-
摘要: 针对过度磨耗钢轨的打磨,提出一种以圆弧切点为关键参数的钢轨廓形设计方法;以轮轨接触位置为优化区域,以钢轨磨耗和打磨材料去除量作为优化目标函数,以廓形边界范围、凹凸性、脱轨系数和轮轨横向力为约束条件,建立磨耗钢轨打磨设计廓形多目标函数;集成多元模拟退火寻优算法进行求解;为了得到能代表重载线路曲线区段的钢轨廓形,作为优化的输入数据,采用最小二乘距离算法、算术平均算法、加权平均算法和散点重构算法得出4种钢轨代表廓形;使用Pearson相关系数、Kendall秩相关系数和Spearman秩相关系数计算出4种算法的钢轨代表廓形与实测廓形接触点概率分布曲线的相关性,取相关性最高的代表廓形为等效重载线路曲线区段的实际廓形;对某重载线路过度磨耗钢轨的经济性打磨廓形以及采用圆弧型廓形设计方法的优化廓形进行分析。分析结果表明:优化廓形与现场打磨廓形相较,截面廓形磨削量减少69.56 mm2,下降64.98%,脱轨系数小幅增大,轮轨横向力基本不变,轮对横移变化较小,曲线通过性能相近,80万次通过量下的磨耗面积增加2.19 mm2,钢轨的磨耗速率略微增大,整体仍延长了钢轨寿命。Abstract: A rail profile design method with the arc tangency point as the key parameter was proposed for the grinding of over worn rail. Specifically, taking the wheel-rail contact region as the optimization area and the rail wear and the removed amount of grinding material as the optimization objective function, taking the profile boundary, concavity and convexity, derailment coefficient and wheel-rail lateral force as the constraint conditions, the multi-objective function of designed grinding profile of worn rail was established. The multiple simulated annealing optimization algorithm was integrated for solutions. To obtain the rail profile representing the curve of a heavy haul line, which was adopted as the optimized input data, the representative profiles of four kinds of rails were obtained by using the least square distance algorithm, arithmetic average algorithm, weighted average algorithm and scatter reconstruction algorithm. The correlations between the rail representative profiles of the four algorithms and the measured profile contact point probability distribution curve were calculated by using the Pearson correlation coefficient, Kendall rank correlation coefficient and Spearman rank correlation coefficient, and the representative profile with the highest correlation was taken as the actual profile of the curve section of the equivalent heavy haul line. The economical grinding profile of over worn rail in a heavy haul line and the optimized profile using the arc profile design method were analyzed. Analysis results show that compared with the on-site grinding profile of rail, the optimized rail profile has a reduced grinding and cutting amount for its sectional profile by 69.56 mm2, a decrease of 64.98%, a slightly increased derailment coefficient, the same lateral wheel-rail force, small lateral wheelset displacement change, and similar curve passing performance. Although the wear area under 800 000 passes increases by 2.19 mm2, and the wear rate of rail slightly rises, the overall service life of rail is still prolonged. 3 tabs, 17 figs, 30 refs.
-
表 1 曲线区段代表廓形接触点分布相关系数
Table 1. Correlations coefficient of distribution of representative profile contact points in curve section
算法 Pearson
相关系数Kendall
秩相关系数Spearman
秩相关系数相关系数平均值 算术平均算法 0.877 0.726 0.836 0.813 最小二乘距离算法 0.806 0.507 0.591 0.635 加权平均算法 0.619 0.525 0.632 0.592 散点重构算法 0.622 0.736 0.837 0.732 表 2 钢轨廓形构成元素
Table 2. Elements of rail profiles
钢轨廓形 构成元素 车轮接触部位 廓形轨顶半径/mm 轨头/ mm CN60 5段圆弧,2段直线 R300、R80、R13 300 70.78 60N 7段圆弧,2段直线 R200、R60、R16 200 70.52 CN75 7段圆弧,2段直线 R200、R50、R16 200 71.96 UIC54 5段圆弧,2段直线 R300、R80、R13 300 69.92 UIC60 5段圆弧,2段直线 R300、R80、R13 300 72.02 美标68 5段圆弧,2段直线 R254、R31.75、R14.29 254 70.40 表 3 局部最优解与全局最优解目标函数f(T)及约束限值
Table 3. Objective function f(T) and constraint limit value of local optimal solution and global optimal solution
迭代次数 预测磨耗/mm2 金属磨削量/mm2 f(T)归一值 上下界 凹凸性 脱轨系数 轮轨横向力/kN 50 13.35 115.27 0.846 符合 符合 0.257 40.6 100 12.76 164.47 0.787 符合 符合 0.183 27.0 150 13.16 109.79 0.524 符合 符合 0.181 27.6 200 12.53 78.93 0.342 符合 符合 0.157 26.0 300 12.65 37.49 0.286 符合 符合 0.141 23.4 -
[1] WANG Jian-xi, CHEN Si-yi, LI Xiang-guo, et al. Optimal rail profile design for a curved segment of a heavy haul railway using a response surface approach[J]. Journal of Rail and Rapid Transit, 2016, 230(6): 1496-1508. doi: 10.1177/0954409715602513 [2] MAGEL E, KALOUSEK J. The application of contact mechanics to rail profile design and rail grinding[J]. Wear, 2002, 253(1): 308-316. [3] MAGEL E, RONEY M, KALOUSEK J, et al. The blending of theory and practice in modern rail grinding[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26(10): 921-929. doi: 10.1046/j.1460-2695.2003.00669.x [4] SMALLWOOD R, SINCLAIR J C, SAWLEY K J. An optimization technique to minimize rail contact stresses[J]. Wear, 1991, 144(1/2): 373-384. [5] SATO Y. Design of rail head profiles with full use of grinding[J]. Wear, 1991, 144(1/2): 363-372. [6] GERLICI J, LACK T. Railway wheel and rail head profiles development based on the geometric characteristics shapes[J]. Wear, 2011, 271(1): 246-258. [7] 崔大宾, 李立, 金学松, 等. 铁路钢轨打磨目标型面研究[J]. 工程力学, 2011, 28(4): 178-184. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201104030.htmCUI Da-bin, LI Li, JIN Xue-song, et al. Study on rail goal profile by grinding[J]. Engineering Mechanics, 2011, 28(4): 178-184. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201104030.htm [8] 肖乾, 杨逸航, 黄碧坤. 基于轮轨滚动接触稳态特性优选客货列车共线铁路钢轨打磨廓形[J]. 中国铁道科学, 2016, 37(1): 17-23. doi: 10.3969/j.issn.1001-4632.2016.01.03XIAO Qian, YANG Yi-hang, HUANG Bi-kun. Optimal selection of rail grinding profile for passenger-freight line based on steady state characteristics of wheel-rail rolling contact[J]. China Railway Science, 2016, 37(1): 17-23. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.01.03 [9] 毛鑫, 沈钢. 基于轮径差函数的曲线钢轨打磨廓形设计[J]. 同济大学学报(自然科学版), 2018, 46(2): 253-259. doi: 10.11908/j.issn.0253-374x.2018.02.017MAO Xin, SHEN Gang. Curved rail grinding profile design based on rolling radii difference function[J]. Journal of Tongji University (Natural Science), 2018, 46(2): 253-259. (in Chinese) doi: 10.11908/j.issn.0253-374x.2018.02.017 [10] 周清跃, 刘丰收, 俞喆, 等. 我国铁路钢轨型面优化研究[J]. 中国铁路, 2017(12): 7-12, 34. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201712002.htmZHOU Qing-yue, LIU Feng-shou, YU Zhe, et al. Study on the optimization of rail profile in China[J]. China Railway, 2017(12): 7-12, 34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201712002.htm [11] 张剑, 温泽峰, 孙丽萍, 等. 基于钢轨型面扩展法的车轮型面设计[J]. 机械工程学报, 2008, 44(3): 44-49. doi: 10.3321/j.issn:0577-6686.2008.03.008ZHANG Jian, WEN Ze-feng, SUN Li-ping, et al. Wheel profile design based on rail profile expansion method[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 44-49. (in Chinese) doi: 10.3321/j.issn:0577-6686.2008.03.008 [12] 张剑, 王玉艳, 金学松, 等. 改善轮轨接触状态的车轮型面几何设计方法[J]. 交通运输工程学报, 2011, 11(1): 36-42. doi: 10.3969/j.issn.1671-1637.2011.01.007ZHANG Jian, WANG Yu-yan, JIN Xue-song, et al. Geometric design method of wheel profile for improving wheel and rail contact status[J]. Journal of Traffic and Transportation Engineering, 2011, 11(1): 36-42. (in Chinese) doi: 10.3969/j.issn.1671-1637.2011.01.007 [13] 成棣, 王成国, 刘金朝, 等. 以圆弧参数为设计变量的车轮型面优化数学模型研究[J]. 中国铁道科学, 2011, 32(6): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201106018.htmCHENG Di, WANG Cheng-guo, LIU Jin-zhao, et al. Research on the mathematical model for wheel profile optimization with arc parameters as design variables[J]. China Railway Science, 2011, 32(6): 107-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201106018.htm [14] 王军平. 基于廓形打磨的小半径曲线钢轨磨耗控制方法研究[J]. 铁道学报, 2021, 43(1): 128-134. doi: 10.3969/j.issn.1001-8360.2021.01.016WANG Jun-ping. Research on rail wear control method based on profile grinding for sharp curve rail[J]. Journal of the China Railway Society, 2021, 43(1): 128-134. (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.01.016 [15] 周清跃, 张建峰, 郭战伟, 等. 重载铁路钢轨的伤损及预防对策研究[J]. 中国铁道科学, 2010, 31(1): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201001007.htmZHOU Qing-yue, ZHANG Jian-feng, GUO Zhan-wei, et al. Research on the rail damages and the preventive countermeasures in heavy haul railways[J]. China Railway Science, 2010, 31(1): 27-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201001007.htm [16] KAPOOR A, FLETCHER D I, FRANKLIN F J. The role of wear in enhancing rail life[J]. Tribology Series, 2003, 41(3): 331-340. [17] LI Xia, YANG Tao, ZHANG Jian, et al. Rail wear on the curve of a heavy haul line-numerical simulations and comparison with field measurements[J]. Wear, 2016(366): 131-138. [18] 王璞, 高亮, 蔡小培. 重载铁路钢轨磨耗演变过程的数值模拟[J]. 铁道学报, 2014, 36(10): 70-75. doi: 10.3969/j.issn.1001-8360.2014.10.012WANG Pu, GAO Liang, CAI Xiao-pei. Numerical simulation of rail wear evolution of heavy-haul railways[J]. Journal of the China Railway Society, 2014, 36(10): 70-75. (in Chinese) doi: 10.3969/j.issn.1001-8360.2014.10.012 [19] 丁军君, 吴朋朋, 王军平, 等. 基于轮轨关系的钢轨打磨代表廓形计算方法研究[J]. 铁道学报, 2019, 41(7): 135-140. doi: 10.3969/j.issn.1001-8360.2019.07.017DING Jun-jun, WU Peng-peng, WANG Jun-ping, et al. Study on algorithm of representative profile for rail grinding based on wheel-rail relationship[J]. Journal of the China Railway Society, 2019, 41(7): 135-140. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.07.017 [20] SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36(8): 1627-1639. doi: 10.1021/ac60214a047 [21] HA V, HADDAWY P. Similarity of personal preferences: theoretical foundations and empirical analysis[J]. Artificial Intelligence, 2003, 146(2): 149-173. doi: 10.1016/S0004-3702(03)00013-4 [22] SPEARMAN C. The proof and measurement of association between two things[J]. International Journal of Epidemiology, 2010, 39(5): 1137-1150. doi: 10.1093/ije/dyq191 [23] ARCHARD J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8): 981-988. doi: 10.1063/1.1721448 [24] 翟婉明, 陈果. 根据车轮抬升量评判车辆脱轨的方法与准则[J]. 铁道学报, 2001, 23(2): 17-26. doi: 10.3321/j.issn:1001-8360.2001.02.004ZHAI Wan-ming, CHEN Guo. Method and criteria for evaluation of wheel derailment based on wheel vertical rise[J]. Journal of the China Railway Society, 2001, 23(2): 17-26. (in Chinese) doi: 10.3321/j.issn:1001-8360.2001.02.004 [25] BANDYOPADHYAY S, SAHA S, MAULIK U, et al. A simulated annealing-based multi-objective optimization algorithm: AMOSA[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(3): 269-283. doi: 10.1109/TEVC.2007.900837 [26] 丁军君, 孙树磊, 李芾, 等. 重载货车车轮磨耗仿真[J]. 交通运输工程学报, 2011, 11(4): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201104008.htmDING Jun-jun, SUN Shu-lei, LI Fu, et al. Simulation of wheel wear for heavy haul freight car[J]. Journal of Traffic and Transportation Engineering, 2011, 11(4): 56-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201104008.htm [27] 杨春雷, 黄运华, 丁军君. 重载轨道曲线几何参数对轮轨耦合动力特性的影响[J]. 交通运输工程学报, 2021, 21(3): 215-227. doi: 10.19818/j.cnki.1671-1637.2021.03.014YANG Chun-lei, HUANG Yun-hua, DING Jun-jun. Influences of curve geometric parameters of heavy haul track on wheel/rail coupling dynamic characteristics[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 215-227. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.03.014 [28] 张军, 贾小平, 孙传喜, 等. 磨耗车轮与曲线钢轨接触关系[J]. 交通运输工程学报, 2011, 11(3): 29-33. doi: 10.3969/j.issn.1671-1637.2011.03.006ZHANG Jun, JIA Xiao-ping, SUN Chuan-xi, et al. Contact relationship of wear wheel and curved rail l[J]. Journal of Traffic and Transportation Engineering, 2011, 11(3): 29-33. (in Chinese) doi: 10.3969/j.issn.1671-1637.2011.03.006 [29] 董孝卿, 任尊松, 许自强, 等. 等效锥度曲线非线性特性及影响研究[J]. 铁道学报, 2018, 40(11): 91-97. doi: 10.3969/j.issn.1001-8360.2018.11.013DONG Xiao-qing, REN Zun-song, XU Zi-qiang, et al. Research on nonlinear characteristics and effect of equivalent conicity curve[J]. Journal of the China Railway Society, 2018, 40(11): 91-97. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.11.013 [30] 寇杰, 张济民, 周和超, 等. 磨耗状态下城际动车组轮轨曲线磨耗特性[J]. 交通运输工程学报, 2021, 21(3): 279-288. doi: 10.19818/j.cnki.1671-1637.2021.03.020KOU Jie, ZHANG Ji-min, ZHOU He-chao, et al. Wheel-rail wear characteristics of intercity EMUs on curve in worn stages[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 279-288. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.03.020