Control method for insufficient displacement of switch rail in high-speed railway turnout
-
摘要: 为模拟运营条件下高速铁路道岔转辙器的转换过程,根据高速铁路道岔转辙器的转换特点,在道岔生产车间内建立了客专线18号道岔转辙器转换原型试验平台,采用轴销式称重传感器测量转辙器扳动力,以直、曲尖轨支距实际值与理论值之差为尖轨不足位移;通过转辙器转换试验探索了尖轨预弯、尖轨可动段长度、尖轨固定端扣件支距、滑床板摩擦因数、辊轮高度等因素对尖轨不足位移的影响机制和特征。试验结果表明:现有设计尖轨预弯可使尖轨不足位移下降30%以上;缩短尖轨可动段长度可减小尖轨不足位移,但同时会减小转辙器最小轮缘槽宽,并增大第3牵引点扳动力,尖轨最小轮缘槽宽和最后一个牵引点扳动力是缩短尖轨可动段长度的控制因素;小范围调整固定端所有扣件支距后,尖轨不足位移变化较小,仅减小固定端第1组扣件支距时,尖轨靠近固定端1.2 m范围内不足位移略有降低,其余部分不足位移变化较小;在滑床板上安装辊轮或涂覆润滑剂等减小尖轨与滑床板摩擦因数的措施可有效降低尖轨扳动力和不足位移,实施减摩措施后,扳动力减幅约为30%,不足位移减幅超过20%;改变辊轮高度对尖轨不足位移的影响并不明显,但辊轮高度不宜过低,以防转换过程中辊轮失效导致扳动力和不足位移激增。研究结果可为高速铁路道岔转辙器结构优化和新一代400 km·h-1高速铁路道岔的研发提供参考。Abstract: To simulate the switching process of high-speed railway turnout switch under operating conditions, according to the switching characteristics of high-speed railway turnout switch, an experimental platform of the switching prototype of passenger dedicated railway No.18 turnout switch was established in a production workshop of turnout. The shaft pin type load cell was used to measure the switching force of the switch, and the difference between the actual and theoretical offset distances of straight and curved switch rails was taken as the insufficient displacement of switch rails. Switching experiments were carried out to explore the influence mechanism and characteristics of switch rail pre-bending, movable section length of switch rail, offset distance of fasteners at the fixed end of switch rail, friction coefficient of slide plate, and height of roller on the insufficient displacement of switch rail. Experimental results show that the designed switch rail pre-bending can reduce the insufficient displacement of switch rail by more than 30%, and the shortening of the movable section length of switch rail can reduce the insufficient displacement of switch rail, but decrease the minimum wheel flangeway width of the switch and increase the switching force at the third traction point. The minimum wheel flangeway width of swith rail and the switching force at the last traction point are the control factors for shortening the movable section length of switch rail. After the adjustment of the offset distances of all fasteners at the fixed end in a small range, the change of insufficient displacement of switch rail is small. When only reducing the offset distance of the first group of fasteners at the fixed end, the insufficient displacement of switch rail decreases slightly within the range of 1.2 m close to the fixed end, and the insufficient displacements at other sections change slightly. The measures of reducing the friction coefficient between the switch rail and the slide plate, such as the roller installation and lubricant coating on the slide plate, can effectively reduce the switching force and insufficient displacement of switch rail. After the implementation of these antifriction measures, the switching force decreases by about 30%, and the insufficient displacement decreases by more than 20%. The influence of changing the height of roller on the insufficient displacement of switch rail is not obvious, but the height of roller should not be too low, in order to avoid a surge in the switching force and insufficient displacement caused by the failure of roller in the switching process. The research results can provide important references for the structure optimization of high-speed railway turnout switch and the development of a new generation of 400 km·h-1 high-speed railway turnout. 7 tabs, 20 figs, 31 refs.
-
Key words:
- high-speed railway /
- turnout /
- switch rail /
- insufficient displacement /
- switching force
-
表 1 预弯前后尖轨不足位移变化规律
Table 1. Change laws of insufficient displacements of switch rail before and after pre-bending
mm 工况 无预弯 预弯 直尖轨 最大值 3.0 2.0 均值 2.1 1.3 曲尖轨 最大值 4.5 3.1 均值 2.8 2.1 表 2 不同可动段长度条件下尖轨不足位移变化规律
Table 2. Change laws of insufficient displacements of switch rail under different movable section lengths
工况 +3 +2 +1 0 -1 -2 可动段长度/m 16.945 17.545 18.145 18.745 19.345 19.945 直尖轨不足位移/mm 峰值 2.8 3.2 3.2 3.5 3.9 4.9 均值 2.0 2.3 2.3 2.5 2.7 3.8 曲尖轨不足位移/mm 峰值 1.6 2.1 3.4 3.6 4.0 4.6 均值 1.1 1.3 2.1 2.6 2.4 3.1 表 3 全部扣件支距调整后尖轨不足位移变化规律
Table 3. Change laws of insufficient displacements of switch rail after offset distance adjustment of all fasteners
mm 工况 设计值减小1 mm 设计值 设计值增加1 mm 直尖轨不足位移 最大值 3.6 3.5 3.8 均值 2.5 2.8 2.8 曲尖轨不足位移 最大值 4.8 4.9 5.0 均值 3.2 3.0 3.2 表 4 第1组扣件支距调整后尖轨不足位移变化规律
Table 4. Change laws of insufficient displacements of switch rail after offset distance adjustment of first group of fasteners
mm 工况 设计值减小1 mm 设计值 直尖轨不足位移 最大值 2.6 2.6 均值 1.9 2.0 曲尖轨不足位移 最大值 4.3 4.4 均值 2.7 2.9 表 5 有无辊轮条件下尖轨不足位移变化规律
Table 5. Change laws of insufficient displacements of switch rail with or without roller
mm 工况 有辊轮 无辊轮 直尖轨不足位移 最大值 2.3 3.1 均值 1.7 2.4 曲尖轨不足位移 最大值 3.7 4.7 均值 2.6 3.2 表 6 有无润滑剂条件下尖轨不足位移变化规律
Table 6. Change laws of insufficient displacements of switch rail with or without lubricant
mm 工况 涂覆润滑剂 未涂润滑剂 直尖轨不足位移 最大值 3.7 5.2 均值 2.8 3.9 曲尖轨不足位移 最大值 4.4 5.7 均值 2.8 3.8 表 7 不同辊轮高度条件下尖轨不足位移变化规律
Table 7. Change laws of insufficient displacements of switch rail under different roller heights
工况 靠近基本轨侧辊轮高度/远离基本轨侧辊轮高度/mm 1.5/1.5 1.5/3.0 1.5/4.0 4.0/4.0 直尖轨不足位移 最大值 2.6 2.7 2.6 2.7 均值 2.1 2.0 2.0 2.1 曲尖轨不足位移 最大值 4.5 4.6 4.9 4.1 均值 2.9 3.1 3.1 2.8 -
[1] 蔡小培, 李成辉, 王平. 滑床板摩擦力对尖轨不足位移的影响[J]. 中国铁道科学, 2007, 28(1): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200701001.htmCAI Xiao-pei, LI Cheng-hui, WANG Ping. Effect on the scant displacement of switch rail induced by friction of slide baseplate[J]. China Railway Science, 2007, 28(1): 8-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200701001.htm [2] 蔡小培, 李成辉. 不足位移对高速道岔动力特性的影响[J]. 铁道学报, 2011, 33(7): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201107016.htmCAI Xiao-pei, LI Cheng-hui. Influence of scant displacement on dynamic characteristics of high-speed turnout[J]. Journal of the China Railway Society, 2011, 33(7): 86-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201107016.htm [3] 王平, 陈嵘, 徐井芒, 等. 高速铁路道岔系统理论与工程实践研究综述[J]. 西南交通大学学报, 2016, 51(2): 357-372. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602016.htmWANG Ping, CHEN Rong, XU Jing-mang, et al. Theories and engineering practices of high-speed railway turnout system: survey and review[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 357-372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602016.htm [4] 卢祖文. 高速铁路轨道技术综述[J]. 铁道工程学报, 2007, 24(1): 41-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200701006.htmLU Zu-wen. Overall comments on track technology of high-speed railway[J]. Journal of Railway Engineering Society, 2007, 24(1): 41-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200701006.htm [5] 王树国, 顾培雄. 客运专线道岔技术研究[J]. 中国铁路, 2007(8): 21-24, 28. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG200708008.htmWANG Shu-guo, GU Pei-xiong. Study on technologies of turnout for PDL[J]. Chinese Railways, 2007(8): 21-24, 28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG200708008.htm [6] 何华武. 时速250 km级18号道岔设计理论与试验研究[J]. 铁道学报, 2007, 29(1): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200701014.htmHE Hua-wu. Research on the design theories and experiments of the 18# turnout under 250 km/h[J]. Journal of the China Railway Society, 2007, 29(1): 66-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200701014.htm [7] 郭福安. 我国高速道岔技术体系[J]. 中国铁路, 2011(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201104001.htmGUO Fu-an. Chinese high-speed turnout technology system[J]. Chinese Railways, 2011(4): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201104001.htm [8] JIN Xue-song. Key problems faced in high-speed train operation[J]. Journal of Zhejiang University—Science A (Applied Physics and Engineering), 2014, 15(12): 936-945. [9] 王平, 陈嵘, 陈小平. 高速铁路道岔设计关键技术[J]. 西南交通大学学报, 2010, 45(1): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201001006.htmWANG Ping, CHEN Rong, CHEN Xiao-ping. Key technologies in high-speed railway turnout design[J]. Journal of Southwest Jiaotong University, 2010, 45(1): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201001006.htm [10] 王树国, 葛晶, 王猛, 等. 高速道岔关键技术试验研究[J]. 铁道学报, 2015, 37(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201501016.htmWANG Shu-guo, GE Jing, WANG Meng, et al. Experimental study on key technologies of high-speed turnout[J]. Journal of the China Railway Society, 2015, 37(1): 77-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201501016.htm [11] 王平. 多点牵引时道岔扳动力计算与分析[J]. 铁道标准设计, 2002, 46(2): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200202008.htmWANG Ping. Computation and analysis of the switching power by multipoint traction[J]. Railway Standard Design, 2002, 46(2): 23-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200202008.htm [12] WANG Ping, CHEN Rong, XU Hao. Conversion and its deviation control of electric switch machine of high speed railway turnout[J]. Journal of Vibroengineering, 2013, 15(3): 1513-1525. [13] 刘语冰. 弹性可弯尖轨双牵引点的扳动力计算[J]. 铁道标准设计, 1993, 37(1): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS199301002.htmLIU Yu-bing. Switching force calculation of flexible switch rail with two switching machines[J]. Railway Standard Design, 1993, 37(1): 12-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS199301002.htm [14] 井国庆. 18号可动心轨道岔心轨不足位移仿真分析[D]. 成都: 西南交通大学, 2006.JING Guo-qing. Analysis of No. 18 moveable-turnout insufficient displacement[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese) [15] 井国庆, 李成辉. 18号可动心轨道岔不足位移的ANSYS仿真分析[J]. 铁道建筑, 2007, 47(4): 108-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200704044.htmJING Guo-qing, LI Cheng-hui. ANSYS simulation analysis of No. 18 moveable-turnout insufficient displacement[J]. Railway Engineering, 2007, 47(4): 108-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200704044.htm [16] 何乐平. 42号道岔可动心轨扳动力及不足位移分析[D]. 成都: 西南交通大学, 2006.HE Le-ping. Analysis on switching force and inadequate displacement of No. 42 moveable-turnout[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese) [17] 何乐平, 李成辉. 滑床台摩擦系数对双肢弹性可弯心轨扳动力及不足位移影响的计算分析[J]. 铁道建筑, 2006, 46(7): 88-90. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200607036.htmHE Le-ping, LI Cheng-hui. Calculation and analysis of influence of friction coefficient of sliding bed on force and insufficient displacement of double leg elastic bendable center rail[J]. Railway Engineering, 2006, 46(7): 88-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200607036.htm [18] 蔡小培, 李成辉. 高速道岔心轨扳动力和不足位移控制研究[J]. 铁道学报, 2008, 30(2): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200802011.htmCAI Xiao-pei, LI Cheng-hui. Study on controlling the switching force and scant displacement of the point rail of the high speed turnout[J]. Journal of the China Railway Society, 2008, 30(2): 48-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200802011.htm [19] 蔡小培. 高速道岔尖轨与心轨转换及控制研究[D]. 成都: 西南交通大学, 2008.CAI Xiao-pei. A study on the switching and its controlling of the switch and nose rails in high-speed turnout[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese) [20] 徐井芒, 王平, 谢铠泽, 等. 可动心轨道岔转换结构动力学特性研究[J]. 铁道科学与工程学报, 2014, 11(1): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201401006.htmXU Jing-mang, WANG Ping, XIE Kai-ze, et al. Analysis on the dynamic characteristics of turnout switching equipment[J]. Journal of Railway Science and Engineering, 2014, 11(1): 29-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201401006.htm [21] 王平. 道岔区轮轨系统空间耦合振动模型及其应用[J]. 西南交通大学学报, 1998, 33(3): 284-289. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT803.009.htmWANG Ping. A spatial coupling model for railway turnouts and its application[J]. Journal of Southwest Jiaotong University, 1998, 33(3): 284-289. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT803.009.htm [22] 曾瑞东, 王树国, 王璞, 等. 跟端轨底刨切对尖轨转换影响的有限元分析[J]. 铁道建筑, 2019, 59(2): 140-142, 146. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201902033.htmZENG Rui-dong, WANG Shu-guo, WANG Pu, et al. FEM simulation analysis about influence of rail bottom slicing on switch rail transformation[J]. Railway Engineering, 2019, 59(2): 140-142, 146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201902033.htm [23] DUTTA S, HARRISON T, WARD C P, et al. A new approach to railway track switch actuation: dynamic simulation and control of a self-adjusting switch[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(7): 779-790. doi: 10.1177/0954409719868129 [24] 司道林, 赵振华, 王树国, 等. 新型50 kg·m-1钢轨9号道岔尖轨转换特性研究[J]. 中国铁道科学, 2021, 42(4): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202104004.htmSI Dao-lin, ZHAO Zhen-hua, WANG Shu-guo, et al. Study on switching characteristics of switch rail for No. 9 turnout of new 50 kg·m-1 rail[J]. China Railway Science, 2021, 42(4): 27-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202104004.htm [25] 马欢, 王成伟. 道岔尖轨不足位移试验分析及控制[J]. 铁道技术监督, 2017, 45(5): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJJ201705013.htmMA Huan, WANG Cheng-wei. Experimental analysis and control of inadequate displacement of turnout switch rail[J]. Railway Quality Control, 2017, 45(5): 41-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJJ201705013.htm [26] 车伟, 张彦. 60 kg/m钢轨18号(Vz200)可动心轨单开道岔的研制[J]. 铁道标准设计, 2006, 50(增1): 177-178. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS2006S1051.htmCHE Wei, ZHANG Yan. Development of 18# (Vz200) movable-point lateral turnouts in 60 kg/m steel track[J]. Railway Standard Design, 2006, 50(S1): 177-178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS2006S1051.htm [27] 王平, 马晓川, 王健, 等. 差动装置对高速道岔尖轨不足位移的影响[J]. 铁道工程学报, 2015, 32(11): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201511009.htmWANG Ping, MA Xiao-chuan, WANG Jian, et al. Effect on the scant displacement of switch rail of high-speed turnout by the differential motion device[J]. Journal of Railway Engineering Society, 2015, 32(11): 43-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201511009.htm [28] 闫秋吉, 孙晓勇, 杨树仁, 等. 尖轨不足位移弹簧分动装置方案探讨[J]. 铁道通信信号, 2017, 53(1): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TDTH201701009.htmYAN Qiu-ji, SUN Xiao-yong, YANG Shu-ren, et al. Study of spring transfer drive device for scant displacement of switch rail[J]. Railway Signalling and Communication, 2017, 53(1): 28-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDTH201701009.htm [29] 徐井芒, 王平, 陈嵘, 等. 高速道岔转换锁闭结构力学特性[J]. 西南交通大学学报, 2013, 48(4): 702-707. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201304017.htmXU Jing-mang, WANG Ping, CHEN Rong, et al. Mechanical properties of high-speed turnout switching and locking device[J]. Journal of Southwest Jiaotong University, 2013, 48(4): 702-707. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201304017.htm [30] 沈巍, 崔冬芳, 史玉杰. 自润滑道岔滑床板的研制[J]. 中国铁道科学, 1998, 19(4): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK804.013.htmSHEN Wei, CUI Dong-fang, SHI Yu-jie. Research and manufacture of self-lubricating switchglide[J]. China Railway Science, 1998, 19(4): 103-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK804.013.htm [31] 罗雁云, 许玉德, 耿传智. 干摩擦道岔尖轨滑床板研究[J]. 上海铁道大学学报, 1998, 19(10): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SHTY810.006.htmLUO Yan-yun, XU Yu-de, GENG Chuan-zhi. Investigation of dry bearings in railway switch slide baseplate[J]. Journal of Shanghai Tiedao University, 1998, 19(10): 37-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHTY810.006.htm