工程热物理学报, 1992, 13(1): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB199201011.htmGUO Zeng-yuan, ZHUANG Wen-hong. Analysis of physical mechanism of convective heat transfer and its application[J]. Journal of Engineering Thermophysics, 1992, 13(1): 52-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB199201011.htm [11] RIVERA-LÓPEZ J E, GARCÍA-LEÓN R A, QUINTERO-OROZCO A, et al. Thermal and fluid-dynamic analysis of an automotive disc brake with ventilation pillars aerodynamic type[J]. Journal of Physics: Conference Series, 2019, 1386(1): 012112. doi: 10.1088/1742-6596/1386/1/012112 [12] LEÓN R A G, ROJAS E P. Analysis of the amount of heat flow between cooling channels in three vented brake discs[J]. Ingenieria y Universidad, 2017, 21(1): 71-96. [13] BELHOCINE A, BOUCHETARA M. Investigation of temperature and thermal stress in ventilated disc brake based on 3D thermomechanical coupling model[J]. Ain Shams Engineering Journal, 2013, 4(3): 475-483. doi: 10.1016/j.asej.2012.08.005 [14] WALLIS L, LEONARDI E, MILTON B, et al. Air flow and heat transfer in ventilated disc brake rotors with diamond and tear-drop pillars[J]. Numerical Heat Transfer, Part A: Applications, 2002, 41(6/7): 643-655. [15] REDDY S M, MALLIKARJUNA J M, GANESAN V. Flow and heat transfer analysis of a ventilated disc brake rotor using CFD[C]//SAE. SAE 2008 World Congress and Exhibition. Washington DC: SAE, 2008: 1-10. [16] CHOPADE M, VALAVADE A. Experimental investigation using CFD for thermal performance of ventilated disc brake rotor[J]. International Journal of Automotive Technology, 2017, 18(2): 235-244. doi: 10.1007/s12239-017-0023-7 [17] RAJAGOPAL T K R, RAMACHANDRAN R, JAMES M, et al. Numerical investigation of fluid flow and heat transfer characteristics on the aerodynamics of ventilated disc brake rotor using CFD[J]. Thermal Science, 2014, 18(2): 667-675. doi: 10.2298/TSCI111219204R [18] MAHMOD M I, MUNISAMY K M. Experimental analysis of ventilated brake disc with different blade configuration[J]. Department of mechanical Engineering, 2011, 1: 1-9. [19] VOLLER G P, TIROVIC M, MORRIS R, et al. Analysis of automotive disc brake cooling characteristics[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217(8): 657-666. doi: 10.1243/09544070360692050 [20] JOHNSON D A, SPERANDEI B A, GILBERT R. Analysis of the flow through a vented automotive brake rotor[J]. Journal of Fluids Engineering, 2003, 125(6): 979-986. doi: 10.1115/1.1624426 [21] MCPHEE A D, JOHNSON D A. Experimental heat transfer and flow analysis of a vented brake rotor[J]. International Journal of Thermal Sciences, 2008, 47(4): 458-467. doi: 10.1016/j.ijthermalsci.2007.03.006 [22] ATKINS M D, KIENHÖFER F W, KIM T. Flow behavior in radial vane disk brake rotors at low rotational speeds[J]. Journal of Fluids Engineering, Transactions of the ASME, 2019, 141(8): 081105. doi: 10.1115/1.4042470 [23] BOMBEK G, LEŠNIK L, BILUŠ I. Experimental analysis of brake disc cooling capacity[J]. Trans Motauto World, 2017, 2(2): 58-60. [24] BAI Xiao-hui, ZHENG Zi-hao, NAKAYAMA A. Heat transfer performance analysis on lattice core sandwich panel structures[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118525. doi: 10.1016/j.ijheatmasstransfer.2019.118525 [25] 吴波, 孙磊. 基于流固耦合传热的制动盘瞬态温度场研究[J]. 机械设计与制造, 2020, 352(6): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202006030.htmWU Bo, SUN Lei. Study on transient temperature field of brake disc based on fluid-solid coupling heat transfer[J]. Mechanery Design and Manufacture, 2020, 352(6): 117-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202006030.htm [26] NEJAT A, ASLANI M, MIRZAKHALILI E, et al. Heat transfer enhancement in ventilated brake disk using double airfoil vanes[J]. Journal of Thermal Science and Engineering Applications, 2011, 3(4): 045001. doi: 10.1115/1.4004931 [27] SISSON A E. Thermal analysis of vented brake rotors[J]. SAE Transactions, 1978, 87(2): 1685-1694. [28] QIAN Cheng. Aerodynamic shape optimization using CFD parametric model with brake cooling application[C]//SAE. SAE 2002 World Congress and Exhibition. Washingtion DC: SAE, 2002: 1-9. [29] CHI Zhong-zhe, HE Yu-ping, NATERER G. Convective heat transfer optimization of automotive brake discs[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2009, 2(1): 961-969. doi: 10.4271/2009-01-0859 [30] PRABHAKAR S, PRAKASH S, SARAVANA KUMAR M, et al. Performance analysis of ventilated brake disc for its effective cooling[J]. Journal of Chemical and Pharmaceutical Sciences, 2015, 7(7): 358-361. [31] MUNISAMY K M, SHUAIB N H, YUSOFF M Z, et al. Heat transfer enhancement on ventilated brake disk with blade inclination angle variation[J]. International Journal of Automotive Technology, 2013, 14(4): 569-577. doi: 10.1007/s12239-013-0061-8 [32] 胡立中, 康宁. 通道式制动盘通道结构形式对散热性能的影响[C]//北京汽车工程学会. 2013年学术论文集. 北京: 北京汽车工程学会, 2013: 207-218.HU Li-zhong, KANG Ning. Influence of channel structure of channel brake disc on heat dissipation performance[C]//Beijing Society of Automotive Engineering. 2013 Academic Proceedings. Beijing: Beijing Society of Automotive Engineering, 2013: 207-218. (in Chinese) [33] 吴佳伟, 杨志刚. 气流方向对通风制动盘散热性能的影响[J]. 汽车工程学报, 2014, 4(6): 418-423. doi: 10.3969/j.issn.2095-1469.2014.06.05WU Jia-wei, YANG Zhi-gang. Influence of airflow direction oncooling performance of vented brake discs[J]. Chinese Journal of Automotive Engineering Society, 2014, 4(6): 418-423. (in Chinese) doi: 10.3969/j.issn.2095-1469.2014.06.05 [34] TIROVIC M, TOPOURIS S, SHERWOOD G. Experimental investigation of the cooling characteristics of a monobloc cast iron brake disc with fingered hub[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(1): 85-97. doi: 10.1177/0954407019838642 [35] JEONG B, KIM H, KIM W, et al. Optimization of cooling air duct and dust cover shape for brake disc best cooling performance[C]//SAE. SAE 32nd Annual Brake Colloquium and Exhibition. Washington DC: SAE, 2014: 1-9. [36] YAN Hong-bin, WU Wei-tao, FENG Shang-sheng, et al. Role of vane configuration on the heat dissipation performance of ventilated brake discs[J]. Applied Thermal Engineering, 2018, 136(1): 118-130. [37] LIMPERT R. The thermal performance of automotive disc brakes[J]. SAE Technical Paper, 1975, 84(1): 2355-2368. [38] BARIGOZZI G, COSSALI G E, PERDICHIZZI A, et al. Experimental investigation of the mean and turbulent flow characteristics at the exit of automotive vented brake discs[C]// SAE. SAE 20th Annual Brake Colloquium and Exhibition. Washington DC: SAE, 2002: 379-383. [39] TOPOURIS S, STAMENKOVI AC'G D, OLPHE-GALLIARD M, et al. Heat dissipation from stationary passenger car brake discs[J]. Strojniški Vestnik-Journal of Mechanical Engineering, 2020, 66(1): 15-28. [40] VOLLER G P. Analysis of heat dissipation from railway and automotive friction brakes[D]. London: Brunel University, 2003. [41] YAN Hong-bin, FENG Shang-sheng, LU Tian-jian, et al. Experimental and numerical study of turbulent flow and enhanced heat transfer by cross-drilled holes in a pin-finned brake disc[J]. International Journal of Thermal Sciences, 2017, 118: 355-366. doi: 10.1016/j.ijthermalsci.2017.04.024 [42] YAN Hong-bin, FENG Shang-sheng, WU Wei-tao, et al. Experimental study of convective heat transfer in standard and cross-drilled brake discs with radial vane and X-lattice cores[C]// ASEM. ASME 2018 International Mechanical Engineering Congress and Exposition. New York: ASME, 2018: 9-15. [43] YAN Hong-bin, FENG Shang-sheng, YANG Xiao-hu, et al. Role of cross-drilled holes in enhanced cooling of ventilated brake discs[J]. Applied Thermal Engineering, 2015, 91(5): 318-333. [44] ANTANAITIS D, RIFICI A. The effect of rotor crossdrilling on brake performance[J]. SAE Transactions, 2006, 115(6): 571-596. [45] 白涛, 杨晓彤, 李文涛. 绊线形状对压气机流动控制影响分析[J]. 重庆理工大学学报(自然科学版), 2019, 33(6): 59-64. doi: 10.3969/j.issn.1674-8425(z).2019.06.009BAI Tao, YANG Xiao-tong, LI Wen-tao. Analysis of the influence of trip-line shape on compressor flow control[J]. Journal of Chongqing University of Technology (Natural Science Edition), 2019, 33(6): 59-64. (in Chinese) doi: 10.3969/j.issn.1674-8425(z).2019.06.009 [46] 唐新宜, 朱冬生, 戴险峰, 等. 导流装置对凸肋通道传热与流动的影响[J]. 高校化学工程学报, 2015, 29(5): 1089-1097. doi: 10.3969/j.issn.1003-9015.2015.05.010TANG Xin-yi, ZHU Dong-sheng, DAI Xian-feng, et al. Influence ofdeflector on heat transfer and fluid in ribbed channel[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(5): 1089-1097. (in Chinese) doi: 10.3969/j.issn.1003-9015.2015.05.010 [47] GALINDO-LOPEZ C H, TIROVIC M. Understanding and improving the convective cooling of brake discs with radial vanes[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222(7): 1211-1229. doi: 10.1243/09544070JAUTO594 [48] PALMER E, MISHRA R, FIELDHOUSE J. A computational fluid dynamic analysis on the effect of front row pin geometry on the aerothermodynamic properties of a pin-vented brake disc[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222(7): 1231-1245. doi: 10.1243/09544070JAUTO755 [49] PALMER E, MISHRA R, FIELDHOUSE J. An optimization study of a multiple-row pin-vented brake disc to promote brake cooling using computational fluid dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2009, 223(7): 865-875. doi: 10.1243/09544070JAUTO1053 [50] YAN H B, ZHANG Q C, LU T J. An X-type lattice cored ventilated brake disc with enhanced cooling performance[J]. International Journal of Heat and Mass Transfer, 2015, 80: 458-468. doi: 10.1016/j.ijheatmasstransfer.2014.09.060 [51] 王一帆. 管内纵向旋流对流传热强化研究[D]. 武汉: 华中科技大学, 2019.WANG Yi-fan. Study onconvective enhancement of longitudinal swirl flow in tube[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese) [52] YAN H B, ZHANG Q C, LU T J. Heat transfer enhancement by X-type lattice in ventilated brake disc[J]. International Journal of Thermal Sciences, 2016, 107(3): 39-55. [53] YAN H B, ZHANG Q C, CHEN W J, et al. An X-lattice cored rectangular honeycomb with enhanced convective heat transfer performance[J]. Applied Thermal Engineering, 2020, 166: 114687. doi: 10.1016/j.applthermaleng.2019.114687 [54] TIROVIC M, GALINDO-LOPEZ C H. Convective heat dissipation from a wheel-hub-mounted railway brake disc[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(4): 355-365. doi: 10.1243/09544097JRRT135 [55] 刘正先, 赵衡, 曹淑珍, 等. 不同工况对离心叶轮内部流场特性影响的试验研究[J]. 流体机械, 2004, 32(10): 1-4. doi: 10.3969/j.issn.1005-0329.2004.10.001LIU Zheng-xian, ZHAO Heng, CAO Shu-zhen, et al. Experimental investigation of the character of flow field in centrifugal impeller at different flow rate[J]. Fluid Machinery, 2004, 32(10): 1-4. (in Chinese) doi: 10.3969/j.issn.1005-0329.2004.10.001 [56] 王杰枫, 栾宇轩, 杜长河, 等. 一种新型组合内部冷却的流动和换热特性研究[J]. 西安交通大学学报, 2018, 52(5): 108-115. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201805016.htmWANG Jie-feng, LUAN Yu-xuan, DU Chang-he, et al. Investigation on the flow and heat transfer behavior of a new composite internal cooling model[J]. Journal of Xi'an Jiaotong University, 2018, 52(5): 108-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201805016.htm [57] 祝华. SAB WABCO公司开发出新型制动盘[J]. 国外铁道车辆, 2005(3): 42. https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD20050300F.htmZHU Hua. SAB WABCO Company has developed a new brake disc[J]. Foreign Railway Rolling Stock, 2005(3): 42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD20050300F.htm [58] 左建勇, 罗卓军. 高速列车制动盘泵风效应分析[J]. 交通运输工程学报, 2014, 14(2): 34-40, 74. doi: 10.3969/j.issn.1671-1637.2014.02.007ZUO Jian-yong, LUO Zhuo-jun. Air-pumping effect analysis for brake disc of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2014, 14(2): 34-40, 74. (in Chinese) doi: 10.3969/j.issn.1671-1637.2014.02.007 [59] GERLICI J, GORBUNOV M, KRAVCHENKO K, et al. The innovative design of rolling stock brake elements[J]. Communications-Scientific Letters of the University of Zilina, 2017, 19(2): 23-28. doi: 10.26552/com.C.2017.2.23-26 [60] TIROVI AC'G M. Energy thrift and improved performance achieved through novel railway brake discs[J]. Applied Energy, 2009, 86(3): 317-324. doi: 10.1016/j.apenergy.2008.04.017 [61] BARIGOZZI G, COSSALI G E, PERDICHIZZI A, et al. Experimental investigation of the aero-thermal characteristics at the exit of an automotive vented brake disc[C]//SAE. 21st Annual Brake Colloquium and Exhibition. Washington DC: SAE, 2003: 1-13. [62] JANCIRANI J, CHANDRASEKARAN S, TAMILPORAI P. Design and heat transfer analysis of automotive disc brakes[C]// ASME. 2003 ASME Summer Heat Transfer Conference. New York: ASME, 2003: 827-834. [63] MORGAN S, DENNIS R W. A theoretical prediction of disc brake temperatures and a comparison with experimental data[C]// SAE. 1972 Automotive Engineering Congress and Exposition. Washington DC: SAE, 1972: 1-8. [64] 金星, 张永恒, 王良璧, 等. 高速列车制动盘表面对流传热特性[J]. 科学通报, 2015, 60(23): 2245-2252. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201523011.htmJIN Xing, ZHANG Yong-heng, WANG Liang-bi, et al. The convective heat transfer characteristics of the brake disc surface of a high speed train[J]. Chinese Science Bulletin, 2015, 60(23): 2245-2252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201523011.htm [65] ZHANG Yong-heng, JIN Xing, HE Mei, et al. The convective heat transfer characteristics on outside surface of vehicle brake disc[J]. International Journal of Thermal Sciences, 2017, 120: 366-376. doi: 10.1016/j.ijthermalsci.2017.06.020 [66] LIMPERT R. Cooling analysis of disc brake rotors[C]// SAE. 1975 SAE Truck Meeting. Washington DC: SAE, 1975: 1-6. [67] VDOVIN A, GUSTAFSSON M, SEBBEN S. A coupled approach for vehicle brake cooling performance simulations[J]. International Journal of Thermal Sciences, 2018, 132(5): 257-266. [68] WAGNER C. Heat transfer from a rotating disk to ambient air[J]. Journal of Applied Physics, 1948, 19(9): 837-839. doi: 10.1063/1.1698216 [69] BARIGOZZI G, PERDICHIZZI A, PACCHIANA P, et al. Aero-thermal characteristics of an automotive CCM vented brake disc[J]. SAE Transactions, 2005, 114(4): 3053-3062. [70] 潘利科, 韩建民, 李志强, 等. 列车制动盘通风散热的数值仿真[J]. 北京交通大学学报, 2015, 39(1): 118-124. doi: 10.3969/j.issn.1672-8106.2015.01.015PAN Li-ke, HAN Jian-min, LI Zhi-qiang, et al. Numerical simulationfor train brake disc ventilation[J]. Journal of Beijing Jiaotong University, 2015, 39(1): 118-124. (in Chinese) doi: 10.3969/j.issn.1672-8106.2015.01.015 [71] 金星, 魏秀琴. 高速列车制动盘表面对流换热系数的研究进展[J]. 企业技术开发, 2014, 33(28): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QYJK201428017.htmJIN Xing, WEI Xiu-qin. The research progress of convective heat transfer coefficient on the surface of the high-speed train brake disc[J]. Technological Development of Enterprise, 2014, 33(28): 37-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QYJK201428017.htm [72] RAJA T, MATHISELVAN G, SREENIVASULUREDDY M, et al. Design and analysis of Air flow duct for improving the thermal performance of disc brake rotor[J]. IOP Conference Series: Materials Science and Engineering, 2017, 197(1): 012086. [73] 马重芳, 马庆芳. 传热的强化技术[J]. 力学情报, 1978(1): 18-40. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ197801002.htmMA Chong-fang, MA Qing-fang. Heat transfer enhancement technology[J]. Mechanical Information, 1978(1): 18-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ197801002.htm [74] PARK S B, LEE K S, LEE D H. An investigation of local heat transfer characteristics in a ventilated disc brake with helically fluted surfaces[J]. Journal of Mechanical Science and Technology, 2007, 21(12): 2178-2187. doi: 10.1007/BF03177478 [75] YAN Hong-bin, YANG Xiao-hu, LU Tian-jian, et al. Convective heat transfer in a lightweight multifunctional sandwich panel with X-type metallic lattice core[J]. Applied Thermal Engineering, 2017, 127(4): 1293-1304. [76] MEW T D, KANG K J, KIENHÖFER F W, et al. Transient thermal response of a highly porous ventilated brake disc[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229(6): 674-683. doi: 10.1177/0954407014567516 [77] 刘静娟, 刘莹, 康光林, 等. 高速列车通风式制动盘的散热特性分析[J]. 机械科学与技术, 2018, 37(6): 937-940. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201806021.htmLIU Jing-juan, LIU Ying, KANG Guang-lin, et al. Analysis of heat dissipation performance for ventilated brake disc in high speed train[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(6): 937-940. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201806021.htm [78] OCAMPO J, JELIC S, HAN J. Simulation-driven process to evaluate vehicle integration aspects in brake thermal design[C]// SAE. The 13th SAE Brasil International Brake Colloquium and Engineering Display. Washington DC: SAE, 2017: https://doi.org/10.4271/2017-36-0011. [79] NEWCOMB T P. Temperatures reached in disc brakes[J]. Journal of Mechanical Engineering Science, 1960, 2(3): 167-177. doi: 10.1243/JMES_JOUR_1960_002_026_02 [80] SAKAMOTO H. Heat convection and design of brake discs[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2004, 218(3): 203-212. doi: 10.1243/0954409042389436 [81] NOYES R N, VICKERS P T. Prediction of surface temperatures in passenger car disc brakes[J]. SAE Transactions, 1969, 78(3): 1653-1658. [82] KRVSEMANN R, SCHMIDT G. Analysis and optimization of disk brake cooling via computational fluid dynamics[J]. SAE Transactions, 1995, 104(2): 1475-1481. [83] BELHOCINE A, OMAR W Z W. CFD analysis of the brake disc and the wheel house through air flow: predictions of Surface heat transfer coefficients (STHC) during braking operation[J]. Journal of Mechanical Science and Technology, 2018, 32(1): 481-490. doi: 10.1007/s12206-017-1249-z [84] REDDY S M, MALLIKARJUNA J M, GANESAN V. Flow and heat transfer analysis through a brake disc: a CFD approach[C]//ASME. 2006 ASME International Mechanical Engineering Congress and Exposition. New York: ASME, 2006: 481-485. [85] MUKUTMONI D, JELIC S, HAN J, et al. Role of Accurate numerical simulation of brake cooldown in brake design process[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2012, 5(4): 1199-1210. doi: 10.4271/2012-01-1811 [86] BARIGOZZI G, PERDICHIZZI A, DONATI M. Combined experimental and CFD investigation of brake discs aero-thermal performances[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2008, 1(1): 1194-1201. doi: 10.4271/2008-01-2550 [87] JIN Xin, SHEN Bei-bei, YAN Hong-bin, et al. Comparative evaluations of thermofluidic characteristics of sandwich panels with X-lattice and Pyramidal-lattice cores[J]. International Journal of Heat and Mass Transfer, 2018, 127: 268-282. doi: 10.1016/j.ijheatmasstransfer.2018.07.087 [88] 王全伟, 任远, 王尧, 等. 制动器动态制动性能试验系统温度测量方法的研究[J]. 起重运输机械, 2011(5): 50-54. doi: 10.3969/j.issn.1001-0785.2011.05.015WANG Quan-wei, REN Yuan, WANG Yao, et al. Research on temperature measurement of dynamic braking performance test systemof brake[J]. Hoisting and Conveying Machinery, 2011(5): 50-54. (in Chinese) doi: 10.3969/j.issn.1001-0785.2011.05.015 [89] 李阳杰, 符蓉, 高飞, 等. 列车制动盘试验测试与数值模拟的温度偏差分析[J]. 润滑与密封, 2019, 44(2): 51-58, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF201902011.htmLI Yang-jie, FU Rong, GAO Fei, et al. Temperature deviation analysis of train brake disc experiment and numerical simulation[J]. Lubrication Engineering, 2019, 44(2): 51-58, 71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF201902011.htm [90] KALIN M. Influence of flash temperatures on the tribological behaviour in low-speed sliding: a review[J]. Materials Science and Engineering: A, 2004, 374(1/2): 390-397. [91] ATKINS M D, KIENHÖFER F W, LU Tian-jian, et al. Local Heat transfer distributions within a rotating pin-finned brake disk[J]. Journal of Heat Transfer, 2020, 142(11): 112101. doi: 10.1115/1.4047836 [92] 白万栋, 梁栋, 陈伟, 等. 肋片扰流对柱肋通道传热和压损影响[J]. 航空动力学报, 2019, 34(11): 2509-2515. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201911023.htmBAI Wan-dong, LIANG Dong, CHEN Wei, et al. Rib influence on heat transfer and pressure drop in pin-fin array[J]. Journal of Aerospace Power, 2019, 34(11): 2509-2515. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201911023.htm [93] POSER R, VON WOLFERSDORF J, LUTUM E. Advanced evaluation of transient heat transfer experiments using thermochromic liquid crystals[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2007, 221(6): 793-801. doi: 10.1243/09576509JPE464 [94] 陈伟, 杨力, 任静, 等. 瞬态液晶技术在涡轮叶片内部冷却研究中的应用[J]. 工程热物理学报, 2012, 33(4): 665-669. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201204031.htmCHEN Wei, YANG Li, REN Jing, et al. Application of transient liquid crystalon internal cooling research of gas turbine airfoil[J]. Journal of Engineering Thermophysics, 2012, 33(4): 665-669. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201204031.htm [95] 丁福焰, 余欲为, 李和平. 高速基础制动试验台测试技术[J]. 铁道机车车辆, 2011, 31(5): 145-147. doi: 10.3969/j.issn.1008-7842.2011.05.037DING Fu-yan, YU Yu-wei, LI He-ping. Testing techniques in high speed foundation brake dynamometer[J]. Railway Locomotive and Car, 2011, 31(5): 145-147. (in Chinese) doi: 10.3969/j.issn.1008-7842.2011.05.037 [96] 郭伟, 董丽虹, 徐滨士, 等. 主动红外热像无损检测技术的研究现状与进展[J]. 无损检测, 2016, 38(4): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201604016.htmGUO Wei, DONG Li-hong, XU Bin-shi, et al. Research status and progress of active infrared thermographic nondestructive testing technology[J]. Nondestructive Testing Technologying, 2016, 38(4): 58-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201604016.htm [97] 李云红, 孙晓刚, 原桂彬. 红外热像仪精确测温技术[J]. 光学精密工程, 2007, 15(9): 1336-1341. doi: 10.3321/j.issn:1004-924x.2007.09.005LI Yun-hong, SUN Xiao-gang, YUAN Gui-bin. Accurate measuring temperature with infrared thermal imager[J]. Optics and Precision Engineering, 2007, 15(9): 1336-1341. (in Chinese) doi: 10.3321/j.issn:1004-924x.2007.09.005 [98] EKKAD S V, OU S C, RIVIR R B. A transient infrared thermography method for simultaneous film cooling effectiveness and heat transfer coefficient measurements from a single test[J]. Journal of Turbomachinery, 2004, 126(4): 597-603. doi: 10.1115/1.1791283 [99] SIROUX M, HARMAND S, DESMET B. Experimental study using infrared thermography on the convective heat transfer of a TGV brake disc in the actual environment[J]. Optical Engineering, 2002, 41(7): 1558-1564. doi: 10.1117/1.1481896 [100] LYONS O F P, MURRAY D B, TORRANCE A A. Air jet cooling of brake discs[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222(6): 995-1004. doi: 10.1243/09544062JMES927 [101] 何有世, 袁寿其, 黄良勇. 流体机械叶轮内部流场测试技术进展[J]. 流体机械, 2004(12): 36-40. doi: 10.3969/j.issn.1005-0329.2004.12.010HE You-shi, YUAN Shou-qi, HUANG Liang-yong. Development on measurement technology in internal flow field of fluid machinery[J]. Fluid Machinery, 2004, 32(12): 36-40. (in Chinese) doi: 10.3969/j.issn.1005-0329.2004.12.010 [102] ADRIAN R J. Particle-imaging techniques for experimental fluid mechanics[J]. Annual Review of Fluid Mechanics, 1991, 23(1): 261-304. doi: 10.1146/annurev.fl.23.010191.001401 [103] KUBOTA M, HAMABE T, NAKAZONO Y, et al. Development of a lightweight brake disc rotor: a design approach for achieving an optimum thermal, vibration and weight balance[J]. JSAE Review, 2000, 21(3): 349-355. doi: 10.1016/S0389-4304(00)00050-3 [104] SOONG C Y. Flow structure and heat transfer between two disks rotating independently[J]. Journal of Thermal Science, 2003, 12(1): 62-76. doi: 10.1007/s11630-003-0011-2 [105] JIMÉNEZ GARCÍA C A, GUTIÉRREZ PAREDES G J, RIVERA LÓPEZ J E, et al. Flow measurement at the inlet and outlet zones of an automotive brake disc with ventilation post pillars, using particle image velocimetry technique[J]. Recent Advances in Fluid Dynamics with Environmental Applications, 2016, 6(10): 323-332. [106] WATKINS S, STEPHENS A, DIXON C. The aerodynamics of vented disc brakes[C]//EAEC. 10th EAEC European Automotive Congress. Australia: EAEC, 2005, 259-274. [107] 李茂华, 龚杰. 三维PIV应用于船舶精细流场测试研究进展[J]. 中国舰船研究, 2015, 10(1): 58-67. doi: 10.3969/j.issn.1673-3185.2015.01.009LI Mao-hua, GONG Jie. Development of 3D-PIV applied on fine flow field testing of ships[J]. Chinese Journal of Ship Research, 2015, 10(1): 58-67. (in Chinese) doi: 10.3969/j.issn.1673-3185.2015.01.009 [108] RIVERA LÓPEZ J E, GUTIÉRREZ PAREDES G J, QUINTERO OROZCO A, et al. Flow field experimental study in brake discs with aerodynamic ventilation columns[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2020, 13(1): 6-13. [109] 刘友, 杨晓涛, 马修真. 基于激光多普勒测速的流场测试技术[J]. 激光与红外, 2012, 42(1): 18-21. doi: 10.3969/j.issn.1001-5078.2012.01.004LIU You, YANG Xiao-tao, MA Xiu-zhen. Technique of flow field measurement technology based on laser Doppler velocimetry[J]. Laser and Infrared, 2012, 42(1): 18-21. (in Chinese) doi: 10.3969/j.issn.1001-5078.2012.01.004 [110] JERHAMRE A, BERGSTRÖM C. Numerical study of brake disc cooling accounting for both aerodynamic drag force and cooling efficiency[J]. SAE Transactions, 2001, 110(1): 1156-1163. [111] 李鹏. 微风速下热线风速仪校准方法的研究[D]. 保定: 河北大学, 2017.LI Peng. Experiment investigation on calibration method of hot wire anemometer on low air speed[D]. Baoding: Hebei University, 2017. (in Chinese) [112] DEAN R C, SENOO Y. Rotating wakes in vaneless diffusers[J]. Journal of Fluids Engineering, 1960, 82(3): 563. [113] SHEPLAK M. Design, validation, and testing of a hot-film anemometer for hypersonic flow[D]. Syracuse: Syracuse University, 1995. [114] 韦青燕, 张天宏. 高超声速热线/热膜风速仪研究综述及分析[J]. 测试技术学报, 2012, 26(2): 142-149. doi: 10.3969/j.issn.1671-7449.2012.02.010WEI Qing-yan, ZHANG Tian-hong. Review and analysis of hot-wire/film anemometry for hypersonic airflow measurement[J]. Journal of Test and Measurement Technology, 2012, 26(2): 142-149. (in Chinese) doi: 10.3969/j.issn.1671-7449.2012.02.010 [115] 刘海涌, 刘存良, 武文明. 射流冲击对内冷通道侧壁面换热特性影响研究[J]. 推进技术, 2016, 37(7): 1295-1302. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201607013.htmLIU Hai-yong, LIU Cun-liang, WU Wen-ming. Investigation on effects of impingement jets on heat transfer characteristics of internal cooling passage side wall[J]. Journal of Propulsion Technology, 2016, 37(7): 1295-1302. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201607013.htm [116] DE MEDEIROS GOMES L F, DE LIMA MENEZES F, DE SILVA CARVALHO A, et al. Study of temperature reduction in automobile brake discs by forced convection[C]// SAE. The 13th SAE Brasil International Brake Colloquium and Engineering Display. Washington DC: SAE, 2017: https://doi.org/10.4271/2017-36-0020.