留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桥梁结构非线性模型修正研究综述

王佐才 丁雅杰 戈壁 袁子青 辛宇

王佐才, 丁雅杰, 戈壁, 袁子青, 辛宇. 桥梁结构非线性模型修正研究综述[J]. 交通运输工程学报, 2022, 22(2): 59-75. doi: 10.19818/j.cnki.1671-1637.2022.02.004
引用本文: 王佐才, 丁雅杰, 戈壁, 袁子青, 辛宇. 桥梁结构非线性模型修正研究综述[J]. 交通运输工程学报, 2022, 22(2): 59-75. doi: 10.19818/j.cnki.1671-1637.2022.02.004
WANG Zuo-cai, DING Ya-jie, GE Bi, YUAN Zi-qing, XIN Yu. Review on nonlinear model updating for bridge structures[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 59-75. doi: 10.19818/j.cnki.1671-1637.2022.02.004
Citation: WANG Zuo-cai, DING Ya-jie, GE Bi, YUAN Zi-qing, XIN Yu. Review on nonlinear model updating for bridge structures[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 59-75. doi: 10.19818/j.cnki.1671-1637.2022.02.004

桥梁结构非线性模型修正研究综述

doi: 10.19818/j.cnki.1671-1637.2022.02.004
基金项目: 

国家自然科学基金项目 51922036

安徽省重点研发计划 1804a0802204

中央高校基本科研业务费专项资金项目 JZ2020HGPB0117

详细信息
    作者简介:

    王佐才(1982-),男,湖南双峰人,合肥工业大学教授,工学博士,从事桥梁结构健康监测研究

    通讯作者:

    丁雅杰(1991-),男,安徽滁州人,合肥工业大学工学博士研究生

  • 中图分类号: U441.3

Review on nonlinear model updating for bridge structures

Funds: 

National Natural Science Foundation of China 51922036

Key Research and Development Project of Anhui Province 1804a0802204

Fundamental Research Funds for the Central Universities JZ2020HGPB0117

More Information
  • 摘要: 针对桥梁服役期间由于结构力学性能减弱从而表现出具有时变特征的非线性振动问题,在回顾非线性模型修正发展的基础上,分别从非线性系统识别、非线性模型修正方法和非线性模型不确定性量化3个方面入手,总结了结构非线性模型修正技术中存在的一些关键问题;结合复杂结构损伤识别、性能评估与安全监测等内容,对其在桥梁结构中的应用展开了讨论。研究结果表明:以固有频率和模态振型为代表的响应特征量仅能反映时不变结构的物理特性,对于非线性结构而言其力学性能随外激励作用而不断变化,基于线性系统特征量的模型修正方法不能很好地适用于具有明显时变特性的非线性结构;结构动力响应主分量的瞬时频率和瞬时幅值包含了振动响应信号的相位信息和幅值信息,可以较为全面地反映动力荷载作用下结构响应的非平稳特性,选择具有时变特性的瞬时特征量来构建目标函数能够更为合理地表征非线性结构的动力特性;不确定性模型修正方法通过综合利用实测响应数据,考虑了测量噪声、模型误差和数值计算方法等不确定因素的影响,提高了模型修正结果的准确性;复杂结构非线性模型修正过程中涉及的参数众多,计算量大,极大地限制了其在实际工程结构中的应用,因此,合理选择具有代表性的非线性模型参数以及提高模型修正的计算效率是当前亟需解决的问题。

     

  • 图  1  非线性结构模型修正过程

    Figure  1.  Model updating process of nonlinear structure

    图  2  非线性结构模型修正方法技术路线

    Figure  2.  Technical route of nonlinear structural model updating method

    图  3  非线性系统识别方法

    Figure  3.  Nonlinear system identification method

    图  4  非线性系统刚度边际曲线

    Figure  4.  Stiffness marginal curves of nonlinear system

    图  5  非线性系统模式识别方法

    Figure  5.  Pattern identification method of nonlinear system

    图  6  主分量响应信号瞬时特征参数

    Figure  6.  Instantaneous characteristics parameters of principal component response signal

    图  7  SA算法流程

    Figure  7.  Flow of SA algorithm

    图  8  GA的流程

    Figure  8.  Flow of GA

    图  9  BP神经网络结构

    Figure  9.  BP neural network structure

    图  10  贝叶斯推断过程

    Figure  10.  Bayesian inference process

    图  11  考虑不确定性的非线性模型修正框架

    Figure  11.  Framework of nonlinear model updating with uncertainties

    图  12  基于区间数值计算的不确定性模型修正流程

    Figure  12.  Uncertainty model updating process based on interval numerical calculation

  • [1] GIRARDI M, PADOVANI C, PELLEGRINI D, et al. Finite element model updating for structural applications[J]. Journal of Computational and Applied Mathematics, 2020, 370: 112675. doi: 10.1016/j.cam.2019.112675
    [2] 宗周红, 高铭霖, 夏樟华. 基于健康监测的连续刚构桥有限元模型确认(Ⅰ)—基于响应面法的有限元模型修正[J]. 土木工程学报, 2011, 44(2): 90-98. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201102015.htm

    ZONG Zhou-hong, GAO Ming-lin, XIA Zhang-hua. Finite element model validation of the continuous rigid frame bridge based on structural health monitoring. Part Ⅰ : FE model updating based on the response surface method[J]. China Civil Engineering Journal, 2011, 44(2): 90-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201102015.htm
    [3] 朱劲松, 肖汝诚. 桥梁损伤识别的实用模型修正方法研究[J]. 工业建筑, 2006, 36(增1): 219-224. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ2006S1065.htm

    ZHU Jin-song, XIAO Ru-cheng. Research on damage identification of bridges based on FE model updating[J]. Industrial Construction, 2006, 36(S1): 219-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ2006S1065.htm
    [4] 贺媛媛, 刘莉. 结构动态模型修正技术[J]. 战术导弹技术, 2008(1): 5-9, 13. doi: 10.3969/j.issn.1009-1300.2008.01.002

    HE Yuan-yuan, LIU Li. Updating techniques of structural dynamic model[J]. Tactical Missile Technology, 2008(1): 5-9, 13. (in Chinese) doi: 10.3969/j.issn.1009-1300.2008.01.002
    [5] JAISHI B, KIM H J, KIM M K, et al. Finite element model updating of concrete-filled steel tubular arch bridge under operational condition using modal flexibility[J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2406-2426. doi: 10.1016/j.ymssp.2007.01.003
    [6] HUA X G, NI Y Q, CHEN Z Q, et al. Structural damage detection of cable-stayed bridges using changes in cable forces and model updating[J]. Journal of Structural Engineering, 2009, 135(9): 1093-1106. doi: 10.1061/(ASCE)0733-9445(2009)135:9(1093)
    [7] 范哲. 大跨斜拉桥有限元模型修正与结构损伤监测方法研究[D]. 大连: 大连理工大学, 2013.

    FAN Zhe. Study on the FE model updating and structural damage detection for long-span cable-stayed bridges[D]. Dalian: Dalian University of Technology, 2013. (in Chinese)
    [8] 单德山, 孙松松, 黄珍, 等. 基于试验数据的吊拉组合模型桥梁有限元模型修正[J]. 土木工程学报, 2014, 47(10): 88-95. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201410013.htm

    SHAN De-shan, SUN Song-song, HUANG Zhen, et al. Finite element model updating of combined cable-stayed suspension model bridge based on experimental data[J]. China Civil Engineering Journal, 2014, 47(10): 88-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201410013.htm
    [9] 宋智, 孙强. 基于模型修正的桥梁极限承载力分析[J]. 水利与建筑工程学报, 2015, 13(5): 228-232. doi: 10.3969/j.issn.1672-1144.2015.05.045

    SONG Zhi, SUN Qiang. An ultimate bearing capacity analysis on bridges based on model updating[J]. Journal of Water Resources and Architectural Engineering, 2015, 13(5): 228-232. (in Chinese) doi: 10.3969/j.issn.1672-1144.2015.05.045
    [10] 吴多. 基于桥梁全寿命周期的损伤识别及状态评估研究[D]. 西安: 长安大学, 2017.

    WU Duo. Study on damage identification and state evaluation of bridge life cycle[D]. Xi'an: Chang'an University, 2017. (in Chinese)
    [11] 张明亮. 基于贝叶斯理论的材料非线性桥梁结构模型修正与损伤识别[J]. 长春: 吉林大学, 2011.

    ZHANG Ming-liang. Structural parameters updating and damage identification of material non-linear bridge structure based on Bayesian theory[D]. Changchun: Jilin University, 2011. (in Chinese)
    [12] 李秉穹. 基于RBF神经网络的曲线斜拉桥不确定性模型修正[D]. 成都: 西南交通大学, 2015.

    LI Bing-qiong. Uncertainty model updating of a curved cable-stayed bridge based on RBF neural network[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese)
    [13] WANG Zuo-cai, XIN Yu, REN Wei-xin. Nonlinear structural joint model updating based on instantaneous characteristics of dynamic responses[J]. Mechanical Systems and Signal Processing, 2016, 76/77: 476-496. doi: 10.1016/j.ymssp.2016.01.024
    [14] WANG Zuo-cai, XIN Yu, REN Wei-xin. Nonlinear structural model updating based on instantaneous frequencies and amplitudes of the decomposed dynamic responses[J]. Engineering Structures, 2015, 100: 189-200. doi: 10.1016/j.engstruct.2015.06.002
    [15] YUAN Ping-ping, REN Wei-xin, ZHANG Jian. Dynamic tests and model updating of nonlinear beam structures with bolted joints[J]. Mechanical Systems and Signal Processing, 2019, 126: 193-210. doi: 10.1016/j.ymssp.2019.02.033
    [16] GOEGE D, FUELLEKRUG U, SINAPIUS M, et al. Advanced test strategy for identification and characterization of nonlinearities of aerospace structures[J]. AIAA Journal, 2005, 43(5): 974-986. doi: 10.2514/1.5651
    [17] MASRI S F, CAUGHEY T K. A nonparametric identification technique for nonlinear dynamic problems[J]. Journal of Applied Mechanics, 1979, 46(2): 433-447. doi: 10.1115/1.3424568
    [18] MASRI S F, SASSI H, CAUGHEY T K. Nonparametric identification of nearly arbitrary nonlinear systems[J]. Journal of Applied Mechanics, 1982, 49(3): 619-628. doi: 10.1115/1.3162537
    [19] MASRI S F, MILLER R K, SAUD A F, et al. Identification of nonlinear vibrating structures: Part Ⅱ—applications[J]. Journal of Applied Mechanics, 1987, 54(4): 923-929. doi: 10.1115/1.3173140
    [20] MESKELL C, FITZPATRICK J A, RICE H J. Application of force-state mapping to a non-linear fluid-elastic system[J]. Mechanical Systems and Signal Processing, 2001, 15(1): 75-85. doi: 10.1006/mssp.2000.1352
    [21] NOëL J P, KERSCHEN G, NEWERLA A. Application of the restoring force surface method to a real-life spacecraft structure[C]//Springer. Conference Proceedings of the Society for Experimental Mechanics Series. Berlin: Springer, 2012: 1-19.
    [22] KERSCHEN G. Identification of nonlinear systems using the restoring force surface method[C]//SEM Annual Conference. Student Paper Competition of the SEM Conference. Cincinnati: SEM Annual Conference, 1999: 1-4.
    [23] 蒋华, 陈前. 恢复力曲面法在颗粒阻尼器研究中的应用[J]. 振动、测试与诊断, 2007, 27(3): 228-231, 259. doi: 10.3969/j.issn.1004-6801.2007.03.012

    JIANG Hua, CHEN Qian. Application of restoring force surface method to particle damping research[J]. Journal of Vibration, Measurement and Diagnosis, 2007, 27(3): 228-231, 259. (in Chinese) doi: 10.3969/j.issn.1004-6801.2007.03.012
    [24] WANG Zuo-cai, DING Ya-jie, REN Wei-xin, et al. Structural dynamic nonlinear model and parameter identification based on the stiffness and damping marginal curves[J]. Structural Control and Health Monitoring, 2020, 27(6): e2540.
    [25] FELDMAN M. Non-linear system vibration analysis using Hilbert transform—Ⅱ. Forced vibration analysis method 'Forcevib'[J]. Mechanical Systems and Signal Processing, 1994, 8(3): 309-318. doi: 10.1006/mssp.1994.1023
    [26] HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193
    [27] WANG Zuo-cai, CHEN G. Analytical mode decomposition with Hilbert transform for modal parameter identification of buildings under ambient vibration[J]. Engineering Structures, 2014, 59: 173-184. doi: 10.1016/j.engstruct.2013.10.020
    [28] STASZEWSKI W. Identification of damping in MDOF systems using time-scale decomposition[J]. Journal of Sound and Vibration, 1997, 203(2): 283-305. doi: 10.1006/jsvi.1996.0864
    [29] FRANCO H, PAULETTI R M O. Analysis of nonlinear oscillations by Gabor spectrograms[J]. Nonlinear Dynamics, 1997, 12(3): 215-236. doi: 10.1023/A:1008294918271
    [30] LIND R, SNYDER K, BRENNER M. Wavelet analysis to characterise non-linearities and predict limit cycles of an aeroelastic system[J]. Mechanical Systems and Signal Processing, 2001, 15(2): 337-356. doi: 10.1006/mssp.2000.1346
    [31] SHI Z Y, LAW S S, XU X. Identification of linear time-varying MDOF dynamic systems from forced excitation using Hilbert transform and EMD method[J]. Journal of Sound and Vibration, 2009, 321(3/4/5): 572-589.
    [32] KERSCHEN G, WORDEN K, VAKAKIS A F, et al. Past, present and future of nonlinear system identification in structural dynamics[J]. Mechanical Systems and Signal Processing, 2006, 20(3): 505-592. doi: 10.1016/j.ymssp.2005.04.008
    [33] HAROON M, ADAMS D E. A modified H2 algorithm for improved frequency response function and nonlinear parameter estimation[J]. Journal of Sound and Vibration, 2009, 320(4/5): 822-837.
    [34] SPOTTSWOOD S M, ALLEMANG R J. Identification of nonlinear parameters for reduced order models[J]. Journal of Sound and Vibration, 2006, 295(1/2): 226-245.
    [35] GIFFORD S J, TOMLINSON G R. Recent advances in the application of functional series to non-linear structures[J]. Journal of Soundand Vibration, 1989, 135(2): 289-317. doi: 10.1016/0022-460X(89)90727-X
    [36] KHAN A A, VYAS N S. Nonlinear bearing stiffness parameter estimation in flexible rotor-bearing systems using Volterra and Wiener approach[J]. Probabilistic Engineering Mechanics, 2001, 16(2): 137-157. doi: 10.1016/S0266-8920(00)00016-3
    [37] YUAN C, FEENY B F. Parametric identification of chaotic systems[J]. Journal of Vibration and Control, 1998, 4(4): 405-426. doi: 10.1177/107754639800400404
    [38] NOëL J P, KERSCHEN G. Frequency-domain subspace identification for nonlinear mechanical systems[J]. Mechanical Systems and Signal Processing, 2013, 40(2): 701-717. doi: 10.1016/j.ymssp.2013.06.034
    [39] STASZEWSKI W J. Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform[J]. Journal of Sound and Vibration, 1998, 214(4): 639-658. doi: 10.1006/jsvi.1998.1616
    [40] 王超, 任伟新, 黄天立. 基于小波的非线性结构系统识别[J]. 振动与冲击, 2009, 28(3): 10-13, 195. doi: 10.3969/j.issn.1000-3835.2009.03.003

    WANG Chao, REN Wei-xin, HUANG Tian-li. System identification of a nonlinear structure based on wavelet transformation[J]. Journal of Vibration and Shock, 2009, 28(3): 10-13, 195. (in Chinese) doi: 10.3969/j.issn.1000-3835.2009.03.003
    [41] 张淑清, 翟欣沛, 董璇, 等. EMD及Duffing振子在小电流系统故障选线方法中的应用[J]. 中国电机工程学报, 2013, 33(10): 161-167, 5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201310022.htm

    ZHANG Shu-qing, ZHAI Xin-pei, DONG Xuan, et al. Application of EMD and Duffing oscillator to fault line detection in un-effectively grounded system[J]. Proceedings of the CSEE, 2013, 33(10): 161-167, 5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201310022.htm
    [42] 唐贵基, 庞彬. 基于改进的希尔伯特振动分解的机械故障诊断方法研究[J]. 振动与冲击, 2015, 34(3): 167-171, 182. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201503028.htm

    TANG Gui-ji, PANG Bin. A mechanical fault diagnosis method based on improved Hilbert vibration decomposition[J]. Journal of Vibration and Shock, 2015, 34(3): 167-171, 182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201503028.htm
    [43] 邓四二, 张言伟, 王恒迪, 等. 基于HVD降噪和多频段频谱叠加的圆柱滚子轴承故障诊断[J]. 振动与冲击, 2018, 37(11): 136-144.

    DENG Si-er, ZHANG Yan-wei, WANG Heng-di, et al. Roller bearings' fault diagnosis based on HVD denoising and multi-band spectra superposition[J]. Journal of Vibration and Shock, 2018, 37(11): 136-144. (in Chinese)
    [44] EBRAHIMIAN H, ASTROZA R, CONTE J P. Nonlinear structural finite element model updating and uncertainty quantification[C]//SHULL P J. Structural Health Monitoring and Inspection of Advanced Materials, Aerospace, and Civil Infrastructure. San Diego: SPIE, 2015: 943716.
    [45] 梁鹏, 李斌, 王秀兰, 等. 基于桥梁健康监测的有限元模型修正研究现状与发展趋势[J]. 长安大学学报(自然科学版), 2014, 34(4): 52-61. doi: 10.3969/j.issn.1671-8879.2014.04.009

    LIANG Peng, LI Bin, WANG Xiu-lan, et al. Present research status and development trend of finite element model updating based on bridge health monitoring[J]. Journal of Chang'an University (Natural Science Edition), 2014, 34(4): 52-61. (in Chinese) doi: 10.3969/j.issn.1671-8879.2014.04.009
    [46] 续秀忠, 张志谊, 华宏星, 等. 应用时频分析方法辨识时变系统的模态参数[J]. 振动工程学报, 2003, 16(3): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC200303021.htm

    XU Xiu-zhong, ZHANG Zhi-yi, HUA Hong-xing, et al. Identification of time-varying modal parameters by a linear time-frequency method[J]. Journal of Vibration Engineering, 2003, 16(3): 104-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC200303021.htm
    [47] 邓杨, 彭志科, 杨扬, 等. 基于参数化时频分析的非线性振动系统参数辨识[J]. 力学学报, 2013, 45(6): 992-996. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201306021.htm

    DENG Yang, PENG Zhi-ke, YANG Yang, et al. Identification of nonlinear vibration systems based on parametric TFA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 992-996. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201306021.htm
    [48] JAISHI B, REN Wei-xin. Damage detection by finite element model updating using modal flexibility residual[J]. Journal of Sound and Vibration, 2006, 290(1/2): 369-387.
    [49] ZANG C, FRISWELL M I, IMREGUN M. Structural health monitoring and damage assessment using measured FRFs from multiple sensors, Part Ⅰ: the indicator of correlation criteria[J]. Key Engineering Materials, 2003, 245/246: 131-140. doi: 10.4028/www.scientific.net/KEM.245-246.131
    [50] 温华兵, 王国治. 基于频响函数灵敏度分析的鱼雷模型有限元模型修正[J]. 鱼雷技术, 2006, 14(3): 10-13. doi: 10.3969/j.issn.1673-1948.2006.03.003

    WEN Hua-bing, WANG Guo-zhi. Revising finite element model of torpedo model based on sensitivity analysis of frequency response function (FRF)[J]. Torpedo Technology, 2006, 14(3): 10-13. (in Chinese) doi: 10.3969/j.issn.1673-1948.2006.03.003
    [51] 孙国民, 张效忠, 孙延华. 基于特征值分析的多尺度结构优化设计方法[J]. 应用数学和力学, 2019, 40(6): 630-640. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201906005.htm

    SUN Guo-min, ZHANG Xiao-zhong, SUN Yan-hua. Multi-scale structure optimization design based on eigenvalue analysis[J]. Applied Mathematics and Mechanics, 2019, 40(6): 630-640. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201906005.htm
    [52] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201706001.htm

    ZHOU Fei-yan, JIN Lin-peng, DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201706001.htm
    [53] 韩露霜, 李旭东. 基于模拟退火算法的频域受限序列搜索算法[J]. 计算机科学与应用, 2021, 11(3): 543-548.

    HAN Lu-shuang, LI Xu-dong. Spectrally-constrained sequence search based on simulated annealing algorithm[J]. Computer Science and Application, 2021, 11(3): 543-548. (in Chinese)
    [54] 陈华根, 吴健生, 王家林, 等. 模拟退火算法机理研究[J]. 同济大学学报(自然科学版), 2004, 32(6): 802-805. doi: 10.3321/j.issn:0253-374X.2004.06.023

    CHEN Hua-gen, WU Jian-sheng, WANG Jia-lin, et al. Mechanism study of simulated annealing algorithm[J]. Journal of Tongji University (Natural Science), 2004, 32(6): 802-805. (in Chinese) doi: 10.3321/j.issn:0253-374X.2004.06.023
    [55] 辛宇. 基于结构动力响应主分量瞬时特性的非线性结构模型修正[D]. 合肥: 合肥工业大学, 2016.

    XIN Yu. Nonlinear structural model updating based on the instantaneous characteristics of decomposed dynamic responses[D]. Hefei: Hefei University of Technology, 2016. (in Chinese)
    [56] 张长林, 余建星, 杨振国. 非线性约束最优化问题的多目标模拟退火算法[J]. 复旦学报(自然科学版), 2003, 42(1): 93-97. doi: 10.3969/j.issn.0427-7104.2003.01.018

    ZHANG Chang-lin, YU Jian-xing, YANG Zhen-guo. The multi-object simulated annealing algorithm for the nonlinear constraint optimization problem[J]. Journal of Fudan University (Natural Science), 2003, 42(1): 93-97. (in Chinese) doi: 10.3969/j.issn.0427-7104.2003.01.018
    [57] 赖文龙. 改进的模拟退火算法及其在非线性能量阱减震控制性能优化中的运用[D]. 广州: 广州大学, 2018.

    LAI Wen-long. Improved simulated annealing algorithm and its application in seismic control performance optimization of nonlinear energy sinks[D]. Guangzhou: Guangzhou University, 2018. (in Chinese)
    [58] 卢明奇, 曾风波. 基于自适应遗传算法的钢筋混凝土桥墩抗震设计方法[J]. 土木工程学报, 2020, 53(7): 73-77. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202007008.htm

    LU Ming-qi, ZENG Feng-bo. Seismic design method for reinforcement concrete piers based on adaptive genetic algorithm[J]. China Civil Engineering Journal, 2020, 53(7): 73-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202007008.htm
    [59] 蔡颢. 基于遗传算法的装配式混凝土框架建筑优化研究[D]. 成都: 西南交通大学, 2018.

    CAI Hao. Research on optimization of prefabricated construction buildings based on genetic algorithm[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [60] LEE K Y, HAN S N, ROH M I. An improved genetic algorithm for facility layout problems having inner structure walls and passages[J]. Computers and Operations Research, 2003, 30(1): 117-138. doi: 10.1016/S0305-0548(01)00085-5
    [61] KAMESHKI E S, SAKA M P. Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm[J]. Computers and Structures, 2001, 79(17): 1593-1604. doi: 10.1016/S0045-7949(01)00035-9
    [62] 任怀庆. 非线性不确定系统的神经网络控制研究[D]. 长春: 吉林大学, 2014.

    REN Huai-qing. Study on control of nonlinear uncertain system by neural network[D]. Changchun: Jilin University, 2014. (in Chinese)
    [63] 费庆国, 李爱群, 张令弥. 基于神经网络的非线性结构有限元模型修正研究[J]. 宇航学报, 2005, 26(3): 267-269, 281. doi: 10.3321/j.issn:1000-1328.2005.03.005

    FEI Qing-guo, LI Ai-qun, ZHANG Ling-mi. Study on finite element model updating of nonlinear structures using neural network[J]. Journal of Astronautics, 2005, 26(3): 267-269, 281. (in Chinese) doi: 10.3321/j.issn:1000-1328.2005.03.005
    [64] 肖书敏, 闫云聚, 姜波澜. 基于小波神经网络方法的桥梁结构损伤识别研究[J]. 应用数学和力学, 2016, 37(2): 149-159. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201602004.htm

    XIAO Shu-min, YAN Yun-ju, JIANG Bo-lan. Damage identification for bridge structures based on the wavelet neural network method[J]. Applied Mathematics and Mechanics, 2016, 37(2): 149-159. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201602004.htm
    [65] 李雪松, 马宏伟, 林逸洲. 基于卷积神经网络的结构损伤识别[J]. 振动与冲击, 2019, 38(1): 167-175. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201901024.htm

    LI Xue-song, MA Hong-wei, LIN Yi-zhou. Structural damage identification based on convolution neural network[J]. Journal of Vibration and Shock, 2019, 38(1): 167-175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201901024.htm
    [66] LU Yong, TU Zhen-guo. A two-level neural network approach for dynamic FE model updating including damping[J]. Journal of Sound and Vibration, 2004, 275(3/4/5): 931-952.
    [67] FATHNEJAT H, TORKZADEH P, SALAJEGHEH E, et al. Structural damage detection by model updating method based on cascade feed-forward neural network as an efficient approximation mechanism[J]. International Journal of Optimization in Civil Engineering, 2014, 4(4): 451-472.
    [68] MARES C, MOTTERSHEAD J E, FRISWELL M I. Stochastic model updating: Part 1—theory and simulated example[J]. Mechanical Systems and Signal Processing, 2006, 20(7): 1674-1695. doi: 10.1016/j.ymssp.2005.06.006
    [69] KHODAPARAST H H, MOTTERSHEAD J E, FRISWELL M I. Perturbation methods for the estimation of parameter variability in stochastic model updating[J]. Mechanical Systems and Signal Processing, 2008, 22(8): 1751-1773. doi: 10.1016/j.ymssp.2008.03.001
    [70] MOTTERSHEAD J E, KHODAPARAST H H, DWIGHT R P, et al. Stochastic model updating: perturbation, interval method and Bayesian inference[C]//N'APRSTEK J. The 10th International Conference on Vibration Problems. Berlin: Springer, 2011: 13-23.
    [71] FANG Sheng-en, REN Wei-xin, PERERA R. A stochastic model updating method for parameter variability quantification based on response surface models and Monte Carlo simulation[J]. Mechanical Systems and Signal Processing, 2012, 33: 83-96. doi: 10.1016/j.ymssp.2012.06.028
    [72] 方圣恩, 林友勤, 夏樟华. 考虑结构参数不确定性的随机模型修正方法[J]. 振动、测试与诊断, 2014, 34(5): 832-837. doi: 10.3969/j.issn.1004-6801.2014.05.008

    FANG Sheng-en, LIN You-qin, XIA Zhang-hua. Stochastic model updating method considering the uncertainties of structural parameters[J]. Journal of Vibration, Measurement and Diagnosis, 2014, 34(5): 832-837. (in Chinese) doi: 10.3969/j.issn.1004-6801.2014.05.008
    [73] WAN Hua-ping, REN Wei-xin. A residual-based Gaussian process model framework for finite element model updating[J]. Computers and Structures, 2015, 156: 149-159. doi: 10.1016/j.compstruc.2015.05.003
    [74] BECK J L, KATAFYGIOTIS L S. Updating models and their uncertainties. Ⅰ : Bayesian statistical framework[J]. Journal of Engineering Mechanics, 1998, 124(4): 455-461. doi: 10.1061/(ASCE)0733-9399(1998)124:4(455)
    [75] REBBA R. Model validation and design under uncertainty[D]. Nashville: Vanderbilt University, 2005.
    [76] 易伟建, 周云, 李浩. 基于贝叶斯统计推断的框架结构损伤诊断研究[J]. 工程力学, 2009, 26(5): 121-129. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200905022.htm

    YI Wei-jian, ZHOU Yun, LI Hao. Damage assessment research on frame structure based on Bayesian statistical inference[J]. Engineering Mechanics, 2009, 26(5): 121-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200905022.htm
    [77] 房长宇, 张耀庭. 基于参数不确定性的预应力混凝土梁模型修正[J]. 华中科技大学学报(自然科学版), 2011, 39(11): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201111019.htm

    FANG Chang-yu, ZHANG Yao-ting. Model updating of prestressed concrete beams using parameters uncertainty[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(11): 87-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201111019.htm
    [78] 刘纲, 罗钧, 秦阳, 等. 基于改进MCMC方法的有限元模型修正研究[J]. 工程力学, 2016, 33(6): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201606018.htm

    LIU Gang, LUO Jun, QIN Yang, et al. A finite element model updating method based on improved MCMC method[J]. Engineering Mechanics, 2016, 33(6): 138-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201606018.htm
    [79] 张建新. 基于贝叶斯方法的有限元模型修正研究[D]. 重庆: 重庆大学, 2014.

    ZHANG Jian-xin. Research on the modification of finite element model based on Bayesian method[D]. Chongqing: Chongqing University, 2014. (in Chinese)
    [80] WAN Hua-ping, REN Wei-xin. Stochastic model updating utilizing Bayesian approach and Gaussian process model[J]. Mechanical Systems and Signal Processing, 2016, 70/71: 245-268. doi: 10.1016/j.ymssp.2015.08.011
    [81] XIN Yu, HAO Hong, LI Jun, et al. Bayesian based nonlinear model updating using instantaneous characteristics of structural dynamic responses[J]. Engineering Structures, 2019, 183: 459-474. doi: 10.1016/j.engstruct.2019.01.043
    [82] ZIMMERMANN H J. Fuzzy set theory[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(3): 317-332. doi: 10.1002/wics.82
    [83] SUNAGA T. Theory of an interval algebra and its application to numerical analysis[J]. Japan Journal of Industrial and Applied Mathematics, 2009, 26(2/3): 125-143.
    [84] FERSON S, KREINOVICH V, GRINZBURG L, et al. Constructing probability boxes and Dempster-Shafer structures[R]. Albuquerque: U.S. Department of Energy, 2003.
    [85] MOENS D, VANDEPITTE D. An interval finite element approach for the calculation of envelope frequency response functions[J]. International Journal for Numerical Methods in Engineering, 2004, 61(14): 2480-2507. doi: 10.1002/nme.1159
    [86] KHODAPARAST H H, MOTTERSHEAD J E, BADCOCK K J. Interval model updating with irreducible uncertainty using the Kriging predictor[J]. Mechanical Systems and Signal Processing, 2011, 25(4): 1204-1226. doi: 10.1016/j.ymssp.2010.10.009
    [87] 朱增青, 陈建军, 宋宗凤, 等. 区间参数杆系结构非概率可靠性指标的改进仿射算法[J]. 工程力学, 2010, 27(2): 49-53, 58. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201002010.htm

    ZHU Zeng-qing, CHEN Jian-jun, SONG Zong-feng, et al. Non-probabilistic reliability index of bar structures with interval parameters based on modified affine arithmetic[J]. Engineering Mechanics, 2010, 27(2): 49-53, 58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201002010.htm
    [88] 姜东, 费庆国, 吴邵庆. 基于区间分析的不确定性结构动力学模型修正方法[J]. 振动工程学报, 2015, 28(3): 352-358. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201503003.htm

    JIANG Dong, FEI Qing-guo, WU Shao-qing. Updating of structural dynamics model with uncertainty based on interval analysis[J]. Journal of Vibration Engineering, 2015, 28(3): 352-358. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201503003.htm
    [89] 单德山, 顾晓宇, 李中辉, 等. 桥梁结构有限元模型的仿射-区间不确定修正[J]. 中国公路学报, 2019, 32(2): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201902008.htm

    SHAN De-shan, GU Xiao-yu, LI Zhong-hui, et al. Affine-interval uncertainty updating of finite element model for cable-stayed bridge[J]. China Journal of Highway and Transport, 2019, 32(2): 67-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201902008.htm
    [90] 周建庭, 李晓庆, 辛景舟, 等. 基于Kalman-GARCH模型的结构损伤识别[J]. 振动与冲击, 2020, 39(6): 1-7, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202006001.htm

    ZHOU Jian-ting, LI Xiao-qing, XIN Jing-zhou, et al. Structural damage identification based on a Kalman-GARCH model[J]. Journal of Vibration and Shock, 2020, 39(6): 1-7, 21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202006001.htm
    [91] CHEN Zhao, ZHANG Rui-yang, ZHENG Jing-wei, et al. Sparse Bayesian learning for structural damage identification[J]. Mechanical Systems and Signal Processing, 2020, 140: 106689. doi: 10.1016/j.ymssp.2020.106689
    [92] ZHAN J, ZHANG F, SIAHKOUHI M, et al. A damage identification method for connections of adjacent box-beam bridges using vehicle-bridge interaction analysis and model updating[J]. Engineering Structures, 2021, 228: 111551. doi: 10.1016/j.engstruct.2020.111551
    [93] 勾红叶, 杨彪, 刘雨, 等. 复杂条件下车-轨-桥变形映射关系及行车安全评价研究[J]. 中国公路学报, 2021, 34(4): 162-173. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202104015.htm

    GOU Hong-ye, YANG Biao, LIU Yu, et al. Deformation mapping relationship and running safety evaluation of train-track-bridge system for high-speed railway in complex conditions[J]. China Journal of Highway and Transport, 2021, 34(4): 162-173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202104015.htm
    [94] 杨颖, 李坤, 王银广. 基于模拟退火算法的BP神经网络在桥梁智能养护中的应用[J]. 智能城市, 2020, 6(21): 12-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNCS202021020.htm

    YANG Ying, LI Kun, WANG Yin-guang. Application of BP neural network based on simulated annealing algorithm in intelligent maintenance of bridge[J]. Intelligent City, 2020, 6(21): 12-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNCS202021020.htm
    [95] WEI Shi-yin, BAO Yue-quan, LI Hui. Optimal policy for structure maintenance: a deep reinforcement learning framework[J]. Structural Safety, 2020, 83: 101906.
  • 加载中
图(12)
计量
  • 文章访问数:  1616
  • HTML全文浏览量:  589
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回