Regression analysis of influence law of urban pavement settlement caused by underpass tunnel construction in Beijing
-
摘要: 以朝阳区某热力工程顶管隧道引起路面沉降问题为例,对比分析了现场实测值与仅考虑自然因素的理论计算值;以北京市279个隧道下穿道路工程为样本,应用Stata 14.0统计软件对影响路面沉降的4项设计因素、3项施工因素和9项人为因素开展了多元回归分析,并采用替换施工方法、增减解释变量的方法验证了回归分析的稳健性,获得了各因素影响路面沉降的弹性系数、标准误及置信等级。研究结果表明:实际工程路面沉降的实测值与理论计算值相差很大,与路面是否有移动荷载、隧道上覆土体厚度等相关,最大可达3.75倍;在自然因素中,地层条件、施工方法、路面移动荷载和隧道直径的影响显著,影响程度依次降低;在人为因素中,监理旁站的影响极为显著,而施工人员工作年限、是否有技术交底等也有明显影响;在采用非开挖技术施工下穿道路工程时,不仅要通过减少人工顶管、加快施工速度、加强同步注浆来减小路面沉降,还应当高度重视施工方法与工艺、人员组织、过程监管。研究结果可为隧道下穿城市道路施工的技术管理、安全评估和行政审批提供参考。Abstract: Taking the pavement settlement caused by pipe jacking tunnels in thermal engineering in Chaoyang District of Beijing as an example, the on-site measurement value and the theoretical computation values that only considering natural factors were compared and analyzed. With 279 tunnel underpass projects in Beijing as samples, the multiple regression analysis was carried out with the statistical software Stata 14.0, where four design factors, three construction factors, and nine human factors affecting the pavement settlement were involved. Then, the robustness of regression analysis was verified by the replacement of the construction methods and the addition or subtraction of interpretation variables, and the elasticity coefficients, standard errors, and the confidence levels of each factor affecting pavement settlement were obtained. Analysis results show that a huge difference exists between the on-site measurement and the theoretical computation in the pavement settlement, which is related to the existence of moving loads on the pavement and the thickness of the overlying soil of tunnels, with a maximum of up to 3.75 times. Of the natural factors, the influence of geological condition, construction method, moving load on the pavement, and tunnel diameters are significant, and the degree of influence decreases in turn. Of the human factors, on-site supervision plays a significant role, and working years of constructors and technical disclosure also have a great impact. In the construction of an underpass project with a non-excavation method, we should reduce the manual pipe jacking, accelerate construction, and consolidate synchronous grouting to decrease the pavement settlement, and great significance should be attached to the construction technology and process, personnel organization, and process supervision. The research results can provide a reference for the technical management, safety assessment, and administrative approval of the construction of tunnels undercrossing urban roads. 6 tabs, 4 figs, 30 refs.
-
表 1 设计工况
Table 1. Design conditions
工况编号 作业井号 区段长度/m 覆土深度/m 移动荷载/kPa 1 1#→2# 100 10.5 0 2 2#←3# 130 10.0 3 3#→4# 169 9.5 4 4#←5# 69 9.0 5 5#→6# 20 9.0 5.0(辅道荷载) 6 6#←7# 30 9.0 22.5(城-A车辆荷载) 7 7#→8# 166 8.7 8 8#←9# 156 8.4 9 9#→10# 120 8.1 10 10#←11# 78 7.7 11 11#→12# 20 7.4 12 12#←13# 20 7.0 13 13#→14# 199 6.7 14 14#←15# 138 6.3 表 2 土层参数
Table 2. Soil parameters
土层类别 厚度/m 重度/(kN·m-3) 弹性模量/MPa 黏聚力/kPa 内摩擦角/(°) 泊松比 路面基层 0.55 21 35 27 35 0.22 素填土层 1.00 18 15 9 12 0.30 粉质黏土 4.50 19 18 25 15 0.29 砾砂层(含卵石) 5.00 21 35 0 32 0.22 重粉质黏土层 10.95 20 17 28 14 0.29 表 3 样本构成及其路面沉降总体特征
Table 3. Composition of samples and general features of pavement settlement
施工方法 样本数 均值/mm 中位数/mm 最小值/mm 最大值/mm 定向钻 57 2.36 2.47 0.37 6.73 泥水平衡机械顶管 100 5.56 4.80 1.10 12.69 浅埋暗挖隧道 53 5.53 5.50 1.97 10.45 人工顶管(手掘式顶管) 69 16.70 12.69 1.81 59.40 表 4 引起路面沉降因素变量的描述统计
Table 4. Descriptive statistics of variables leading to pavement settlement
变量(确定规则) 均值 标准差 中位数 最小值 最大值 设计因素 地层条件 0.47 0.14 0.45 0.29 0.70 覆土深度/m 7.14 2.21 7.20 0.70 13.50 直径/m 1.35 0.72 1.35 0.25 3.20 路面移动荷载(有为1,无为0) 0.43 0.50 0.00 0.00 1.00 施工因素 施工方法 人工顶管(是为1,否为0) 0.25 0.43 0.00 0.00 1.00 泥水平衡机械顶管(是为1,否为0) 0.36 0.48 0.00 0.00 1.00 浅埋暗挖(是为1,否为0) 0.19 0.39 0.00 0.00 1.00 定向钻(是为1,否为0) 0.20 0.40 0.00 0.00 1.00 管内注浆(是为1,否为0) 0.71 0.45 1.00 0.00 1.00 施工速度/(m·h-1) 3.46 5.39 1.00 0.11 15.00 施工人为因素 技术交底(是为1, 否为0) 0.58 0.49 1.00 0.00 1.00 监理旁站(是为1, 否为0) 0.73 0.44 1.00 0.00 1.00 施工人员 年龄/岁 人工顶管 41.29 6.05 42.00 25.00 57.00 泥水平衡机械顶管 33.97 6.15 33.00 23.00 42.00 浅埋暗挖隧道 34.90 4.62 37.00 26.00 42.00 定向钻 28.12 2.55 28.00 22.00 38.00 总样本 34.76 6.89 36.00 22.00 57.00 学历 人工顶管 1.64 0.75 1.00 1.00 3.00 泥水平衡机械顶管 3.71 0.49 4.00 3.00 4.00 浅埋暗挖隧道 2.79 0.41 3.00 2.00 3.00 定向钻 3.77 0.42 4.00 3.00 4.00 总样本 2.88 0.95 3.00 1.00 4.00 月收入/千元 人工顶管 6.21 1.51 5.50 5.10 11.00 泥水平衡机械顶管 11.87 2.03 11.00 7.80 15.40 浅埋暗挖隧道 9.35 1.25 9.00 5.70 12.30 定向钻 11.54 1.19 11.90 8.20 12.90 总样本 9.92 2.83 10.20 5.10 15.40 工作年限/年 人工顶管 3.45 3.19 3.00 0.00 9.00 泥水平衡机械顶管 5.70 2.69 6.00 0.00 11.00 浅埋暗挖隧道 5.58 2.14 5.00 2.00 9.00 定向钻 6.05 2.16 6.00 3.00 10.00 总样本 5.19 2.81 5.00 0.00 11.00 施工经验(有为1, 无为0) 人工顶管 0.18 0.39 0.00 0.00 1.00 泥水平衡机械顶管 0.59 0.49 1.00 0.00 1.00 浅埋暗挖隧道 0.50 0.51 1.00 0.00 1.00 定向钻 0.68 0.13 1.00 0.00 1.00 总样本 0.49 0.37 0.00 0.00 1.00 是否接受技能培训(是为1, 否为0) 人工顶管 0.17 0.38 0.00 0.00 1.00 泥水平衡机械顶管 0.78 0.46 1.00 0.00 1.00 浅埋暗挖隧道 0.49 0.50 0.00 0.00 1.00 定向钻 0.71 0.13 1.00 0.00 1.00 总样本 0.56 0.49 1.00 0.00 1.00 是否取得职业资格(是为1, 否为0) 人工顶管 0.03 0.16 0.00 0.00 1.00 泥水平衡机械顶管 0.72 0.45 1.00 0.00 1.00 浅埋暗挖隧道 0.11 0.31 0.00 0.00 1.00 定向钻 0.65 0.36 1.00 0.00 1.00 总样本 0.42 0.49 0.00 0.00 1.00 表 5 所有样本参与回归分析的结果
Table 5. Results of regression analysis with all samples
变量名 路面沉降
(回归步1)路面沉降
(回归步2)路面沉降
(回归步3)路面沉降
(回归步4)路面沉降
(回归步5)路面沉降
(回归步6)路面沉降
(回归步7)路面沉降
(回归步8)是否为人工顶管 12.019 2***
(0.995 3)12.288 2***
(0.970 6)10.801 1***
(0.979 8)8.750 1***
(0.993 0)8.441 3***
(0.994 1)6.780 8***
(1.091 2)7.460 3***
(1.050 8)5.247 0***
(1.063 8)直径 2.374 4***
(0.582 2)1.426 2**
(0.591 3)1.156 0**
(0.561 5)0.880 1(0.569 6) 0.445 1(0.573 4) 2.050 8***
(0.629 2)1.273 9**
(0.609 5)路面移动荷载 4.389 6***
(0.891 1)4.058 7***
(0.845 1)3.853 8***
(0.843 1)2.901 2***
(0.873 5)2.266 8**
(0.843 6)1.437 9*
(0.809 8)管内注浆 -5.262 1***
(0.913 4)-5.914 2***
(0.948 8)-6.103 0***
(0.932 6)-5.080 6***
(0.912 7)-3.382 7***
(0.910 8)覆土深度 -0.425 9***
(0.183 5)-0.305 4***
(0.183 5)-0.380 3**
(0.175 9)-0.322 7*
(0.166 5)地层条件 11.398 9***
(3.356 4)6.550 5**
(3.340 5)6.367 2**
(3.156 5)工作年限 -0.867 1***
(0.167 1)-0. 606 0***
(0.164 2)监理旁站 -6.169 5***
(1.064 9)常数 4.681 6***
(0.494 9)1.413 6
(0. 934 9)1.171 8
(0.899 2)5.920 1***
(1.184 6)9.959 3***
(2.100 0)5.320 2**
(2.472 4)8.993 0***
(2.466 2)12.822 3***
(2.422 1)样本量 279 279 279 279 279 279 279 279 决定系数 0.344 9 0.382 1 0.432 2 0.493 5 0.503 3 0.523 5 0.566 6 0.614 5 表 6 不同回归方案的弹性系数、标准误及置信等级
Table 6. Elastic coefficients, standard errors and confidence levels of different regression schemes
所有样本(4种施工方法) 泥水平衡机械顶管+人工顶管样本 浅埋暗挖+人工顶管样本 定向钻+人工顶管样本 有效自变量/影响因素 因变量/路面沉降 有效自变量/影响因素 因变量/路面沉降 有效自变量/影响因素 因变量/路面沉降 有效自变量/影响因素 因变量/路面沉降 是否为人工顶管 5.247 0***
(1.063 8)是否为水泥平衡机械顶管 -5.481 4***
(1.694 4)是否为浅埋暗挖 -11.237 4**
(3.855 4)是否为定向钻 -0.330 5**
(0.153 5)直径 1.273 9**
(0.609 5)直径 2.979 0*
(1.562 1)顶进速度 -31.060 3**
(11.633 8)覆土深度 -0.053 8***
(0.015 6)路面移动荷载 1.437 9*
(0.809 8)路面移动荷载 1.873 7*
(1.108 1)路面移动荷载 1.081 3
(2.057 2)路面移动荷载 0.258 7*
(0.138 9)管内注浆 -3.382 7***
(0.910 8)管内注浆 -3.468 3***
(0.828 2)管内注浆 -5.249 9**
(2.141 5)直径 0. 933 2***
(0.175 2)覆土深度 -0.322 7*
(0.166 5)覆土深度 -0.372 5**
(0.173 0)覆土深度 -0.760 8**
(0.375 6)地层条件 0.229 7
(0.379 2)地层条件 6.367 2**
(3.156 5)地层条件 6.518 5*
(3.615 8)地层条件 11.186 0*
(6.698 5)监理旁站 -0.586 3**
(0.191 1)工作年限 -0. 606 0***
(0.164 2)是否取得职业资格 -0.572 3
(2.293 6)工作年限 -1.194 8***
(0.272 9)工作年限 -0.112 0*
(0.060 2)监理旁站 -6.169 5***
(1.064 9)监理旁站 -2.263 4*
(1.203 9)监理旁站 -0.027 7
(2.202 4)技术交底 -0.665 8***
(0.189 6)顶进速度 -0.262 4
(0.460 1)学历 -0.137 0
(0.124 5)常数 12.822 3***
(2.422 1)常数 9.853 2**
(3.133 6)常数 32.344 9***
(7.940 4)常数 4.565 3***
(0.586 2)样本量 279 样本量 169 样本量 122 样本量 126 决定系数 0.614 5 决定系数 0.597 1 决定系数 0.677 7 决定系数 0.930 3 -
[1] 莫世扬, 杨晓伟, 洪元堂, 等. 非开挖顶管工艺在公路污水管线下穿工程中应用分析[J]. 公路工程, 2019, 44(2): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201902027.htmMO Shi-yang, YANG Xiao-wei, HONG Yuan-tang, et al. Application analysis of trenchless pipe jacking technology in highway sewage pipeline project[J]. Highway Engineering, 2019, 44(2): 151-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201902027.htm [2] POVARNITSYN S, MARTYNUK A, BRUSNIK O. Developing the drilling tool for trenchless pipeline construction[J]. IOP Conference, 2016, 43: 012069. [3] 朱建明, 赵沙沙, 江强, 等. 软土地区定向钻工后地表沉降的机理分析[J]. 煤炭学报, 2012, 37(增1): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2012S1017.htmZHU Jian-ming, ZHAO Sha-sha, JIANG Qiang, et al. The analytical solutions of post-construction settlement and its application in the directional drilling engineering[J]. Journal of China Coal Society, 2012, 37(S1): 86-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2012S1017.htm [4] ARIARATNAM S T. Survey questionnaire results of the current level of knowledge on trenchless technologies in China[J]. Tunnelling and Underground Space Technology, 2010, 25(6): 802-810. doi: 10.1016/j.tust.2009.08.007 [5] 郭林飞, 柴仕琦, 董静怡, 等. 我国城市路面塌陷事故统计分析[J]. 工程管理学报, 2020, 34(2): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JCGL202002011.htmGUO Lin-fei, CHAI Shi-qi, DONG Jing-yi, et al. A statistical analysis of urban road collapse accidents in China[J]. Journal of Engineering Management, 2020, 34(2): 49-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCGL202002011.htm [6] 蔡跃军, 刘宝琛. 近地表隧道开挖地表移动及变形计算[J]. 矿冶工程, 1991, 11(1): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC199101001.htmCAI Yue-jun, LIU Bao-chen. Computer analysis for calculation of ground surface movement and deformation due to near-surface tunnel excavation[J]. Mining and Metallurgical Engineering, 1991, 11(1): 6-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC199101001.htm [7] 刘宝琛, 张家生. 近地表开挖引起的地表沉降的随机介质方法[J]. 岩石力学与工程学报, 1995, 14(4): 289-296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX504.000.htmLIU Bao-chen, ZHANG Jia-sheng. Stochastic method for ground subsidence due to near surface excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 1995, 14(4): 289-296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX504.000.htm [8] 刘宝琛. 随机介质理论及其在开挖引起的地表下沉问题中的应用[J]. 中国有色金属学报, 1992, 2(3): 8-14. doi: 10.3321/j.issn:1004-0609.1992.03.002LIU Bao-chen. Stochastic medium method and its application in surface subsidence caused by excavation[J]. The Chinese Journal of Nonferrous Metals, 1992, 2(3): 8-14. (in Chinese) doi: 10.3321/j.issn:1004-0609.1992.03.002 [9] PECK R B. Deep excavations and tunnelling in soft ground[C]//SMFE. Proceedings of the 7th International Conference on SMFE: State of the Art Volume. Mexico City: SMFE, 1969: 225-290. [10] 喻军, 龚晓南. 考虑顶管施工过程的地面沉降控制数值分析[J]. 岩石力学与工程学报, 2014, 33(增1): 2605-2610. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1003.htmYU Jun, GONG Xiao-nan. Numerical analysis of surface settlement control considering pipe jacking construction process[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2605-2610. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1003.htm [11] 李达, 孔恒, 郭飞, 等. 土压平衡矩形顶管施工引起的地表沉降规律研究[J]. 中国安全生产科学技术, 2018, 14(10): 144-150. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201810023.htmLI Da, KONG Heng, GUO Fei, et al. Research on ground settlement caused by rectangular pipe jacking construction with earth pressure balance[J]. Journal of Safety Science and Technology, 2018, 14(10): 144-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201810023.htm [12] 谢延锁, 李小杰, 刘亚松, 等. 浅埋大管径顶管施工全过程数值模拟分析研究[J]. 现代隧道技术, 2018, 55(增2): 459-465. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2018S2061.htmXIE Yan-suo, LI Xiao-jie, LIU Ya-song, et al. Numerical simulation and analysis of construction process of shallow and large diameter jacking pipes[J]. Modern Tunnelling Technology, 2018, 55(S2): 459-465. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2018S2061.htm [13] 宋建学, 张瑞鑫, 孙宇赫. 机械顶管施工中超挖和地面超载引起的地表沉降规律研究[J]. 建筑科学, 2018, 34(11): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201811023.htmSONG Jian-xue, ZHANG Rui-xin, SUN Yu-he. Research on surface settlement regularity caused by over excavation and ground overloading in mechanical pipe jacking[J]. Building Science, 2018, 34(11): 134-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201811023.htm [14] 王剑, 邓宗伟. 某超大直径断面顶管施工引起的地层位移分析[J]. 铁道科学与工程学报, 2014, 11(2): 95-100. doi: 10.3969/j.issn.1672-7029.2014.02.016WANG Jian, DENG Zong-wei. Analysis of ground surface settlement due to pipe jacking of super- large cross sections[J]. Journal of Railway Science and Engineering, 2014, 11(2): 95-100. (in Chinese) doi: 10.3969/j.issn.1672-7029.2014.02.016 [15] 张稳军, 苏忍, 张高乐, 等. 考虑固结影响的双洞盾构隧道非同步施工引起的土体变形研究[J]. 中国公路学报, 2016, 29(9): 103-111, 151. doi: 10.3969/j.issn.1001-7372.2016.09.014ZHANG Wen-jun, SHU Ren, ZHANG Gao-le, et al. Study on soil deformation induced by non-synchronous construction of double-tube shield tunnels considering consolidation[J]. China Journal of Highway and Transport, 2016, 29(9): 103-111, 151. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.09.014 [16] 来弘鹏, 郑海伟, 何秋敏, 等. 砂土地层盾构隧道小角度斜下穿既有隧道施工参数优化研究[J]. 中国公路学报, 2018, 31(10): 130-140. doi: 10.3969/j.issn.1001-7372.2018.10.012LAI Hong-peng, ZHENG Hai-wei, HE Qiu-min, et al. Investigation into parameter optimization of existing metro tunnel for shield tunnel closely undercrossing it at small angle in sand stratum[J]. China Journal of Highway and Transport, 2018, 31(10): 130-140. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.10.012 [17] 赖金星, 王开运, 侯丹丹, 等. 砂土地层顶管施工土体变形规律三维数值分析[J]. 西安科技大学学报, 2015, 35(4): 450-457. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201504010.htmLAI Jin-xing, WANG Kai-yun, HOU Dan-dan, et al. 3D numerical analysis on displacement regularity of pipe jacking sewer in sand soil stratum[J]. Journal of Xi'an University of Science and Technology, 2015, 35(4): 450-457. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201504010.htm [18] 艾志久, 秦浩, 舒建华, 等. 水平定向穿越扩孔孔形沉降量预测[J]. 地下空间与工程学报, 2018, 14(2): 477-482. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201802025.htmAI Zhi-jiu, QIN Hao, SHU Jian-hua, et al. Settlement prediction of hole shape in horizontal directional drilling and reaming[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(2): 477-482. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201802025.htm [19] 来弘鹏, 赵鑫, 康佐. 黄土地区新建地铁隧道下穿时既有地铁线路沉降控制标准[J]. 交通运输工程学报, 2018, 18(4): 63-71. doi: 10.3969/j.issn.1671-1637.2018.04.007LAI Hong-peng, ZHAO Xin, KANG Zuo. Settlement control standard of existing metro line undercrossed by new metro tunnel in loess area[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 63-71. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.04.007 [20] 白永学. 富水砂卵石地层盾构施工诱发地层塌陷机理及对策研究[D]. 成都: 西南交通大学, 2012.BAI Yong-xue. Research on ground collapse mechanism of shield tunnelling in saturated sandy pebble stratum and corresponding measures[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese) [21] 潘伟强. 软土地区管幕群顶管施工地面沉降监测与分析[J]. 岩土工程学报, 2019, 41(增1): 201-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1052.htmPAN Wei-qiang. Monitoring and analysis of ground settlement during pipe roof construction of pipe-jacking groups in soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 201-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1052.htm [22] 黄雅娜, 蒋辉, 李竹, 等. 天津站铁路下方施工盾构隧道引起的沉降分析[J]. 建筑科学, 2012, 28(增1): 246-249. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX2012S1060.htmHUANG Ya-na, JIANG Hui, LI Zhu, et al. Settlement analysis of the construction of shield tunnel passing beneath Tianjin Railway Station[J]. Building Science, 2012, 28(S1): 246-249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX2012S1060.htm [23] 王国炜, 顾士国, 刘琳, 等. 油气输送管道水平定向钻下穿公路涉路工程技术评价研究[J]. 路基工程, 2021(4): 169-172. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC202104036.htmWANG Guo-wei, GU Shi-guo, LIU Lin, et al. Research on technical evaluation of horizontal directional drilling undercrossing road of oil and gas transmission pipeline[J]. Subgrade Engineering, 2021(4): 169-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC202104036.htm [24] 方勇, 何川. 考虑施工过程的土压平衡式盾构隧道掘进数值分析[J]. 铁道工程学报, 2009, 26(11): 56-60. doi: 10.3969/j.issn.1006-2106.2009.11.013FANG Yong, HE Chuan. Numerical analysis of earth-pressure-balance shield driving considering based on construction course[J]. Journal of Railway Engineering Society, 2009, 26(11): 56-60. (in Chinese) doi: 10.3969/j.issn.1006-2106.2009.11.013 [25] 蔡义, 张成平, 闵博. 邻近上覆空洞浅埋隧道施工引起的地层变形和破坏特征[J]. 铁道学报, 2019, 41(9): 118-127. doi: 10.3969/j.issn.1001-8360.2019.09.016CAI Yi, ZHANG Cheng-ping, MIN Bo. Analysis of ground deformation and failure induced by shallow tunneling with cavity in the overlying strata[J]. Journal of the China Railway Society, 2019, 41(9): 118-127. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.09.016 [26] 李文江, 王用波, 阎伟龙, 等. 软黏土顶管工后沉降数值模拟与模型试验[J]. 地下空间与工程学报, 2021, 17(增2): 710-716. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S2027.htmLI Wen-jiang, WANG Yong-bo, YAN Wei-long, et al. Numerical simulation and model test of post construction settlement of soft clay pipe jacking[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S2): 710-716. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S2027.htm [27] 姜洪建. 超大断面矩形顶管隧道施工引起的地表沉降规律研究[D]. 郑州: 华北水利水电大学, 2019.JIANG Hong-jian. Research on surface settlement law caused by construction of super large section rectangular pipe jacking tunnel[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019. (in Chinese) [28] 李曙光. EPB盾构法隧道施工引起的地表沉降分析与数值模拟[D]. 长沙: 中南大学, 2006.LI Shu-guang. Analysis and numerical simulation of ground settlement caused by EPB shield tunnel construction[D]. Changsha: Central South University, 2006. (in Chinese) [29] 焦义, 梁禹, 冯金勇, 等. 多因素影响下顶管施工引起土体变形计算研究[J]. 铁道科学与工程学报, 2021, 18(1): 192-199. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202101023.htmJIAO Yi, LIANG Yu, FENG Jin-yong, et al. Study on soil deformation caused by pipe jacking construction with multi-factor[J]. Journal of Railway Science and Engineering, 2021, 18(1): 192-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202101023.htm [30] 张艳林, 曾天成, 甘甜, 等. 真实复杂地层大直径钢顶管三维数值模拟研究[J]. 科学技术与工程, 2020, 20(33): 13791-13798. doi: 10.3969/j.issn.1671-1815.2020.33.040ZHANG Yan-lin, ZENG Tian-cheng, GAN Tian, et al. Three-dimensional numerical simulation of large-diameter steel pipe jacking in real and complex strata[J]. Science Technology and Engineering, 2020, 20(33): 13791-13798. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.33.040