留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多车道高速公路超高过渡段积水分布数值模拟与规律分析

赵建有 郭万江 贾兴利 陈星澎

赵建有, 郭万江, 贾兴利, 陈星澎. 多车道高速公路超高过渡段积水分布数值模拟与规律分析[J]. 交通运输工程学报, 2022, 22(2): 187-196. doi: 10.19818/j.cnki.1671-1637.2022.02.014
引用本文: 赵建有, 郭万江, 贾兴利, 陈星澎. 多车道高速公路超高过渡段积水分布数值模拟与规律分析[J]. 交通运输工程学报, 2022, 22(2): 187-196. doi: 10.19818/j.cnki.1671-1637.2022.02.014
ZHAO Jian-you, GUO Wan-jiang, JIA Xing-li, CHEN Xing-peng. Numerical simulation and law analysis of water accumulation distribution at superelevation transition section of multilane expressway[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 187-196. doi: 10.19818/j.cnki.1671-1637.2022.02.014
Citation: ZHAO Jian-you, GUO Wan-jiang, JIA Xing-li, CHEN Xing-peng. Numerical simulation and law analysis of water accumulation distribution at superelevation transition section of multilane expressway[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 187-196. doi: 10.19818/j.cnki.1671-1637.2022.02.014

多车道高速公路超高过渡段积水分布数值模拟与规律分析

doi: 10.19818/j.cnki.1671-1637.2022.02.014
基金项目: 

国家重点研发计划 2020YFC1512003

陕西省重点研发计划 2021SF-514

河南省交通运输科技计划 2019G-2-11

详细信息
    作者简介:

    赵建有(1963-),男,河南西峡人,长安大学教授,工学博士,从事交通安全与物流工程研究

    通讯作者:

    贾兴利(1986-),男,山东济宁人,长安大学副教授,工学博士

  • 中图分类号: U416.2

Numerical simulation and law analysis of water accumulation distribution at superelevation transition section of multilane expressway

Funds: 

National Key Research and Development Program of China 2020YFC1512003

Key Research and Development Program of Shaanxi Province 2021SF-514

Science and Technology Project of Henan Department of Transportation 2019G-2-11

More Information
  • 摘要: 为了揭示多车道高速公路超高过渡段积水分布规律,基于流体动力学理论,选取典型多车道高速公路超高过渡段设计参数,利用道路BIM设计软件建立了40组三维道路模型;分析了路面积水量和排水设施径流量的关系,建立了考虑排水设施与路面构造深度影响的降雨模拟方案;采用离散相模型和多相流模型耦合,模拟了降雨条件下的路面积水状态;分析了不同组合参数下的超高过渡段积水厚度数据,得到了合成坡度、道路宽度、降雨强度与超高渐变率对积水厚度的影响模式,计算了各车道最大积水厚度,分析了六车道、八车道高速公路积水横向分布规律。研究结果表明:积水厚度与合成坡度、超高渐变率负相关,与降雨强度、道路宽度正相关,其中降雨强度对积水厚度的影响最大,超高渐变率对积水厚度的影响最小;合成坡度为2.02%~8.54%,降雨强度为1~5 mm·min-1时,多车道高速公路超高过渡段最小积水厚度为0.58 mm,最大达到28.35 mm;当降雨强度为5 mm·min-1时,高速公路超高过渡段内外侧车道最大积水厚度差异明显,六车道由内侧车道到外侧车道的最大积水厚度比例为1.0∶3.1∶3.3,八车道为1.00∶0.96∶1.03∶1.36;多车道高速公路超高过渡段积水厚度峰值先出现在道路中间附近,然后向外侧移动,最大积水厚度一般出现在外侧车道。

     

  • 图  1  道路三维模型

    Figure  1.  Three-dimensional road model

    图  2  模型边界条件

    Figure  2.  Model boundary conditions

    图  3  积水分布

    Figure  3.  Distribution of water accumulation

    图  4  合成坡度对积水厚度的影响

    Figure  4.  Effect of synthetic slope on thickness of water accumulation

    图  5  降雨强度对积水厚度的影响

    Figure  5.  Effect of rainfall intensity on thickness of water accumulation

    图  6  道路宽度对积水厚度的影响

    Figure  6.  Effect of road width on thickness of water accumulation

    图  7  超高渐变率对积水厚度的影响

    Figure  7.  Effect of superelevation transition ratio on thickness of water accumulation

    图  8  六车道试验路段积水横向分布

    Figure  8.  Horizontal distributions of water accumulation at six-lanes test section

    图  9  八车道试验路段积水横向分布

    Figure  9.  Horizontal distributions of water accumulation at eight-lane test section

    图  10  超高过渡段

    Figure  10.  Superelevation transition section

    图  11  车道编号

    Figure  11.  Lane numbering

    图  12  六车道试验路段积水厚度比与降雨强度的关系

    Figure  12.  Relationship between water accumulation thickness ratio and rainfall intensity at six-lane test section

    图  13  八车道试验路段积水厚度比与降雨强度的关系

    Figure  13.  Relationship between water accumulation thickness ratio and rainfall intensity at eight-lane test section

    表  1  试验路段设计参数

    Table  1.   Design parameters of test section

    道路宽度/m 纵坡/% 超高/% 合成坡度/% 长度/m 超高渐变率
    15.00~18.75 0.3~3.0 2~8 2.02~8.54 225~300 1/330~1/200
    下载: 导出CSV

    表  2  路面参数设置

    Table  2.   Pavement parameters setting

    参数选项 设置情况
    壁面运动 固定壁面
    剪切条件 无剪切
    壁面粗糙度 标准
    粗糙高度 0.55 mm
    下载: 导出CSV

    表  3  极差分析结果

    Table  3.   Range analysis result

    参数 合成坡度 降雨强度 道路宽度 超高渐变率
    极差 0.024 0.064 0.041 0.019
    下载: 导出CSV
  • [1] LUO Wen-ting, WANG K C P, LI Lin. Field test validation of water film depth (WFD) prediction models for pavement surface drainage[J]. International Journal of Pavement Engineering, 2019, 20(10): 1170-1181. doi: 10.1080/10298436.2017.1394099
    [2] LUO Wen-ting, LI Lin, WANG K C P, et al. Surface drainage evaluation of asphalt pavement using a new analytical water film depth model[J]. Road Materials and Pavement Design, 2020, 21(7): 1985-2004. doi: 10.1080/14680629.2019.1590220
    [3] PICCARDI A, COLACE L. Optical detection of dangerous road conditions[J]. Sensors, 2019, 19(6): 1360. doi: 10.3390/s19061360
    [4] SINGH A K, ZHU Y, HAN M, et al. Simultaneous load and temperature measurement using Lophine-coated fiber Bragg gratings[J]. Smart Materials and Structures, 2016, 25(11): 115019. doi: 10.1088/0964-1726/25/11/115019
    [5] 罗京, 刘建蓓, 王元庆. 路面水膜深度预测模型验证试验[J]. 中国公路学报, 2015, 28(12): 57-63. doi: 10.3969/j.issn.1001-7372.2015.12.008

    LUO Jing, LIU Jian-bei, WANG Yuan-qing. Validation test on pavement water film depth prediction model[J]. China Journal of Highway and Transport, 2015, 28(12): 57-63. (in Chinese) doi: 10.3969/j.issn.1001-7372.2015.12.008
    [6] 罗京, 刘建蓓, 戈普塔, 等. 路面水膜厚度检验评价方法[J]. 交通信息与安全, 2016, 34(6): 54-59, 82. doi: 10.3963/j.issn1674-4861.2016.06.008

    LUO Jing, LIU Jian-bei, GOPTA P K, et al. An inspection and evaluation method of thickness of water film on road surface[J]. Journal of Transport Information and Safety, 2016, 34(6): 54-59, 82. (in Chinese) doi: 10.3963/j.issn1674-4861.2016.06.008
    [7] 季天剑, 黄晓明, 刘清泉, 等. 沥青路面表面水膜厚度试验[J]. 公路交通科技, 2004, 21(12): 14-17. doi: 10.3969/j.issn.1002-0268.2004.12.004

    JI Tian-jian, HUANG Xiao-ming, LIU Qing-quan, et al. Test depth of water film on asphalt pavement surface[J]. Journal of Highway and Transportation Research and Development, 2004, 21(12): 14-17. (in Chinese) doi: 10.3969/j.issn.1002-0268.2004.12.004
    [8] 黄镜入, 时海龙, 崔庚鑫. 基于无人机图像的高速公路积水预警系统设计[J]. 工业控制计算机, 2020, 33(3): 41-44. doi: 10.3969/j.issn.1001-182X.2020.03.016

    HUANG Jing-ru, SHI Hai-long, CUI Geng-xin. Design of highway water warning system based on UAV image[J]. Industrial Control Computer, 2020, 33(3): 41-44. (in Chinese) doi: 10.3969/j.issn.1001-182X.2020.03.016
    [9] 孙婧. 基于改进LEACH算法的路面积水深度测量系统的设计与实现[J]. 计算机测量与控制, 2014, 22(4): 1297-1299. doi: 10.3969/j.issn.1671-4598.2014.04.102

    SUN Jing. Pavement water depth measurement system design based on LEACH algorithm[J]. Computer Measurement and Control, 2014, 22 (4): 1297-1299. (in Chinese) doi: 10.3969/j.issn.1671-4598.2014.04.102
    [10] LUO Wen-ting, LI Lin. Estimation of water film depth for rutting pavement using IMU and 3D laser imaging data[J]. International Journal of Pavement Engineering, 2021, 22(10): 1334-1349. doi: 10.1080/10298436.2019.1684495
    [11] LUO Wen-ting, LI Lin. Development of a new analytical water film depth (WFD) prediction model for asphalt pavement drainage evaluation[J]. Construction and Building Materials, 2019, 218: 530-542. doi: 10.1016/j.conbuildmat.2019.05.142
    [12] MA Yao-lu, GENG Yan-fen, CHEN Xian-hua, et al. Prediction for asphalt pavement water film thickness based on artificial neural network[J]. Journal of Southeast University (English Edition), 2017, 33(4): 490-495.
    [13] ZAGVOZDA M, ŽELJKO K. Analysis of solutions for superelevation design from standpoint of efficient drainage[J]. Road and Rail Infrastructure, 2016(5): 209-215
    [14] RESSEL W, WOLFF A, ALBER S, et al. Modelling and simulation of pavement drainage[J]. International Journal of Pavement Engineering, 2019, 20(7): 801-810 doi: 10.1080/10298436.2017.1347437
    [15] LIU Shi-he, TAI Wei, FAN Min, et al. Numerical simulation of atomization rainfall and the generated flow on a slope[J]. Journal of Hydrodynamics, 2012, 24(2): 273-279. doi: 10.1016/S1001-6058(11)60244-8
    [16] CHARBENEAU R, JEONG J, BARRETT M. Highway drainage at superelevation transitions[J]. Highway Design, 2008(3): 1-180.
    [17] 季天剑, 黄晓明, 刘清泉, 等. 道路表面水膜厚度预测模型[J]. 交通运输工程学报, 2004, 4(3): 1-3. http://transport.chd.edu.cn/article/id/200403001

    JI Tian-jian, HUANG Xiao-ming, LIU Qing-quan, et al. Prediction model of rain water depth on road surface[J]. Journal of Traffic and Transportation Engineering, 2004, 4(3): 1-3. (in Chinese) http://transport.chd.edu.cn/article/id/200403001
    [18] 季天剑, 高玉峰, 陈荣生. 轿车轮胎动力滑水分析[J]. 交通运输工程学报, 2010, 10(5): 57-60. http://transport.chd.edu.cn/article/id/201005010

    JI Tian-jian, GAO Yu-feng, CHEN Rong-sheng. Dynamic hydroplaning analysis of car tire[J]. Journal of Traffic and Transportation Engineering, 2010, 10(5): 57-60. (in Chinese) http://transport.chd.edu.cn/article/id/201005010
    [19] 周海超, 陈磊, 翟辉辉, 等. 基于CFD的轮胎滑水及其性能影响因素分析[J]. 重庆交通大学学报(自然科学版), 2017, 36(1): 110-116. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201701020.htm

    ZHOU Hai-chao, CHEN Lei, ZHAI Hui-hui, et al. Reserch on flow field and influencing factors of tire hydroplaning based on CFD method[J]. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(1): 110-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201701020.htm
    [20] HERMANGE C, OGER G, CHENADEC Y L, et al. A 3D SPH-FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 355: 558-590. doi: 10.1016/j.cma.2019.06.033
    [21] 黄晓明, 刘修宇, 曹青青, 等. 积水路面轮胎部分滑水数值模拟[J]. 湖南大学学报(自然科学版), 2018, 45(9): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201809013.htm

    HUANG Xiao-ming, LIU Xiu-yu, CAO Qing-qing, et al. Numerical simulation of tire partial hydroplaning on flooded pavement[J]. Journal of Hunan University (Natural Sciences), 2018, 45(9): 113-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201809013.htm
    [22] 李映夏, 焦圣明, 包云轩, 等. 高速公路路面干湿状态判别及积水模型应用研究[J]. 热带气象学报, 2017, 33(4): 558-567. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201704013.htm

    LI Ying-xia, JIAO Sheng-ming, BAO Yun-xuan, et al. Dry and wet state discrimination and the application of water/snow accumulation model on the road surface of expressway[J]. Journal of Tropical Meteorology, 2017, 33(4): 558-567. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201704013.htm
    [23] 张驰, 王博, 贺九平, 等. 基于行车动力学的高速公路积水路段行车风险分析[J]. 交通信息与安全, 2019, 37(5): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201905002.htm

    ZHANG Chi, WANG Bo, HE Jiu-ping, et al. Traffic risk analysis of ponding sections on freeways based on driving dynamics[J]. Journal of Transport Information and Safety, 2019, 37(5): 9-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201905002.htm
    [24] 张驰, 郭鑫鑫, 崔卜心. 不均匀积水条件对路面行车安全的影响[J]. 公路交通科技, 2014, 31(10): 104-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201410017.htm

    ZHANG Chi, GUO Xin-xin, CUI Bu-xin. Influence of uneven wet pavement surface condition on driving safety[J]. Journal of Highway and Transportation Research and Development, 2014, 31(10): 104-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201410017.htm
    [25] 徐进, 彭其渊, 邵毅明. 直线路段积水路面车辆事故产生机理分析[J]. 中国公路学报, 2009, 22(1): 97-103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200901018.htm

    XU Jin, PENG Qi-yuan, SHAO Yi-ming. Mechanism analysis of vehicle accident on surface gathered water in straight sections[J]. China Journal of Highway and Transport, 2009, 22(1): 97-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200901018.htm
    [26] 管朝鹏. 基于DPM及EWF模型的积水分布研究[D]. 重庆: 重庆交通大学, 2015.

    GUAN Chao-peng. Research on the distribution of accumulated water based on DPM and EWF model[D]. Chongqing: Chongqing Jiaotong University, 2015. (in Chinese)
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  727
  • HTML全文浏览量:  276
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回