留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轨道交通中异构智融车载网络发展综述

董平 尹晨洋 张宇阳 张宏科

董平, 尹晨洋, 张宇阳, 张宏科. 轨道交通中异构智融车载网络发展综述[J]. 交通运输工程学报, 2022, 22(2): 41-58. doi: 10.19818/j.cnki.1671-1637.2022.02.003
引用本文: 董平, 尹晨洋, 张宇阳, 张宏科. 轨道交通中异构智融车载网络发展综述[J]. 交通运输工程学报, 2022, 22(2): 41-58. doi: 10.19818/j.cnki.1671-1637.2022.02.003
DONG Ping, YIN Chen-yang, ZHANG Yu-yang, ZHANG Hong-ke. Review on development of heterogeneous smart cooperative vehicular networks in rail transit[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 41-58. doi: 10.19818/j.cnki.1671-1637.2022.02.003
Citation: DONG Ping, YIN Chen-yang, ZHANG Yu-yang, ZHANG Hong-ke. Review on development of heterogeneous smart cooperative vehicular networks in rail transit[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 41-58. doi: 10.19818/j.cnki.1671-1637.2022.02.003

轨道交通中异构智融车载网络发展综述

doi: 10.19818/j.cnki.1671-1637.2022.02.003
基金项目: 

国家重点研发计划 2018YFB1800305

国家自然科学基金项目 61872029

国家自然科学基金项目 61972026

详细信息
    作者简介:

    董平(1979-),男,河北冀州人,北京交通大学教授,工学博士,从事下一代信息网络理论与技术研究

    通讯作者:

    尹晨洋(1995-),男,云南曲靖人,北京交通大学工学博士研究生

  • 中图分类号: U285.41

Review on development of heterogeneous smart cooperative vehicular networks in rail transit

Funds: 

National Key Research and Development Program of China 2018YFB1800305

National Natural Science Foundation of China 61872029

National Natural Science Foundation of China 61972026

More Information
  • 摘要: 从蜂窝无线接入技术、非蜂窝无线接入技术、异构智融车载网络接入技术三方面,分析了国内外轨道交通车载网络的研究现状;针对非蜂窝无线接入技术和蜂窝无线接入技术的问题,阐述了协同利用轨道交通周边异构无线资源进行网络融合、协同通信的优越性;从网络模型、网络架构两方面论述了异构智融车载网络的融合方案;结合智能轨道交通业务需求,从可靠性和资源利用率两方面对现有的异构智融车载网络研究进行了系统性的归类梳理;从人工智能、安全性和云边结合三方面提出未来异构智融车载网络的发展趋势。研究结果表明:异构智融车载网络可靠性分为网络架构的可靠性和数据传输的可靠性,其中在网络架构可靠性方面,主要研究了通过冗余网络架构、车云传输架构、软件定义网络构架和智慧协同网络架构4种方式提升可靠性,在数据传输可靠性方面,主要研究了通过多路径传输、网络编码和切换算法降低传输过程中的丢包率;异构智融车载网络资源利用率分为无线接入的资源利用率和链路调度的资源利用率,其中在无线接入资源利用率方面,主要通过信道状态预测、频谱划分、频移补偿3种方式增加网络吞吐量,提高资源利用率,在链路调度的资源利用率方面,主要通过调度算法、接收缓存算法和拥塞控制算法来减少异构链路对数据传输的影响,降低数据重传次数,提高网络资源利用率。

     

  • 图  1  异构智融车载网络的应用场景

    Figure  1.  Application scenarios of heterogeneous smart cooperative vehicular network

    图  2  不同无线接入技术的性能对比

    Figure  2.  Performance comparison of different wireless access technologies

    图  3  “三层两域”参考网络模型

    Figure  3.  Three-layer and two-domain reference network model

    图  4  未来列车移动通信系统网络架构

    Figure  4.  Network architecture of FRMCS

    图  5  车载网络无线接入技术发展历程

    Figure  5.  Development history of wireless access technologies for vehicular networks

    图  6  异构网络的分层云计算框架丢包率试验

    Figure  6.  Packet loss rate experiment of hierarchical cloud computing framework for heterogeneous networks

    图  7  DTT算法传输带宽试验

    Figure  7.  Transmission bandwidth experiment of DTT algorithm

    表  1  非蜂窝无线接入技术对比

    Table  1.   Comparison of non-cellular wireless access technologies

    接入技术 吞吐量/
    Mbps
    时延/
    ms
    优点 缺点
    卫星 >2 < 400 覆盖范围广 较高的传输时延与有限的带宽
    Wi-Fi >10 < 100 较好的吞吐量 覆盖范围有限
    WiMAX >30 < 200 调制方式灵活、覆盖范围较大 高速环境下性能较差
    RoF >1 000 < 100 低功耗、系统结构简单 初始安装成本较高
    LCX >1 < 200 传输稳定、丢包率低 传输时延较大
    下载: 导出CSV

    表  2  蜂窝无线接入技术对比

    Table  2.   Comparison of cellular wireless access technologies

    接入技术 GSM-R LTE-R 5G
    频率下行:
    921~925 MHz,
    上行:
    876~880 MHz
    多频段可选:450 MHz、
    800 MHz、1.4 GHz、
    1.8 GHz
    多频段可选:
    2 515~2 675 MHz
    (中国移动)、
    3 400~3 500 MHz
    (中国联通)、
    3 500~3 600 MHz
    (中国电信)
    数据速率 下行:172 Kbps,
    上行:172 Kbps
    下行:100 Mbps,
    上行:50 Mbps
    下行:1 000 Mbps,
    上行:100 Mbps
    覆盖范围 8 km 4~12 km 100~300 m
    下载: 导出CSV

    表  3  无线接入技术在不同国家高速列车中的应用

    Table  3.   Application of wireless access technologies in high-speed trains of different countries

    高速列车 国家 重点城市 平均速度/(km·h-1)/最大速度/(km·h-1) 使用的主要无线通信技术
    CRH380A/AL 中国 上海、杭州 300/487 GSM-R
    Acela 美国 华盛顿、巴尔的摩、纽约 240/265 Wi-Fi、GSM-R
    Eurostar 英国 伦敦 300/335 Wi-Fi、WiMAX
    ICE 3 class 403/406 德国 法兰克福 330/368 GSM-R、LCX、Wi-Fi
    TGV-POS 法国 巴塞尔、苏黎世、洛桑 320/575 Satellite
    KTX-I 韩国 首尔 305/330 Wi-Fi
    N700 Shinkansen 日本 东京、大阪、北海道 275/332 LCX
    AVE Class 103 西班牙 马德里、塔拉戈那 310/404 GSM-R
    ETR 500 意大利 罗马、那不勒斯、佛罗伦萨 300/362 Radiating cables、Wi-Fi、GSM-R
    Pendolino 芬兰 赫尔辛基、坦佩雷 200/250 WiMAX
    下载: 导出CSV

    表  4  异构智融车载网络研究总结

    Table  4.   Summary of heterogeneous smart cooperative vehicular network research

    参考文献 支持的蜂窝无线接入技术 支持的非蜂窝无线接入技术 是否支持IPv4 是否支持IPv6 主要研究内容
    [39] WLAN、卫星网络 异构网络切换
    [40] LCX、Wi-Fi、WiMAX 基于红外线通讯装置的异构网络通信系统
    [41] GSM-R、LTE、5G 卫星网络 基于MPTCP的新型通信系统
    [42]、[43] GSM-R、LTE、5G Access Point 异构无线网络资源分配
    [44] GSM-R、LTE 卫星网络 基于MPTCP多承载通信
    [45] LTE、5G 链路故障检测
    [46] GSM-R Wi-Fi、Access Point 基于异构无线网络的视频流传输方案
    [47] 5G毫米波 WLAN 异构无线网络资源分配
    [48] GSM-R、LTE、5G 卫星网络 异构无线网络资源感知与数据传输
    [49] LTE 卫星网络 基于MPTCP的异构网络调度机制
    [50] 5G毫米波、LTE 异构无线网络接入选择
    [51] 5G、LTE 卫星网络 异构无线网络资源分配
    下载: 导出CSV

    表  5  异构智融车载网络可靠性研究分类

    Table  5.   Classification of heterogeneous smart cooperative vehicular network reliability research

    异构智融车载
    网络可靠性
    研究
    网络架构 主从链路网络架构[52]
    云计算架构[53-54]
    SDN架构[55]
    智慧协同网络架构[56]
    数据传输 大数网络编码[57]
    多路径传输[58]
    伽罗华域网络编码[59]
    流水线网络编码[60]
    异构网络垂直切换决策[61]
    下载: 导出CSV

    表  6  异构智融车载网络资源利用率研究分类

    Table  6.   Classification of heterogeneous smart cooperative vehicular network resource utilization research

    异构智融车载网络资源利用率研究 无线接入 无线链路质量预测[62]
    无线链路频谱划分[63]
    无线链路频偏估计[64]
    调度算法 队头阻塞问题研究[65-68]
    基于链路阻塞估计的算法[69]
    基于链路时延估计的算法[70]
    基于动态缓存时间的算法[71]
    基于链路带宽探测的算法[72]
    基于链路故障检测的算法[73]
    高铁人工智能调度研究[74]
    基于深度强化学习的算法[75-76]
    下载: 导出CSV
  • [1] 艾渤, 马国玉, 钟章队. 智能高铁中的5G技术及应用[J]. 中兴通讯技术, 2019, 25(6): 42-47, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXTX201906008.htm

    AI Bo, MA Guo-yu, ZHONG Zhang-dui. 5G technologies and applications in high-speed railway[J]. ZTE Technology Journal, 2019, 25(6): 42-47, 54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXTX201906008.htm
    [2] AI B, MOLISCH A F, RUPP M, et al. 5G key technologies for smart railways[J]. Proceedings of the IEEE, 2020, 108(6): 856-893. doi: 10.1109/JPROC.2020.2988595
    [3] AI B, GUAN K, RUPP M, et al. Future railway services-oriented mobile communications network[J]. IEEE Communications Magazine, 2015, 53(10): 78-85. doi: 10.1109/MCOM.2015.7295467
    [4] IBRAHIM E A, BADRAN E F, RIZK M R M. An optimized LTE measurement handover procedure for high speed trains using WINNER Ⅱ channel model[C]//IEEE. 22nd Asia-Pacific Conference on Communications. New York: IEEE, 2016: 197-203.
    [5] FOKUM D T, FROST V S. A survey on methods for broadband Internet access on trains[J]. IEEE Communications Surveys and Tutorials, 2010, 12(2): 171-185. doi: 10.1109/SURV.2010.021110.00060
    [6] GHANNOUM H, SANZ D. Internet onboard: technical analysis[C]//Springer. 5th International Workshop on Communication Technologies for Vehicles. Berlin: Springer, 2013: 22-30.
    [7] BANERJEE S, HEMPEL M, SHARIF H. A survey of wireless communication technologies and their performance for high speed railways[J]. Journal of Transportation Technologies, 2016, 6(1): 15-29. doi: 10.4236/jtts.2016.61003
    [8] SCALISE S, MURA R, MIGNONE V. Air interfaces for satellite based digital TV broadcasting in the railway environment[J]. IEEE Transactions on Broadcasting, 2006, 52(2): 158-166. doi: 10.1109/TBC.2006.872991
    [9] HO D H, VALAEE S. Information raining and optimal link-layer design for mobile hotspots[J]. IEEE Transactions on Mobile Computing, 2005, 4(3): 271-284. doi: 10.1109/TMC.2005.42
    [10] TES T. Study of high-speed wireless data transmissions for railroad operation[R]. Washington DC: Federal Railroad Administration, 2007.
    [11] ZHOU T, SHARIF H, HEMPEL M, et al. A quantitative study of mobility impact for real-time services on a Wi-Fi multi-hop network[C]//IEEE. 2008 IEEE 67th Vehicular Technology Conference. New York: IEEE, 2008: 2577-2581.
    [12] YAMADA K, SAKAI Y, SUZUKI T, et al. A communication system with a fast handover under a high speed mobile environment[C]//IEEE. 2010 IEEE 72nd Vehicular Technology Conference. New York: IEEE, 2010: 1-5.
    [13] ZHAO Ya-wei, WU Yu, FENG Ya-xiong, et al. Dynamic channel selections and performance analysis for high-speed train WiFi network[C]//IEEE. 2015 International Workshop on High Mobility Wireless Communications. New York: IEEE, 2015: 31-35.
    [14] SEN A, SIVALINGAM K M, NARAYANAN B K J. Persistent WiFi connectivity during train journey: an SDN based approach[C]//IEEE. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management. New York: IEEE, 2019: 634-638.
    [15] OUARZAZI B, BERBINEAU M, DAYOUB I, et al. Channel estimation of OFDM system for high data rate communications on mobile environments[C]//IEEE. 2009 9th International Conference on Intelligent Transport Systems Telecommunications, New York: IEEE, 2009: 425-429.
    [16] YEH C H, CHOW C W, LIU Y L, et al. Theory and technology for standard WiMAX over fiber in high speed train systems[J]. Journal of Lightwave Technology, 2010, 28(16): 2327-2336. doi: 10.1109/JLT.2010.2044018
    [17] DUDOYER S, DENIAU V, ADRIANO R, et al. Study of the susceptibility of the GSM-R communications face to the electromagnetic interferences of the rail environment[J]. IEEE Transactions on Electromagnetic Compatibility, 2012, 54(3): 667-676. doi: 10.1109/TEMC.2011.2169677
    [18] DUDOYER S, DENIAU V, AMBELLOUIS S, et al. Classification of transient EM noises depending on their effect on the quality of GSM-R reception[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(5): 867-874. doi: 10.1109/TEMC.2013.2239998
    [19] HASSAN K, GAUTIER R, DAYOUB I, et al. Multiple-antenna-based blind spectrum sensing in the presence of impulsive noise[J]. IEEE Transactions on Vehicular Technology, 2014, 63(5): 2248-2257. doi: 10.1109/TVT.2013.2290839
    [20] HE Rui-si, ZHONG Zhang-dui, AI Bo, et al. Shadow fading correlation in high-speed railway environments[J]. IEEE Transactions on Vehicular Technology, 2015, 64(7): 2762-2772.
    [21] HE Rui-si, ZHONG Zhang-dui, AI Bo, et al. Measurement- based auto-correlation model of shadow fading for the high-speed railways in urban, suburban, and rural environments[C]// IEEE. 2014 IEEE Antennas and Propagation Society, AP-S International Symposium. New York: IEEE, 2014: 949-950.
    [22] SUN Teng-yu, ZHOU Ke-hui, LUO Xiang-hua, et al. Research on the fast handover algorithms of GSM-R for high-speed railway[C]//IEEE. Proceedings-2015 International Conference on Network and Information Systems for Computers. New York: IEEE, 2015: 213-218.
    [23] SONG Ya-li, WEN Ying-hong, ZHANG Dan, et al. Fast prediction model of coupling coefficient between pantograph arcing and GSM-R antenna[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11612-11618. doi: 10.1109/TVT.2020.3015057
    [24] CALLE-SÁNCHEZ J, MOLINA-GARCÍA M, ALONSO J I, et al. Long term evolution in high speed railway environments: Feasibility and challenges[J]. Bell Labs Technical Journal, 2013, 18(2): 237-253. doi: 10.1002/bltj.21615
    [25] ZHOU Yi-qing. Radio environment map based maximum a posteriori Doppler shift estimation for LTE-R[C]//IEEE. 2014 International Workshop on High Mobility Wireless Communications. New York: IEEE, 2014: 7000241.
    [26] SNIADY A, SOLER J. LTE for railways: impact on performance of ETCS railway signaling[J]. IEEE Vehicular Technology Magazine, 2014, 9(2): 69-77. doi: 10.1109/MVT.2014.2310572
    [27] CALLE-SÁNCHEZ J, MARTINEZ-DE-RIOJA E, MOLINA-GARCIA M, et al. Performance of LTE mobile relay node usage for uplink access in high speed railway scenarios[C]//IEEE. 2015 IEEE Vehicular Technology Conference. New York: IEEE, 2015: 7146012.
    [28] IBRAHIM E A, BADRAN E F, RIZK M R M. A power-distance based handover triggering algorithm for LTE-R using WINNERⅡ-D2a channel model[C]//IEEE. 22nd Asia-Pacific Conference on Communications. New York: IEEE, 2016: 167-173.
    [29] AHMAD I, CHEN W, CHANG K. LTE-railway user priority-based cooperative resource allocation schemes for coexisting public safety and railway networks[J]. IEEE Access, 2017, 5: 7985-8000. doi: 10.1109/ACCESS.2017.2698098
    [30] GUPTA N, SINGH B. A novel seamless handover scheme for high-speed railway transport using dual-antenna system[C]// IEEE. 2019 4th IEEE International Conference on Recent Trends on Electronics, Information, Communication and Technology. New York: IEEE, 2019: 1160-1165.
    [31] HE Rui-si, AI Bo, WANG Gong-pu, et al. High-speed railway communications: from GSM-R to LTE-R[J]. IEEE Vehicular Technology Magazine, 2016, 11(3): 49-58. doi: 10.1109/MVT.2016.2564446
    [32] HE Rui-si, ZHONG Zhang-dui, AI Bo, et al. Reducing the cost of high-speed railway communications: from the propagation channel view[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 2050-2060. doi: 10.1109/TITS.2015.2390614
    [33] KIM Y, LEE H Y, HWANG P, et al. Feasibility of mobile cellular communications at millimeter wave frequency[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 589-599. doi: 10.1109/JSTSP.2016.2520901
    [34] HE Dang-ping, AI Bo, GUAN Ke, et al. Channel measurement, simulation, and analysis for high-speed railway communications in 5G millimeter-wave band[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(10): 3144-3158. doi: 10.1109/TITS.2017.2771559
    [35] ZHOU Tao, LI Hua-yu, WANG Yang, et al. Channel modeling for future high-speed railway communication systems: a survey[J]. IEEE Access, 2019, 7: 52818-52826. doi: 10.1109/ACCESS.2019.2912408
    [36] SHENG Jie, TANG Zi-wen, WU Cheng, et al. Game theory-based multi-objective optimization interference alignment algorithm for HSR 5G heterogeneous ultra-dense network[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13371-13382. doi: 10.1109/TVT.2020.3025778
    [37] FENG Bo-hao, ZHANG Hong-ke, ZHOU Hua-chun, et al. Locator/identifier split networking: a promising future internet architecture[J]. IEEE Communications Surveys and Tutorials, 2017, 19(4): 2927-2948. doi: 10.1109/COMST.2017.2728478
    [38] ZHANG Hong-ke, QUAN Wei, CHAO Han-chieh, et al. Smart identifier network: a collaborative architecture for the future internet[J]. IEEE Network, 2016, 30(3): 46-51. doi: 10.1109/MNET.2016.7474343
    [39] HAN M, HAN K S, LEE D J. Fast IP handover performance improvements using performance enhancing proxys between satellite networks and wireless LAN networks for high-speed trains[C]//IEEE. 2008 IEEE Vehicular Technology Conference. New York: IEEE, 2008: 2341-2344.
    [40] TERADA M, TERAOKA F. Providing a high-speed train with a broadband and fault tolerant IPv4/6 NEMO environment[C]//IEEE. 2012 IEEE Globecom Workshops. New York: IEEE, 2012: 1052-1056.
    [41] LIU Yi-wei, NERI A, RUGGERI A, et al. A MPTCP-based network architecture for intelligent train control and traffic management operations[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(9): 2290-2302. doi: 10.1109/TITS.2016.2633531
    [42] HU Yun, CHANG Zheng, LI Hong-yan, et al. Service provisioning and user association for heterogeneous wireless railway networks[J]. IEEE Transactions on Communications, 2017, 65(7): 3066-3078. doi: 10.1109/TCOMM.2017.2687930
    [43] HU Yun, LI Hong-yan, CHANG Zheng, et al. Scheduling strategy for multimedia heterogeneous high-speed train networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(4): 3265-3279. doi: 10.1109/TVT.2016.2587080
    [44] MAZZENGA F, GIULIANO R, NERI A, et al. Integrated public mobile radio networks/satellite for future railway communications[J]. IEEE Wireless Communications, 2017, 24(2): 90-97. doi: 10.1109/MWC.2016.1500266WC
    [45] YAN Xiao-yun, DONG Ping, DU Xiao-jiang, et al. Congestion game with link failures for network selection in high-speed vehicular networks[J]. IEEE Access, 2018, 6: 76165-76175. doi: 10.1109/ACCESS.2018.2884766
    [46] WU Yong-dong, YE Deng-pan, WEI Zhuo, et al. Situation-aware authenticated video broadcasting over train-trackside WiFi networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 1617-1627. doi: 10.1109/JIOT.2018.2859185
    [47] CHEN Ya-li, AI Bo, NIU Yong, et al. Resource allocation for device-to-device communications in multi-cell multi-band heterogeneous cellular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4760-4773. doi: 10.1109/TVT.2019.2903858
    [48] ZHANG Xiao-ya, DONG Ping, DU Xiao-jiang, et al. Space-ground integrated information network enabled Internet of vehicles: architecture and key mechanisms[J]. IEEE Communications Standards Magazine, 2020, 4(4): 11-17. doi: 10.1109/MCOMSTD.001.2000015
    [49] WANG Xin-mu, LI He-wu, YAO Wen-bing, et al. Content delivery for high-speed railway via integrated terrestrial-satellite networks[C]//IEEE. 2020 IEEE Wireless Communications and Networking Conference. New York: IEEE, 2020: 9120643.
    [50] LIU Bin, NI Wei, LIU Ren-ping, et al. Optimal selection of heterogeneous network interfaces for high-speed rail communications[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15005-15018. doi: 10.1109/TVT.2020.3031923
    [51] YAN Li, FANG Xu-ming, HAO Li, et al. Safety-oriented resource allocation for space-ground integrated cloud networks of high-speed railways[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(12): 2747-2759. doi: 10.1109/JSAC.2020.3005487
    [52] XUN Ding, XIN Chen, JIANG Wen-yi. The analysis of GSM-R redundant network and reliability models on high-speed railway[C]//IEEE. 2010 International Conference on Electronics and Information Engineering. New York: IEEE, 2010: V2154-V2158.
    [53] LUO Qing-lin, FANG Wei, WU Jin-song, et al. Reliable broadband wireless communication for high speed trains using baseband cloud[J]. EURASIP Journal on Wireless Communications and Networking, 2012, 2012: 1-12. doi: 10.1186/1687-1499-2012-1
    [54] DONG Ping, ZHENG Tao, DU Xiao-jiang, et al. SVCC-HSR: providing secure vehicular cloud computing for intelligent high-speed rail[J]. IEEE Network, 2018, 32(3): 64-71. doi: 10.1109/MNET.2018.1700330
    [55] YASEEN F A, AL-RAWESHIDY H S. Proactive forwarding of high data rate in smart virtualization networks for high-speed trains[J]. IEEE Systems Journal, 2019, 14(2): 1670-1681.
    [56] 张宏科, 罗洪斌. 智慧协同网络体系基础研究[J]. 电子学报, 2013, 41(7): 1249-1252, 1254. doi: 10.3969/j.issn.0372-2112.2013.07.001

    ZHANG Hong-ke, LUO Hong-bin. Fundamental research on theories of smart and cooperative networks[J]. Acta Electronica Sinica, 2013, 41(7): 1249-1252, 1254. (in Chinese) doi: 10.3969/j.issn.0372-2112.2013.07.001
    [57] ZHANG Yu-yang, DONG Ping, DU Xiao-jiang, et al. BNNC: improving performance of multipath transmission in heterogeneous vehicular networks[J]. IEEE Access, 2019, 7: 158113-158125. doi: 10.1109/ACCESS.2019.2948954
    [58] LOPEZ I, AGUADO M, PINEDO C, et al. SCADA systems in the railway domain: enhancing reliability through redundant multipath TCP[C]//IEEE. 2015 IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2015: 2305-2310.
    [59] XU Chang-qiao, LI Zhuo-feng, ZHONG Lu-jie, et al. CMT-NC: improving the concurrent multipath transfer performance using network coding in wireless networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(3): 1735-1751. doi: 10.1109/TVT.2015.2409556
    [60] XU Chang-qiao, WANG Peng, XIONG Chun-shan, et al. Pipeline network coding-based multipath data transfer in heterogeneous wireless networks[J]. IEEE Transactions on Broadcasting, 2017, 63(2): 376-390. doi: 10.1109/TBC.2016.2590819
    [61] MA Bin, WANG Dong, CHENG Shuang-guo, et al. Modeling and analysis for vertical handoff based on the decision tree in a heterogeneous vehicle network[J]. IEEE Access, 2017, 5: 8812-8824. doi: 10.1109/ACCESS.2017.2707801
    [62] YANG Yu-wen, GAO Fei-fei, ZHONG Zhi-meng, et al. Deep transfer learning-based downlink channel prediction for FDD massive MIMO systems[J]. IEEE Transactions on Communications, 2020, 68(12): 7485-7497. doi: 10.1109/TCOMM.2020.3019077
    [63] WANG Cheng, WU Qing-ting, TANG Zi-wen, et al. Spectrum management in high-speed railway cooperative cognitive radio network based on multi-agent reinforcement learning[C]//IEEE. 16th IEEE International Wireless Communications and Mobile Computing Conference. New York: IEEE, 2020: 702-707.
    [64] 王增浩, 杨丽花, 程露, 等. 5G高速移动系统中基于BP神经网络的多普勒频偏估计方法[J]. 电信科学, 2020, 36(4): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX202004011.htm

    WANG Zeng-hao, YANG Li-hua, CHENG Lu, et al. BP neural network based Doppler frequency offset estimation method for 5G high-speed mobile system[J]. Telecommunications Science, 2020, 36(4): 83-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX202004011.htm
    [65] NIKA A, ZHU Yi-bo, DING Ning, et al. Energy and performance of smartphone radio bundling in outdoor environments[C]//ACM. Proceedings of the 24th International Conference on World Wide Web. New York: ACM, 2015: 809-819.
    [66] SCHARF M, KIESEL S. NXG03-5: head-of-line blocking in TCP and SCTP: analysis and measurements[C]//IEEE. 2006 Global Telecommunications Conference. New York: IEEE, 2006: 1-5.
    [67] PAASCH C, FERLIN S, ALAY O, et al. Experimental evaluation of multipath TCP schedulers[C]//ACM. ACM SIGCOMM 2014 Capacity Sharing Workshop. New York: ACM, 2014: 27-32.
    [68] PAASCH C, DETAL G, DUCHENE F, et al. Exploring mobile/WiFi handover with multipath TCP[C]//ACM. 2012 ACM SIGCOMM Workshop on Cellular Networks: Operations, Challenges, and Future Design. New York: ACM, 2012: 31-36.
    [69] FERLIN S, ALAY Ö, MEHANI O, et al. BLEST: Blocking estimation-based MPTCP scheduler for heterogeneous networks[C]//IEEE. 2016 IFIP Networking Conference (IFIP Networking) and Workshops. New York: IEEE, 2016: 431-439.
    [70] GARCIA-SAAVEDRA A, KARZAND M, LEITH D J. Low delay random linear coding and scheduling over multiple interfaces[J]. IEEE Transactions on Mobile Computing, 2017, 16(11): 3100-3114. doi: 10.1109/TMC.2017.2686379
    [71] ZHANG Yu-yang, DONG Ping, DU Xiao-jiang, et al. Dynamic time-threshold based receive buffer for vehicle-to-cloud multipath transmission[C]//IEEE. 2020 International Conference on Computing, Networking and Communications. New York: IEEE, 2020: 428-433.
    [72] HAN Jiang-ping, XUE Kai-ping, XING Yi-tao, et al. Leveraging coupled BBR and adaptive packet scheduling to boost MPTCP[J]. IEEE Transactions on Wireless Communications, 2021, 20(11): 7555-7567. doi: 10.1109/TWC.2021.3085661
    [73] OH B H, LEE J. Feedback-based path failure detection and buffer blocking protection for MPTCP[J]. IEEE/ACM Transactions on Networking, 2016, 24(6): 3450-3461. doi: 10.1109/TNET.2016.2527759
    [74] 王同军. 中国智能高铁发展战略研究[J]. 中国铁路, 2019(1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201901002.htm

    WANG Tong-jun. Study on the development strategy of China intelligent high speed railway[J]. China Railway, 2019(1): 9-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201901002.htm
    [75] ZHANG Han, LI Wen-zhong, GAO Shao-hua, et al. ReLeS: A neural adaptive multipath scheduler based on deep reinforcement learning[C]//IEEE. 2019 IEEE Conference on Computer Communications. New York: IEEE, 2019: 1648-1656.
    [76] LI Wen-zhong, ZHANG Han, GAO Shao-hua, et al. SmartCC: a reinforcement learning approach for multipath TCP congestion control in heterogeneous networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(11): 2621-2633. doi: 10.1109/JSAC.2019.2933761
    [77] YIN Chen-yang, DONG Ping, DU Xiao-jiang, et al. An adaptive network coding scheme for multipath transmission in cellular-based vehicular networks[J]. Sensors, 2020, 20(20): 5902. doi: 10.3390/s20205902
    [78] LU Zhao-jun, QU Gang, LIU Zeng-lin. A survey on recent advances in vehicular network security, trust, and privacy[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(2): 760-776. doi: 10.1109/TITS.2018.2818888
    [79] MEHRABI M, YOU D H, LATZKO V, et al. Device-enhanced MEC: multi-access edge computing (MEC) aided by end device computation and caching: a survey[J]. IEEE Access, 2019, 7: 166079-166108. doi: 10.1109/ACCESS.2019.2953172
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  988
  • HTML全文浏览量:  334
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-28
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回