留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过度磨耗钢轨的打磨廓形设计方法

林凤涛 邓卓鑫 庞华飞 王松涛 杨建 丁军君 陈道云

林凤涛, 邓卓鑫, 庞华飞, 王松涛, 杨建, 丁军君, 陈道云. 过度磨耗钢轨的打磨廓形设计方法[J]. 交通运输工程学报, 2022, 22(2): 111-122. doi: 10.19818/j.cnki.1671-1637.2022.02.008
引用本文: 林凤涛, 邓卓鑫, 庞华飞, 王松涛, 杨建, 丁军君, 陈道云. 过度磨耗钢轨的打磨廓形设计方法[J]. 交通运输工程学报, 2022, 22(2): 111-122. doi: 10.19818/j.cnki.1671-1637.2022.02.008
LIN Feng-tao, DENG Zhuo-xin, PANG Hua-fei, WANG Song-tao, YANG Jian, DING Jun-jun, CHEN Dao-yun. Design method of grinding profile of over worn rail[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 111-122. doi: 10.19818/j.cnki.1671-1637.2022.02.008
Citation: LIN Feng-tao, DENG Zhuo-xin, PANG Hua-fei, WANG Song-tao, YANG Jian, DING Jun-jun, CHEN Dao-yun. Design method of grinding profile of over worn rail[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 111-122. doi: 10.19818/j.cnki.1671-1637.2022.02.008

过度磨耗钢轨的打磨廓形设计方法

doi: 10.19818/j.cnki.1671-1637.2022.02.008
基金项目: 

国家自然科学基金项目 51865009

国家自然科学基金项目 52065021

江西省自然科学基金项目 20202BABL214028

江西省自然科学基金项目 20212BBE53024

江西省主要学科与技术领军人才培养计划项目 20213BCJL22040

江西省研究生创新专项资金项目 YC2021-S423

详细信息
    作者简介:

    林凤涛(1977-),男,内蒙古赤峰人,华东交通大学教授,工学博士,从事轮轨关系研究

  • 中图分类号: U211.5

Design method of grinding profile of over worn rail

Funds: 

National Natural Science Foundation of China 51865009

National Natural Science Foundation of China 52065021

Natural Science Foundation of Jiangxi Province 20202BABL214028

Natural Science Foundation of Jiangxi Province 20212BBE53024

Major Disciplines and Technology Leading Talents Training Program of Jiangxi Province 20213BCJL22040

Special Fund Project for Postgraduate Innovation of Jiangxi Province YC2021-S423

More Information
  • 摘要: 针对过度磨耗钢轨的打磨,提出一种以圆弧切点为关键参数的钢轨廓形设计方法;以轮轨接触位置为优化区域,以钢轨磨耗和打磨材料去除量作为优化目标函数,以廓形边界范围、凹凸性、脱轨系数和轮轨横向力为约束条件,建立磨耗钢轨打磨设计廓形多目标函数;集成多元模拟退火寻优算法进行求解;为了得到能代表重载线路曲线区段的钢轨廓形,作为优化的输入数据,采用最小二乘距离算法、算术平均算法、加权平均算法和散点重构算法得出4种钢轨代表廓形;使用Pearson相关系数、Kendall秩相关系数和Spearman秩相关系数计算出4种算法的钢轨代表廓形与实测廓形接触点概率分布曲线的相关性,取相关性最高的代表廓形为等效重载线路曲线区段的实际廓形;对某重载线路过度磨耗钢轨的经济性打磨廓形以及采用圆弧型廓形设计方法的优化廓形进行分析。分析结果表明:优化廓形与现场打磨廓形相较,截面廓形磨削量减少69.56 mm2,下降64.98%,脱轨系数小幅增大,轮轨横向力基本不变,轮对横移变化较小,曲线通过性能相近,80万次通过量下的磨耗面积增加2.19 mm2,钢轨的磨耗速率略微增大,整体仍延长了钢轨寿命。

     

  • 图  1  某重载线路曲线区段实测廓形

    Figure  1.  Measured profile of curve section of a heavy haul railway

    图  2  曲线区段钢轨廓形采集点位

    Figure  2.  Acquisition points of rail profile in curve section

    图  3  曲线段上股钢轨实测廓形

    Figure  3.  Rail profiles measured in external curve section

    图  4  各算法所得代表廓形

    Figure  4.  Representative profiles obtained by each algorithm

    图  5  轮轨接触点在钢轨上的概率分布曲线

    Figure  5.  Probability distribution curves of wheel-rail contact points on rail

    图  6  圆弧型曲线优化区域

    Figure  6.  Optimization zone of arc curve

    图  7  钢轨廓形上下边界约束范围

    Figure  7.  Constraint ranges of upper and lower boundaries of rail profile

    图  8  优化流程中圆弧型廓形曲线

    Figure  8.  Circular arc profile curves in optimization process

    图  9  全局最优解与局部最优解廓形曲线

    Figure  9.  Profile curves of global optimal solution and local optimal solution

    图  10  优化前后钢轨廓形曲线

    Figure  10.  Rail profile curves before and after optimization

    图  11  轮轨接触点分布

    Figure  11.  Distribution of wheel-rail contact points

    图  12  等效锥度曲线

    Figure  12.  Equivalent conicity curves

    图  13  优化前后脱轨系数变化曲线

    Figure  13.  Variation curves of derailment coefficient before and after optimization

    图  14  优化前后轮轨横向力变化曲线

    Figure  14.  Variation curves of wheel-rail lateral force before and after optimization

    图  15  优化前后轮对横移变化曲线

    Figure  15.  Variation curves of lateral displacement of wheelset before and after optimization

    图  16  磨耗后Rgrind及累计磨耗

    Figure  16.  Rgrind after wear and cumulative wear

    图  17  磨耗后Ropt及累计磨耗

    Figure  17.  Ropt after wear and cumulative wear

    表  1  曲线区段代表廓形接触点分布相关系数

    Table  1.   Correlations coefficient of distribution of representative profile contact points in curve section

    算法 Pearson
    相关系数
    Kendall
    秩相关系数
    Spearman
    秩相关系数
    相关系数平均值
    算术平均算法 0.877 0.726 0.836 0.813
    最小二乘距离算法 0.806 0.507 0.591 0.635
    加权平均算法 0.619 0.525 0.632 0.592
    散点重构算法 0.622 0.736 0.837 0.732
    下载: 导出CSV

    表  2  钢轨廓形构成元素

    Table  2.   Elements of rail profiles

    钢轨廓形 构成元素 车轮接触部位 廓形轨顶半径/mm 轨头/ mm
    CN60 5段圆弧,2段直线 R300、R80、R13 300 70.78
    60N 7段圆弧,2段直线 R200、R60、R16 200 70.52
    CN75 7段圆弧,2段直线 R200、R50、R16 200 71.96
    UIC54 5段圆弧,2段直线 R300、R80、R13 300 69.92
    UIC60 5段圆弧,2段直线 R300、R80、R13 300 72.02
    美标68 5段圆弧,2段直线 R254、R31.75、R14.29 254 70.40
    下载: 导出CSV

    表  3  局部最优解与全局最优解目标函数f(T)及约束限值

    Table  3.   Objective function f(T) and constraint limit value of local optimal solution and global optimal solution

    迭代次数 预测磨耗/mm2 金属磨削量/mm2 f(T)归一值 上下界 凹凸性 脱轨系数 轮轨横向力/kN
    50 13.35 115.27 0.846 符合 符合 0.257 40.6
    100 12.76 164.47 0.787 符合 符合 0.183 27.0
    150 13.16 109.79 0.524 符合 符合 0.181 27.6
    200 12.53 78.93 0.342 符合 符合 0.157 26.0
    300 12.65 37.49 0.286 符合 符合 0.141 23.4
    下载: 导出CSV
  • [1] WANG Jian-xi, CHEN Si-yi, LI Xiang-guo, et al. Optimal rail profile design for a curved segment of a heavy haul railway using a response surface approach[J]. Journal of Rail and Rapid Transit, 2016, 230(6): 1496-1508. doi: 10.1177/0954409715602513
    [2] MAGEL E, KALOUSEK J. The application of contact mechanics to rail profile design and rail grinding[J]. Wear, 2002, 253(1): 308-316.
    [3] MAGEL E, RONEY M, KALOUSEK J, et al. The blending of theory and practice in modern rail grinding[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26(10): 921-929. doi: 10.1046/j.1460-2695.2003.00669.x
    [4] SMALLWOOD R, SINCLAIR J C, SAWLEY K J. An optimization technique to minimize rail contact stresses[J]. Wear, 1991, 144(1/2): 373-384.
    [5] SATO Y. Design of rail head profiles with full use of grinding[J]. Wear, 1991, 144(1/2): 363-372.
    [6] GERLICI J, LACK T. Railway wheel and rail head profiles development based on the geometric characteristics shapes[J]. Wear, 2011, 271(1): 246-258.
    [7] 崔大宾, 李立, 金学松, 等. 铁路钢轨打磨目标型面研究[J]. 工程力学, 2011, 28(4): 178-184. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201104030.htm

    CUI Da-bin, LI Li, JIN Xue-song, et al. Study on rail goal profile by grinding[J]. Engineering Mechanics, 2011, 28(4): 178-184. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201104030.htm
    [8] 肖乾, 杨逸航, 黄碧坤. 基于轮轨滚动接触稳态特性优选客货列车共线铁路钢轨打磨廓形[J]. 中国铁道科学, 2016, 37(1): 17-23. doi: 10.3969/j.issn.1001-4632.2016.01.03

    XIAO Qian, YANG Yi-hang, HUANG Bi-kun. Optimal selection of rail grinding profile for passenger-freight line based on steady state characteristics of wheel-rail rolling contact[J]. China Railway Science, 2016, 37(1): 17-23. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.01.03
    [9] 毛鑫, 沈钢. 基于轮径差函数的曲线钢轨打磨廓形设计[J]. 同济大学学报(自然科学版), 2018, 46(2): 253-259. doi: 10.11908/j.issn.0253-374x.2018.02.017

    MAO Xin, SHEN Gang. Curved rail grinding profile design based on rolling radii difference function[J]. Journal of Tongji University (Natural Science), 2018, 46(2): 253-259. (in Chinese) doi: 10.11908/j.issn.0253-374x.2018.02.017
    [10] 周清跃, 刘丰收, 俞喆, 等. 我国铁路钢轨型面优化研究[J]. 中国铁路, 2017(12): 7-12, 34. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201712002.htm

    ZHOU Qing-yue, LIU Feng-shou, YU Zhe, et al. Study on the optimization of rail profile in China[J]. China Railway, 2017(12): 7-12, 34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201712002.htm
    [11] 张剑, 温泽峰, 孙丽萍, 等. 基于钢轨型面扩展法的车轮型面设计[J]. 机械工程学报, 2008, 44(3): 44-49. doi: 10.3321/j.issn:0577-6686.2008.03.008

    ZHANG Jian, WEN Ze-feng, SUN Li-ping, et al. Wheel profile design based on rail profile expansion method[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 44-49. (in Chinese) doi: 10.3321/j.issn:0577-6686.2008.03.008
    [12] 张剑, 王玉艳, 金学松, 等. 改善轮轨接触状态的车轮型面几何设计方法[J]. 交通运输工程学报, 2011, 11(1): 36-42. doi: 10.3969/j.issn.1671-1637.2011.01.007

    ZHANG Jian, WANG Yu-yan, JIN Xue-song, et al. Geometric design method of wheel profile for improving wheel and rail contact status[J]. Journal of Traffic and Transportation Engineering, 2011, 11(1): 36-42. (in Chinese) doi: 10.3969/j.issn.1671-1637.2011.01.007
    [13] 成棣, 王成国, 刘金朝, 等. 以圆弧参数为设计变量的车轮型面优化数学模型研究[J]. 中国铁道科学, 2011, 32(6): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201106018.htm

    CHENG Di, WANG Cheng-guo, LIU Jin-zhao, et al. Research on the mathematical model for wheel profile optimization with arc parameters as design variables[J]. China Railway Science, 2011, 32(6): 107-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201106018.htm
    [14] 王军平. 基于廓形打磨的小半径曲线钢轨磨耗控制方法研究[J]. 铁道学报, 2021, 43(1): 128-134. doi: 10.3969/j.issn.1001-8360.2021.01.016

    WANG Jun-ping. Research on rail wear control method based on profile grinding for sharp curve rail[J]. Journal of the China Railway Society, 2021, 43(1): 128-134. (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.01.016
    [15] 周清跃, 张建峰, 郭战伟, 等. 重载铁路钢轨的伤损及预防对策研究[J]. 中国铁道科学, 2010, 31(1): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201001007.htm

    ZHOU Qing-yue, ZHANG Jian-feng, GUO Zhan-wei, et al. Research on the rail damages and the preventive countermeasures in heavy haul railways[J]. China Railway Science, 2010, 31(1): 27-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201001007.htm
    [16] KAPOOR A, FLETCHER D I, FRANKLIN F J. The role of wear in enhancing rail life[J]. Tribology Series, 2003, 41(3): 331-340.
    [17] LI Xia, YANG Tao, ZHANG Jian, et al. Rail wear on the curve of a heavy haul line-numerical simulations and comparison with field measurements[J]. Wear, 2016(366): 131-138.
    [18] 王璞, 高亮, 蔡小培. 重载铁路钢轨磨耗演变过程的数值模拟[J]. 铁道学报, 2014, 36(10): 70-75. doi: 10.3969/j.issn.1001-8360.2014.10.012

    WANG Pu, GAO Liang, CAI Xiao-pei. Numerical simulation of rail wear evolution of heavy-haul railways[J]. Journal of the China Railway Society, 2014, 36(10): 70-75. (in Chinese) doi: 10.3969/j.issn.1001-8360.2014.10.012
    [19] 丁军君, 吴朋朋, 王军平, 等. 基于轮轨关系的钢轨打磨代表廓形计算方法研究[J]. 铁道学报, 2019, 41(7): 135-140. doi: 10.3969/j.issn.1001-8360.2019.07.017

    DING Jun-jun, WU Peng-peng, WANG Jun-ping, et al. Study on algorithm of representative profile for rail grinding based on wheel-rail relationship[J]. Journal of the China Railway Society, 2019, 41(7): 135-140. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.07.017
    [20] SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36(8): 1627-1639. doi: 10.1021/ac60214a047
    [21] HA V, HADDAWY P. Similarity of personal preferences: theoretical foundations and empirical analysis[J]. Artificial Intelligence, 2003, 146(2): 149-173. doi: 10.1016/S0004-3702(03)00013-4
    [22] SPEARMAN C. The proof and measurement of association between two things[J]. International Journal of Epidemiology, 2010, 39(5): 1137-1150. doi: 10.1093/ije/dyq191
    [23] ARCHARD J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8): 981-988. doi: 10.1063/1.1721448
    [24] 翟婉明, 陈果. 根据车轮抬升量评判车辆脱轨的方法与准则[J]. 铁道学报, 2001, 23(2): 17-26. doi: 10.3321/j.issn:1001-8360.2001.02.004

    ZHAI Wan-ming, CHEN Guo. Method and criteria for evaluation of wheel derailment based on wheel vertical rise[J]. Journal of the China Railway Society, 2001, 23(2): 17-26. (in Chinese) doi: 10.3321/j.issn:1001-8360.2001.02.004
    [25] BANDYOPADHYAY S, SAHA S, MAULIK U, et al. A simulated annealing-based multi-objective optimization algorithm: AMOSA[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(3): 269-283. doi: 10.1109/TEVC.2007.900837
    [26] 丁军君, 孙树磊, 李芾, 等. 重载货车车轮磨耗仿真[J]. 交通运输工程学报, 2011, 11(4): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201104008.htm

    DING Jun-jun, SUN Shu-lei, LI Fu, et al. Simulation of wheel wear for heavy haul freight car[J]. Journal of Traffic and Transportation Engineering, 2011, 11(4): 56-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201104008.htm
    [27] 杨春雷, 黄运华, 丁军君. 重载轨道曲线几何参数对轮轨耦合动力特性的影响[J]. 交通运输工程学报, 2021, 21(3): 215-227. doi: 10.19818/j.cnki.1671-1637.2021.03.014

    YANG Chun-lei, HUANG Yun-hua, DING Jun-jun. Influences of curve geometric parameters of heavy haul track on wheel/rail coupling dynamic characteristics[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 215-227. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.03.014
    [28] 张军, 贾小平, 孙传喜, 等. 磨耗车轮与曲线钢轨接触关系[J]. 交通运输工程学报, 2011, 11(3): 29-33. doi: 10.3969/j.issn.1671-1637.2011.03.006

    ZHANG Jun, JIA Xiao-ping, SUN Chuan-xi, et al. Contact relationship of wear wheel and curved rail l[J]. Journal of Traffic and Transportation Engineering, 2011, 11(3): 29-33. (in Chinese) doi: 10.3969/j.issn.1671-1637.2011.03.006
    [29] 董孝卿, 任尊松, 许自强, 等. 等效锥度曲线非线性特性及影响研究[J]. 铁道学报, 2018, 40(11): 91-97. doi: 10.3969/j.issn.1001-8360.2018.11.013

    DONG Xiao-qing, REN Zun-song, XU Zi-qiang, et al. Research on nonlinear characteristics and effect of equivalent conicity curve[J]. Journal of the China Railway Society, 2018, 40(11): 91-97. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.11.013
    [30] 寇杰, 张济民, 周和超, 等. 磨耗状态下城际动车组轮轨曲线磨耗特性[J]. 交通运输工程学报, 2021, 21(3): 279-288. doi: 10.19818/j.cnki.1671-1637.2021.03.020

    KOU Jie, ZHANG Ji-min, ZHOU He-chao, et al. Wheel-rail wear characteristics of intercity EMUs on curve in worn stages[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 279-288. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.03.020
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  673
  • HTML全文浏览量:  232
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回