留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于列车振动的高速铁路桥墩沉降控制阈值

陈兆玮 翟婉明

陈兆玮, 翟婉明. 基于列车振动的高速铁路桥墩沉降控制阈值[J]. 交通运输工程学报, 2022, 22(2): 136-147. doi: 10.19818/j.cnki.1671-1637.2022.02.010
引用本文: 陈兆玮, 翟婉明. 基于列车振动的高速铁路桥墩沉降控制阈值[J]. 交通运输工程学报, 2022, 22(2): 136-147. doi: 10.19818/j.cnki.1671-1637.2022.02.010
CHEN Zhao-wei, ZHAI Wan-ming. Control threshold of pier settlement in high-speed railways based on train vibrations[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 136-147. doi: 10.19818/j.cnki.1671-1637.2022.02.010
Citation: CHEN Zhao-wei, ZHAI Wan-ming. Control threshold of pier settlement in high-speed railways based on train vibrations[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 136-147. doi: 10.19818/j.cnki.1671-1637.2022.02.010

基于列车振动的高速铁路桥墩沉降控制阈值

doi: 10.19818/j.cnki.1671-1637.2022.02.010
基金项目: 

国家自然科学基金项目 52008067

中国博士后科学基金项目 2019M650236

重庆市教育委员会科学技术研究项目 KJQN201900719

省部共建山区桥梁及隧道工程国家重点实验室开放基金 SKLBT-19-002

详细信息
    作者简介:

    陈兆玮(1988-),男,河南濮阳人,重庆交通大学副教授,工学博士,从事列车-轨道-桥梁系统动力学研究

    通讯作者:

    翟婉明(1963-),男,江苏靖江人,西南交通大学教授,中国科学院院士,工学博士

  • 中图分类号: U24

Control threshold of pier settlement in high-speed railways based on train vibrations

Funds: 

National Natural Science Foundation of China 52008067

Postdoctoral Science Foundation of China 2019M650236

Science and Technology Research Program of Chongqing Municipal Education Commission KJQN201900719

Open Funding of State Key Laboratory of Mountain Bridge and Tunnel Engineering SKLBT-19-002

More Information
  • 摘要: 为保障高速铁路桥墩沉降区域的列车运行安全平稳性,提出了一种基于列车-轨道-桥梁动力相互作用理论的高速铁路桥墩沉降控制阈值研究方法;探讨了既有标准中的桥墩沉降限值,并确定了影响桥墩沉降控制阈值的关键因素;基于列车-轨道-桥梁动力相互作用理论,考虑轨道随机不平顺、轮轨非线性接触关系等非线性因素,建立了考虑桥墩沉降和多影响因素的高速列车-轨道-桥梁耦合动力学模型;在此基础上,研究了多因素条件下桥墩沉降对列车-轨道-桥梁系统的影响,并从保证列车安全平稳运营的角度提出了适用于中国高速铁路桥墩沉降的控制阈值。研究结果表明:研究高速铁路桥墩沉降控制阈值时不能忽略轨道随机不平顺、温度作用、混凝土收缩徐变等因素的影响;随着桥梁跨度的增大,混凝土收缩徐变和温度作用导致车体垂向加速度和轮重减载率增大,桥墩沉降则导致上述指标减小;考虑多因素后,车体垂向加速度和轮重减载率与不考虑这些影响因素相比明显增大;随着桥墩沉降的增大,列车通过不同不平顺样本时车体垂向加速度和轮重减载率均超标;为保证列车运行安全性与乘坐舒适性,高速铁路桥墩沉降控制阈值建议为10 mm;在本文得到的控制阈值基础上进一步考虑施工误差等其他因素即可得到准确的标准限值,研究结果可为桥墩沉降限值的最终确定提供研究方法和数据支撑。

     

  • 图  1  桥梁设计中需要考虑的荷载

    Figure  1.  Loads should be considered in bridge design

    图  2  基于车轨桥动力相互作用的高速铁路桥墩沉降控制阈值研究方法

    Figure  2.  Methodology for determining pier settlement control threshold of high-speed railway based on train- track-bridge dynamic interaction

    图  3  箱梁温差分布

    Figure  3.  Temperature difference distribution of box girder

    图  4  考虑多因素的高速列车-轨道-桥梁动力学模型

    Figure  4.  High-speed train-track-bridge dynamics model considering multi-factor

    图  5  不平顺样本

    Figure  5.  Irregularity samples

    图  6  收缩应变

    Figure  6.  Shrinkage strains

    图  7  徐变系数

    Figure  7.  Creep coefficients

    图  8  不同因素作用下的桥梁变形

    Figure  8.  Bridge deformations caused by different factors

    图  9  多因素对不同跨度桥梁变形的影响

    Figure  9.  Influences of multi-factor on deformations of bridges with different spans

    图  10  各影响因素对列车性能的影响

    Figure  10.  Influences of different factors on train performance

    图  11  列车以不同速度通过不同跨度简支梁桥时各因素对车辆动力性能的影响

    Figure  11.  Influences of different factors on train dynamic performance when passing through simply supported beam bridges with different spans at different running speeds

    图  12  考虑与未考虑多因素时的列车振动

    Figure  12.  Train vibrations considering and without considering multi-factor

    图  13  列车通过不同跨度桥梁变形区域时的动力性能

    Figure  13.  Dynamic performance of train when passing through deformation areas of bridges with different spans

    图  14  不同不平顺样本下的列车响应

    Figure  14.  Train responses under different irregularity samples

    图  15  不同不平顺样本下的桥墩沉降控制阈值

    Figure  15.  Control thresholds of pier settlement under different irregularity samples

    表  1  静定桥梁桥墩沉降限值

    Table  1.   Pier settlement limit values for statically determinate bridge  mm

    规范编号 均匀沉降(有砟/无砟) 不均匀沉降(有砟/无砟)
    TB 10002.1—2005 80/40 40/20
    TB 10002.5—2005 80/40 40/20
    铁建设[2005]140号 50/50 20/20
    铁建设[2007]47号 30/20 15/5
    TB 10621—2009 30/20 15/5
    Q/CR 9300—2014 50/20(250 km·h-1),80/40(160 km·h-1) 20/10
    TB 10621—2014 30/20 15/5
    TB 10002—2017 30/20(250 km·h-1),50/20(200 km·h-1),80/20(160 km·h-1) 15/5(250 km·h-1),20/10(200 km·h-1),40/10(160 km·h-1)
    下载: 导出CSV

    表  2  列车动力学参数

    Table  2.   Dynamics parameters of train

    参数 数值
    车辆定距/m 17.5
    轴距/m 2.5
    轮对名义滚动圆直径/m 0.86
    车体质量/kg 33.766
    构架质量/kg 2.4
    轮对质量/kg 1.85
    车体惯量/(t·m2) 1 654.5
    构架惯量/(t·m2) 1.314
    轮对惯量/(t·m2) 0.123
    一系悬挂刚度(每轴箱)/(MN·m-1) 1.18
    二系悬挂刚度(每侧)/(MN·m-1) 0.19
    下载: 导出CSV

    表  3  轨道关键参数

    Table  3.   Key parameters of track

    参数 数值
    钢轨每延米质量/kg 60.64
    钢轨弹性模量/GPa 205.9
    扣件间距/m 0.65
    扣件刚度/(MN·m-1) 3.0×104
    扣件阻尼/(N·s·m-1) 1.0×104
    道床板混凝土等级 C40
    道床板截面尺寸/m2 2.8×0.26
    道床板密度/(kg·m-3) 2 500
    下载: 导出CSV
  • [1] CHEN Zhao-wei, ZHAI Wan-ming, CAI Cheng-biao, et al. Safety threshold of high-speed railway pier settlement based on train-track-bridge dynamic interaction[J]. Science China Technological Sciences, 2015, 58(2): 202-210. doi: 10.1007/s11431-014-5692-0
    [2] 翟婉明, 赵春发, 夏禾, 等. 高速铁路基础结构动态性能演变及服役安全的基础科学问题[J]. 中国科学: 技术科学, 2014, 44(7): 645-660. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407002.htm

    ZHAI Wan-ming, ZHAO Chun-fa, XIA He, et al. Basic scientific issues on dynamic performance evolution of the high-speed railway infrastructure and its service safety[J]. Scientia Sinica (Technologica), 2014, 44(7): 645-660. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407002.htm
    [3] 石瑞喜. 桥墩差异沉降规律及其对轨道高低平顺性的影响[J]. 四川建筑, 2013, 33(1): 94-95, 99. doi: 10.3969/j.issn.1007-8983.2013.01.035

    SHI Rui-xi. Law of differential settlement of piers and its influence on track uneven irregularity[J]. Sichuan Architecture, 2013, 33(1): 94-95, 99. (in Chinese) doi: 10.3969/j.issn.1007-8983.2013.01.035
    [4] 张文胜, 崔志伟. 铁路客运专线特大桥沉降预测模型[J]. 交通运输工程学报, 2011, 11(6): 31-36. doi: 10.1097/RLU.0b013e3181f49ac7

    ZHANG Wen-sheng, CUI Zhi-wei. Settlement prediction model of super large bridge for passenger dedicated railway[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 31-36. (in Chinese) doi: 10.1097/RLU.0b013e3181f49ac7
    [5] 龚循强, 刘国祥, 周秀芳. 高速铁路桥墩沉降监测数据粗差探测方法研究[J]. 铁道建筑, 2013(10): 34-36. doi: 10.3969/j.issn.1003-1995.2013.10.11

    GONG Xun-qiang, LIU Guo-xiang, ZHOU Xiu-fang. Research on gross error detection method of pier settlement monitoring data of high-speed railway high-speed railways[J]. Railway Engineering, 2013(10): 34-36. (in Chinese) doi: 10.3969/j.issn.1003-1995.2013.10.11
    [6] 王少杰, 徐赵东, 李舒, 等. 基于钢轨应变监测的多跨铁路简支梁桥桥墩差异沉降识别[J]. 铁道学报, 2016, 38(3): 106-110. doi: 10.3969/j.issn.1001-8360.2016.03.015

    WANG Shao-jie, XU Zhao-dong, LI Shu, et al. Identification of differential settlement of piers for multi-span railway simply supported girder bridges based on track strain monitoring[J]. Journal of the China Railway Society, 2016, 38(3): 106-110. (in Chinese) doi: 10.3969/j.issn.1001-8360.2016.03.015
    [7] 章荣军, 郑俊杰, 丁烈云, 等. 成孔切槽引起邻近桩基沉降规律及控制措施[J]. 华中科技大学学报(自然科学版), 2011, 39(4): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201104036.htm

    ZHANG Rong-jun, ZHENG Jun-jie, DING Lie-yun, et al. Additional settlement induced by hole-boring and grooves on an adjacent pile foundation and its control[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2011, 39(4): 114-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201104036.htm
    [8] 宋国华, 高芒芒, 黎国清. 桥梁墩台不均匀沉降时的车桥垂向系统耦合振动分析[J]. 中国铁道科学, 2010, 31(2): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201002009.htm

    SONG Guo-hua, GAO Mang-mang, LI Guo-qing. Vehicle-bridge vertical system coupled vibration analysis under the uneven settlement of bridge pier and abutment[J]. China Railway Science, 2010, 31(2): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201002009.htm
    [9] JIANG Li-zhong, ZHENG Lan, FENG Yu-lin, et al. Mapping the relationship between the structural deformation of a simply supported beam bridge and rail deformation in high-speed railways[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 234(1): 1081-1092.
    [10] LAI Zhi-peng, JIANG Li-zhong, LIU Xiang, et al. Analytical investigation on the geometry of longitudinal continuous track in high-speed rail corresponding to lateral bridge deformation[J]. Construction and Building Materials, 2021, 268: 121064. doi: 10.1016/j.conbuildmat.2020.121064
    [11] 陈兆玮, 孙宇, 翟婉明. 高速铁路桥墩沉降与钢轨变形的映射关系(Ⅰ): 单元板式无砟轨道系统[J]. 中国科学: 技术科学, 2014, 44(7): 770-777. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407015.htm

    CHEN Zhao-wei, SUN Yu, ZHAI Wan-ming. Mapping relationship between pier settlement and rail deformation of high-speed railways—Part (Ⅰ): the unit slab track system[J]. Scientia Sinica (Technologica), 2014, 44(7): 770-777. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407015.htm
    [12] CHEN Zhao-wei, FANG Hui. Influence of pier settlement on contact behavior between CRTSⅡ track and bridge in high-speed railways[J]. Engineering Structures, 2021, 235: 112007. doi: 10.1016/j.engstruct.2021.112007
    [13] CHEN Zhao-wei. Dynamic contact between CRTS Ⅱ slab track and bridge due to time-dependent effect of bridge and its influence on train-track-bridge interaction[J]. Engineering Structures, 2021, 234: 111974. doi: 10.1016/j.engstruct.2021.111974
    [14] CHEN Zhao-wei, ZHAI Wan-ming, TIAN Guo-ying. Study on the safe value of multi-pier settlement for simply supported girder bridges in high-speed railways[J]. Structure and Infrastructure Engineering, 2018, 14(3): 400-410. doi: 10.1080/15732479.2017.1359189
    [15] CHEN Zhao-wei, FANG Hui, KE Xin-meng, et al. A new method to identify bridge bearing damage based on radial basis function neural network[J]. Earthquakes and Structures, 2016, 11(5): 841-859. doi: 10.12989/eas.2016.11.5.841
    [16] ZENG Zhi-ping, LIU Fu-shan, WANG Wei-dong. Three- dimensional train-track-bridge coupled dynamics model based on the explicit finite element method[J]. Soil Dynamics and Earthquake Engineering, 2022, 153: 107066. doi: 10.1016/j.soildyn.2021.107066
    [17] YAU J D. Response of a train moving on multi-span railway bridges undergoing ground settlement[J]. Engineering Structures, 2009, 31(9): 2115-2122. doi: 10.1016/j.engstruct.2009.03.019
    [18] ZHOU Wang-bao, NIE Lei-xin, JIANG Li-zhong, et al. Mapping relation between pier settlement and rail deformation of unit slab track system[J]. Structures, 2020, 27: 1066-1074. doi: 10.1016/j.istruc.2020.07.023
    [19] ZHU Li, WANG Jia-ji, LI Xuan, et al. Experimental and numerical study on creep and shrinkage effects of ultra high- performance concrete beam[J]. Composites Part B: Engineering, 2020, 184: 107713. doi: 10.1016/j.compositesb.2019.107713
    [20] GAYARRE F L, GONZÁLEZ J S, PÉREZ C L C, et al. Shrinkage and creep in structural concrete with recycled brick aggregates[J]. Construction and Building Materials, 2019, 228: 116750. doi: 10.1016/j.conbuildmat.2019.116750
    [21] ZHOU Yi, XIA Yong, CHEN Bo, et al. Analytical solution to temperature-induced deformation of suspension bridges[J]. Mechanical Systems and Signal Processing, 2020, 139: 106568. doi: 10.1016/j.ymssp.2019.106568
    [22] ZHAI Wan-ming, HAN Zhao-ling, CHEN Zhao-wei, et al. Train-track-bridge dynamic interaction: a state-of-the-art review[J]. Vehicle System Dynamics, 2019, 57(7): 984-1027. doi: 10.1080/00423114.2019.1605085
    [23] 翟婉明, 蔡成标, 王开云. 高速列车-轨道-桥梁动态相互作用原理及模型[J]. 土木工程学报, 2005, 38(11): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200511024.htm

    ZHAI Wan-ming, CAI Cheng-biao, WANG Kai-yun. Mechanism and model of high-speed train-track-bridge dynamic interaction[J]. China Civil Engineering Journal, 2005, 38(11): 132-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200511024.htm
    [24] CHEN Zhao-wei, FANG Hui. An alternative solution of train-track dynamic interaction[J]. Shock and Vibration, 2019, 2019: 1859261.
    [25] XU Lei, ZHAI Wan-ming. A new model for temporal-spatial stochastic analysis of vehicle-track coupled systems[J]. Vehicle System Dynamics, 2017, 55(3): 427-448. doi: 10.1080/00423114.2016.1270456
    [26] ZHU Sheng-yang, WANG Jian-wei, CAI Cheng-biao, et al. Development of a vibration attenuation track at low frequencies for urban rail transit[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(9): 713-726. doi: 10.1111/mice.12285
    [27] CHEN Zhao-wei, ZHAI Wan-ming, YIN Qiang. Analysis of structural stresses of tracks and vehicle dynamic responses in train-track-bridge system with pier settlement[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(2): 421-434. doi: 10.1177/0954409716675001
    [28] CHEN Zhao-wei. Evaluation of longitudinal connected track under combined action of running train and long-term bridge deformation[J]. Journal of Vibration and Control, 2020, 26(7/8): 599-609.
    [29] JIANG Hong-guang, LI Yi-xin, WANG Yu-jie, et al. Dynamic performance evaluation of ballastless track in high-speed railways under subgrade differential settlement[J]. Transportation Geotechnics, 2022, 33: 100721. doi: 10.1016/j.trgeo.2022.100721
    [30] MONTENEGRO P A, CARVALHO H, RIBEIRO D, et al. Assessment of train running safety on bridges: a literature review[J]. Engineering Structures, 2021, 241: 112425. doi: 10.1016/j.engstruct.2021.112425
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  585
  • HTML全文浏览量:  192
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回