留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有砟高铁捣固作业轨向平顺性控制方法

时瑾 张雨潇 陈云峰 王晓凯 王英杰

时瑾, 张雨潇, 陈云峰, 王晓凯, 王英杰. 有砟高铁捣固作业轨向平顺性控制方法[J]. 交通运输工程学报, 2022, 22(2): 76-86. doi: 10.19818/j.cnki.1671-1637.2022.02.005
引用本文: 时瑾, 张雨潇, 陈云峰, 王晓凯, 王英杰. 有砟高铁捣固作业轨向平顺性控制方法[J]. 交通运输工程学报, 2022, 22(2): 76-86. doi: 10.19818/j.cnki.1671-1637.2022.02.005
SHI Jin, ZHANG Yu-xiao, CHEN Yun-feng, WANG Xiao-kai, WANG Ying-jie. Track alignment irregularity control method for tamping operation of ballasted high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 76-86. doi: 10.19818/j.cnki.1671-1637.2022.02.005
Citation: SHI Jin, ZHANG Yu-xiao, CHEN Yun-feng, WANG Xiao-kai, WANG Ying-jie. Track alignment irregularity control method for tamping operation of ballasted high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 76-86. doi: 10.19818/j.cnki.1671-1637.2022.02.005

有砟高铁捣固作业轨向平顺性控制方法

doi: 10.19818/j.cnki.1671-1637.2022.02.005
基金项目: 

国家自然科学基金项目 52078035

中国国家铁路集团有限公司科技研究开发计划 N2020G011

中国铁道科学研究院集团有限公司重点课题 2020YJ110

详细信息
    作者简介:

    时瑾(1980-),男,甘肃临夏人,北京交通大学教授,工学博士,从事铁路线路工程技术研究

  • 中图分类号: U216.42

Track alignment irregularity control method for tamping operation of ballasted high-speed railway

Funds: 

National Natural Science Foundation of China 52078035

Science and Technology Research and Development Project of China National Railway Group Co., Ltd. N2020G011

Project of Science and Technology of China Academy of Railway Sciences Co., Ltd. 2020YJ110

More Information
  • 摘要: 为了提升有砟高铁捣固作业质量以满足平顺性控制要求,根据大机作业特征分析了拨道效果影响因素,研究了拨道量范围、拨道策略、拨道量顺坡率、设备精度与作业效果之间的影响关系;结合影响因素分析结果,基于中长波平顺性控制理论建立了拨道方案优化模型,提出了基于拨道量相关性的拨道效果评价方法,实现拨道效果影响因素与拨道方案制定过程的有效结合;在某高速铁路有砟轨道捣固作业之中,验证了轨向平顺性控制方法的有效性。研究结果表明:拨道量过大或过小、拨道量顺坡率超标、拨道策略不利、设备精度不良均容易造成大机拨道作业效果不佳,需在拨道方案制定过程中加强对这些因素的控制和管理;通过在轨向平顺性控制中引入拨道量调整系数,并有效控制中长波不平顺、拨道量限值等参数,可提高计算模型对捣固车固有作业特性的适应能力;基于该方法制定了某作业区段的拨道方案,方案满足轨道平顺性管理要求,符合大机作业特点;采用该方案实施作业后,轨向30 m矢距差降至2 mm,300 m矢距差降至7 mm,降幅分别达到50%和48%;静态轨道质量指数由0.89降至0.64,降幅28%,实践证明提出的轨向平顺性控制方法可有效提升高速铁路有砟轨道平顺性。

     

  • 图  1  案例一捣固数据分析

    Figure  1.  Tamping data analysis in case 1

    图  2  案例二捣固数据分析

    Figure  2.  Tamping data analysis in case 2

    图  3  案例三捣固数据分析

    Figure  3.  Tamping data analysis in case 3

    图  4  各方案拨道量顺坡率

    Figure  4.  Slope rates of lining values of each case

    图  5  作业前后轨向平顺性

    Figure  5.  Track alignment irregularities before and after operation

    图  6  拨道量分布

    Figure  6.  Distribution of lining values

    图  7  拨道量散点拟合结果

    Figure  7.  Scatter points fitting results of lining values

    图  8  大机作业效果评价

    Figure  8.  Evaluation of large machine operation effect

    图  9  拨道方案数据分析

    Figure  9.  Data analysis of lining plan

    图  10  作业前后平面偏差对比

    Figure  10.  Comparison of plane deviations before and after operation

    图  11  方案与实际拨道量对比

    Figure  11.  Comparison of calculated and actual lining values

    图  12  作业效果评价

    Figure  12.  Effect evaluation of operation

    图  13  作业前后中长波平顺性对比

    Figure  13.  Medium-long wavelength irregularity comparison before and after operation

    图  14  作业区段TQI改善效果分析

    Figure  14.  Analysis of TQI improvement effect at operation sections

    图  15  静态TQI值统计结果

    Figure  15.  Statistics results of static TQI values

    表  1  各编号大机拨道量调整系数

    Table  1.   Adjustment coefficients of lining value of each numbered machine

    大机编号 缩放系数 波动系数/
    mm
    决定系数 累积里程/
    km
    斜率 截距/
    mm
    1 0.97 0.69 0.82 23.80 1.04 -0.71
    2 1.35 1.90 0.72 18.20 0.74 -1.41
    3 0.97 2.05 0.47 14.40 1.03 -2.10
    4 0.74 -1.42 0.59 16.80 1.35 1.92
    下载: 导出CSV

    表  2  拨道方案统计结果

    Table  2.   Statistics result of lining plan

    类别 最大值 最小值 平均值
    目标值10 m矢高/mm 0.04 0.00 0.01
    目标值30 m矢距差/mm 0.10 0.40 0.02
    目标值300 m矢距差/mm 2.20 -2.20 0.31
    拨道量/mm 15.00 0.00 3.40
    拨道量顺坡率/‰ 1.00 0.00 3.00×10-7
    拨道量方向变化率/% 2.30
    下载: 导出CSV

    表  3  作业前后平顺性

    Table  3.   Irregularities before and after operation

    类别 作业前 作业后
    最值 均值 最值 均值
    10 m矢高/mm 2.00 0.50 1.80 0.42
    30 m矢距差/mm 4.00 0.80 2.00 0.60
    300 m矢距差/mm 13.50 2.00 7.00 1.30
    TQI均值 0.89 0.64
    下载: 导出CSV
  • [1] 徐伟昌. 大型养路机械捣固作业轨道质量评价指数研究[J]. 铁道建筑, 2014, 54(7): 139-142. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201407041.htm

    XU Wei-chang. Study on track quality evaluation index for tamping operation of large-type maintenance machine[J]. Railway Engineering, 2014, 54(7): 139-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201407041.htm
    [2] 杨飞, 钟进军, 尤明熙, 等. 大型养护机械捣固作业效果评价指标及方法研究[J]. 铁道标准设计, 2018, 62(12): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201812007.htm

    YANG Fei, ZHONG Jin-jun, YOU Ming-xi, et al. Research on the effect evaluation index and method for large maintenance machine operation[J]. Railway Standard Design, 2018, 62(12): 28-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201812007.htm
    [3] ILINYKH A, MANAKOV A, ABRAMOV A, et al. Quality assurance and control system for railway track tamping[J]. MATEC Web of Conferences, 2018, 216: 03004. doi: 10.1051/matecconf/201821603004
    [4] RHAYMA N, BRESSOLETTE P, BREUL P, et al. Reliability analysis of maintenance operations for railway tracks[J]. Reliability Engineering and System Safety, 2013, 114: 12-25. doi: 10.1016/j.ress.2012.12.007
    [5] 王胜, 潘亚嘉, 丁坤, 等. DCL2-32型连续式捣固车连续作业模式拨道修正值分析[J]. 铁道建筑, 2011, 51(7): 138-139. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201107047.htm

    WANG Sheng, PAN Ya-jia, DING Kun, et al. Analysis of correction value of horizontal adjustment in continuous operation mode of DCL2-32 continuous tamping machine[J]. Railway Engineering, 2011, 51(7): 138-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201107047.htm
    [6] 木东升, 周宇, 韩延彬, 等. 轨道综合作业对高速铁路有砟轨道几何不平顺改善效果[J]. 交通运输工程学报, 2018, 18(5): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201805011.htm

    MU Dong-sheng, ZHOU Yu, HAN Yan-bin, et al. Effect of track comprehensive maintenance on geometry irregularity improvement of ballast track in high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 90-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201805011.htm
    [7] AUDLEY M, ANDREWS J D. The effects of tamping on railway track geometry degradation[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2013, 227(4): 376-391. doi: 10.1177/0954409713480439
    [8] SOLEIMANMEIGOUNI I, AHMADI A, ARASTEH KHOUY I, et al. Evaluation of the effect of tamping on the track geometry condition: a case study[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(2): 408-420. doi: 10.1177/0954409716671548
    [9] 郑瑶, 董为民, 周陶勇, 等. 道砟级配对捣固的效果影响及其参数优化[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(5): 937-941. doi: 10.3963/j.issn.2095-3844.2019.05.027

    ZHENG Yao, DONG Wei-min, ZHOU Tao-yong, et al. Influence of ballast grading on tamping effect and parameter optimization[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2019, 43(5): 937-941. (in Chinese) doi: 10.3963/j.issn.2095-3844.2019.05.027
    [10] 王卫东, 宋善义, 颜海建, 等. 不同捣固阶段有砟道床阻力特性试验研究[J]. 中南大学学报(自然科学版), 2018, 49(8): 2003-2008. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201808021.htm

    WANG Wei-dong, SONG Shan-yi, YAN Hai-jian, et al. Experimental study on resistance characteristics of ballast bed in different stamping stages[J]. Journal of Central South University (Science and Technology), 2018, 49(8): 2003-2008. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201808021.htm
    [11] 张亚晴, 许平, 周陶勇, 等. 捣固参数对道床密实度的影响研究[J]. 交通科学与工程, 2019, 35(2): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJX201902003.htm

    ZHANG Ya-qing, XU Ping, ZHOU Tao-yong, et al. Study on the effect of tamping parameters on compactness of the ballast bed for the high-speed railway[J]. Journal of Transport Science and Engineering, 2019, 35(2): 11-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJX201902003.htm
    [12] LIU Jian-xing, WANG Ping, LIU Gan-zhong, et al. Influence of a tamping operation on the vibrational characteristics and resistance-evolution law of a ballast bed[J]. Construction and Building Materials, 2020, 239: 117879.
    [13] 何国华, 牛怀军, 高春雷, 等. 捣固车曲线激光准直系统的研制[J]. 铁道建筑, 2014, 54(1): 103-105. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201401030.htm

    HE Guo-hua, NIU Huai-jun, GAO Chun-lei, et al. Development of laser collimation system for curve of tamping machine[J]. Railway Engineering, 2014, 54(1): 103-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201401030.htm
    [14] 申彦军, 岑敏仪, 江来伟, 等. 高速铁路有砟轨道精调方案评价方法探讨[J]. 测绘与空间地理信息, 2020, 43(5): 131-135, 139. https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH202005037.htm

    SHEN Yan-jun, CEN Min-yi, JIANG Lai-wei, et al. Discussion on evaluation method of fine-tuning scheme for ballasted track of high-speed railway[J]. Geomatics and Spatial Information Technology, 2020, 43(5): 131-135, 139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH202005037.htm
    [15] WEN Min, LI Rui, BANG SALLING K. Optimization of preventive condition-based tamping for railway tracks[J]. European Journal of Operational Research, 2016, 252(2): 455-465.
    [16] 时瑾, 张雨潇, 陈云峰, 等. 基于长波平顺性的提速线路精捣方案优化算法及应用[J]. 铁道学报, 2022, 44(2): 72-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202202010.htm

    SHI Jin, ZHANG Yu-xiao, CHEN Yun-feng, et al. Optimization algorithm and application of precise tamping for speed raising railway based on long-wave regularity[J]. Journal of the China Railway Society, 2022, 44(2): 72-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202202010.htm
    [17] 时瑾, 张雨潇, 楼梁伟, 等. 新建高速铁路有砟轨道精捣作业环节改进及效果[J]. 中国铁道科学, 2021, 42(6): 8-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202106002.htm

    SHI Jin, ZHANG Yu-xiao, LOU Liang-wei, et al. Optimization and effect of accurate tamping operation link for ballasted track in newly-built high-speed railway[J]. China Railway Science, 2021, 42(6): 8-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202106002.htm
    [18] 王英杰, 楚杭, 时瑾, 等. 有砟高铁大机捣固质量相关性及敏感波长研究[J]. 铁道工程学报, 2021, 38(1): 37-41, 108. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202101007.htm

    WANG Ying-jie, CHU Hang, SHI Jin, et al. Research on the machine tamping quality correlation and sensitive wavelengths of high speed railway ballasted track[J]. Journal of Railway Engineering Society, 2021, 38(1): 37-41, 108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202101007.htm
    [19] LI Yang-teng-long, CEN Min-yi. A method of integer programming for track fine adjustment[C]//SPIE. Sixth International Conference on Electronics and Information Engineering. Washington DC: SPIE, 2015: 97940D.
    [20] 李阳腾龙, 岑敏仪, 马国治. 高速铁路轨道中长波不平顺检测模型研究[J]. 铁道学报, 2017, 39(2): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201702016.htm

    LI Yang-teng-long, CEN Min-yi, MA Guo-zhi. Study on a novel inspection model of middle and long wave irregularities of track in high-speed railways[J]. Journal of the China Railway Society, 2017, 39(2): 112-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201702016.htm
    [21] 李阳腾龙. 高速铁路轨道精测精调及其平顺性优化研究[J]. 测绘学报, 2018, 47(11): 1562. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201811019.htm

    LI Yang-teng-long. Study on track precise inspection and adjustment as well as its regularity optimization for high-speed railways[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11): 1562. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201811019.htm
    [22] 魏晖, 朱洪涛, 赵国堂, 等. 基于中点弦测模型的无砟轨道精调量迭代求解[J]. 西南交通大学学报, 2015, 50(1): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201501020.htm

    WEI Hui, ZHU Hong-tao, ZHAO Guo-tang, et al. Iterative algorithm of HSR ballastless track realignment calculation based on MCO model[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 131-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201501020.htm
    [23] 魏晖, 吴仕凤, 朱洪涛. 基于相对测量调轨的高速铁路有砟线路整道技术研究[J]. 铁道标准设计, 2013, 57(8): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201308002.htm

    WEI Hui, WU Shi-feng, ZHU Hong-tao. Research on ballast trimming technology based on relative measurement method for ballast track of high-speed railway[J]. Railway Standard Design, 2013, 57(8): 11-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201308002.htm
    [24] 魏晖, 魏昱, 朱洪涛. 正矢差闭合的曲线轨道拨距计算方法[J]. 铁道科学与工程学报, 2019, 16(7): 1637-1644. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201907005.htm

    WEI Hui, WEI Yu, ZHU Hong-tao. A throw algorithm with versine difference closure for track curve realignment[J]. Journal of Railway Science and Engineering, 2019, 16(7): 1637-1644. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201907005.htm
    [25] CHEN Qi-jin, NIU Xiao-ji, ZUO Li-li, et al. A railway track geometry measuring trolley system based on aided INS[J]. Sensors, 2018, 18(2): 538.
    [26] 李再帏, 雷晓燕, 高亮. 轨道短波不平顺数值模拟新方法[J]. 交通运输工程学报, 2016, 16(1): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201601007.htm

    LI Zai-wei, LEI Xiao-yan, GAO Liang. New numerical simulation method of shortwave track irregularity[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 37-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201601007.htm
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  354
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-28
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回