留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维弹塑性轮轨滑动接触热机耦合分析

杨冰 戎有鑫 阳光武 肖守讷 朱涛

杨冰, 戎有鑫, 阳光武, 肖守讷, 朱涛. 三维弹塑性轮轨滑动接触热机耦合分析[J]. 交通运输工程学报, 2022, 22(2): 208-218. doi: 10.19818/j.cnki.1671-1637.2022.02.016
引用本文: 杨冰, 戎有鑫, 阳光武, 肖守讷, 朱涛. 三维弹塑性轮轨滑动接触热机耦合分析[J]. 交通运输工程学报, 2022, 22(2): 208-218. doi: 10.19818/j.cnki.1671-1637.2022.02.016
YANG Bing, RONG You-xin, YANG Guang-wu, XIAO Shou-ne, ZHU Tao. Thermal-mechanical coupling analysis of three-dimensional elastic-plastic wheel-rail sliding contact[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 208-218. doi: 10.19818/j.cnki.1671-1637.2022.02.016
Citation: YANG Bing, RONG You-xin, YANG Guang-wu, XIAO Shou-ne, ZHU Tao. Thermal-mechanical coupling analysis of three-dimensional elastic-plastic wheel-rail sliding contact[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 208-218. doi: 10.19818/j.cnki.1671-1637.2022.02.016

三维弹塑性轮轨滑动接触热机耦合分析

doi: 10.19818/j.cnki.1671-1637.2022.02.016
基金项目: 

国家重点研发计划 2021YFB3400703

四川省国际科技创新合作项目 2022YFH0075

牵引动力国家重点实验室自主课题 2022TPL-T03

详细信息
    作者简介:

    杨冰(1979-), 男, 湖南衡阳人, 西南交通大学研究员, 工学博士, 从事车辆结构强度与可靠性研究

  • 中图分类号: U113

Thermal-mechanical coupling analysis of three-dimensional elastic-plastic wheel-rail sliding contact

Funds: 

National Key Research and Development Program of China 2021YFB3400703

International Science and Technology Innovation Cooperation Project of Sichuan 2022YFH0075

Independent Project of State Key Laboratory of Traction Power 2022TPL-T03

More Information
  • 摘要: 为提高轮轨滑动接触热响应分析的准确性,基于Johnson-Cook材料模型,充分考虑含摩擦因数在内多种材料属性的温度相关性、3种热传递方式和轮轨实际廓形,建立了全比例三维弹塑性轮轨滑动接触有限元模型,采用完全耦合法对滑动接触状态下的轮轨进行热机耦合分析;研究了车轮以1 m·s-1速度沿钢轨滑行0.1 s时的轮轨温度场和应力场分布特性,分析了轴重、相对滑动速度对轮轨接触区温度场的影响,得到了热影响层深度、热影响层宽度、轮轨表层温度随轴重、相对滑动速度的变化关系。分析结果表明:轮轨最大等效应力发生在次表层接触斑中心处,车轮表层最高温度发生在接触斑后半部分中心处,车轮表层最高温度为848 ℃,钢轨表层最高温度为768 ℃,钢轨表层最高温度低于车轮表层最高温度;轮轨热影响层很薄,车轮热影响层深度约为4.22 mm,钢轨热影响层深度约为3 mm;轮轨热影响层深度随轴重增大无明显变化,而宽度随轴重的增大而增大,轮轨热影响层深度随相对滑动速度的增大而减小,而宽度随相对滑动速度增大无明显变化,轮轨表层温度随轴重和相对滑动速度的增大而增大,且相对滑动速度对轮轨热响应影响更大。全比例三维弹塑性轮轨滑动接触有限元模型及热机完全耦合法能够更加准确地预测轮轨滑动接触热响应,对合理开展轮轨热损伤和热疲劳研究具有重要意义。

     

  • 图  1  三维弹塑性轮轨滑动接触有限元模型

    Figure  1.  Finite element model of three-dimensional elastic-plastic wheel-rail sliding contact

    图  2  接触压力分布

    Figure  2.  Distribution of contact pressure

    图  3  接触斑形状

    Figure  3.  Shape of contact patch

    图  4  车轮表层温度场

    Figure  4.  Temperature field of wheel surface

    图  5  车轮纵断面温度场

    Figure  5.  Temperature field of wheel longitudinal section

    图  6  钢轨纵断面温度场

    Figure  6.  Temperature field of rail longitudinal section

    图  7  车轮表面应力场

    Figure  7.  Stress field of wheel surface

    图  8  车轮纵断面应力场

    Figure  8.  Stress field of wheel longitudinal section

    图  9  钢轨纵断面应力场

    Figure  9.  Stress field of rail longitudinal section

    图  10  车轮表层温升曲线

    Figure  10.  Temperature rise curves of wheel surface

    图  11  钢轨表层温升曲线

    Figure  11.  Temperature rise curves of rail surface

    图  12  轴重对轮轨表层温升的影响

    Figure  12.  Influence of axle load on temperature rise of wheel-rail surface

    图  13  轴重对轮轨热影响层范围的影响

    Figure  13.  Influence of axle load on range of wheel-rail heat-affected layer

    图  14  相对滑动速度对轮轨表层温升的影响

    Figure  14.  Influence of relative sliding speed on temperature rise of wheel-rail surface

    图  15  相对滑动速度对轮轨热影响层范围的影响

    Figure  15.  Influence of relative sliding speed on range of wheel-rail heat-affected layer

    表  1  (AAR) B级车轮钢力学性能参数

    Table  1.   Mechanical properties of AAR class B wheel steel

    屈服强度/MPa 极限强度/MPa 断裂伸长率/%
    550 900 8
    下载: 导出CSV

    表  2  不同温度下的材料参数

    Table  2.   Material parameters at different temperatures

    温度/℃ 弹性模量/GPa 泊松比 热膨胀系数/(10-6-1) 热导率/[W·(m·℃)-1] 比热容/[J·(kg·℃)-1] 摩擦因数
    0 9.89 59.71 419.5
    24 213 0.295 10.01 58.46 435.9 0.334
    230 201 0.307 10.82 47.35 558.2 0.263
    358 193 0.314 11.15 40.64 634.3 0.225
    452 172 0.320 11.27 37.80 662.7 0.197
    567 102 0.326 11.31 34.32 700.2 0.163
    704 50 0.334 11.28 30.18 731.4 0.131
    900 43 0.345 11.25 26.37 662.7 0.100
    下载: 导出CSV

    表  3  Johnson-Cook材料模型参数

    Table  3.   Parameters of Johnson-Cook material model

    A/MPa B/MPa n m Tt/℃ Tm/℃
    550 1 278 0.5 1 110 410
    下载: 导出CSV
  • [1] KENNEDY T C, WAY C, HARDER R F. Modeling of martensite formation in railcar wheels due to wheel slides[C]//EKBERG A, KABO E, RINGSBERG J. Proceedings of the Sixth International Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Gothenburg: Chalmers University of Technology, 2003: 511-516.
    [2] 熊嘉阳, 邓永权, 曹亚博, 等. 重载铁路轮轨磨耗及其对安全运行的影响[J]. 西南交通大学学报, 2014, 49(2): 302-309. doi: 10.3969/j.issn.0258-2724.2014.02.018

    XIONG Jia-yang, DENG Yong-quan, CAO Ya-bo, et al. Wheel-rail wear on heavy haul lines and its influences on running stability of trains[J]. Journal of Southwest Jiaotong University, 2014, 49(2): 302-309. (in Chinese) doi: 10.3969/j.issn.0258-2724.2014.02.018
    [3] 杨新文, 顾少杰, 周顺华, 等. 30 t轴重重载铁路轮轨滑动接触引起的钢轨热相变分析[J]. 铁道学报, 2016, 38(7): 84-90. doi: 10.3969/j.issn.1001-8360.2016.07.012

    YANG Xin-wen, GU Shao-jie, ZHOU Shun-hua, et al. Analysis of rail thermal phase transformation due to wheel-rail sliding contact for heavy-haul railway with 30 t axle-load[J]. Journal of the China Railway Society, 2016, 38(7): 84-90. (in Chinese) doi: 10.3969/j.issn.1001-8360.2016.07.012
    [4] BÖHMER A, ERTZ M, KNOTHE K. Shakedown limit of rail surfaces including material hardening and thermal stresses[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26(10): 985-998. doi: 10.1046/j.1460-2695.2003.00690.x
    [5] AHLSTRÖM J, KARLSSON B. Modelling of heat conduction and phase transformations during sliding of railway wheels[J]. Wear, 2002, 253(1/2): 291-300.
    [6] CHEN Y Z, HE C G, ZHAO X J, et al. The influence of wheel flats formed from different braking conditions on rolling contact fatigue of railway wheel[J]. Engineering Failure Analysis, 2018, 93: 183-199. doi: 10.1016/j.engfailanal.2018.07.006
    [7] AHLSTRÖM J, KARLSSON B. Analytical 1D model for analysis of the thermally affected zone formed during railway wheel skid[J]. Wear, 1999, 232(1): 15-24. doi: 10.1016/S0043-1648(99)00167-2
    [8] 郭俊, 赵鑫, 金学松, 等. 全制动工况下轮轨热-机耦合效应的分析[J]. 摩擦学学报, 2006, 26(5): 489-493. doi: 10.3321/j.issn:1004-0595.2006.05.019

    GUO Jun, ZHAO Xin, JIN Xue-song, et al. Analysis of wheel/rail thermo-mechanical coupling effects in sliding case[J]. Tribology, 2006, 26(5): 489-493. (in Chinese) doi: 10.3321/j.issn:1004-0595.2006.05.019
    [9] 赵鑫, 金学松, 温泽峰, 等. 全滑动状态下轮轨接触热弹性应力[J]. 西南交通大学学报, 2008, 43(1): 51-56. doi: 10.3969/j.issn.0258-2724.2008.01.010

    ZHAO Xin, JIN Xue-song, WEN Ze-feng, et al. Thermoelastic stresses due to wheel-rail contact in pure sliding state[J]. Journal of Southwest Jiaotong University, 2008, 43(1): 51-56. (in Chinese) doi: 10.3969/j.issn.0258-2724.2008.01.010
    [10] CHEN Y C, LEE S Y. Elastic-plastic wheel-rail thermal contact on corrugated rails during wheel braking[J]. Journal of Tribology, 2009, 131(1): 1-9.
    [11] TALAMINI B, GORDON J, PERLMAN A B. Investigation of the effects of sliding on wheel tread damage[C]//ASME. International Mechanical Engineering Congress and Exposition. New York: ASME, 2005: 119-125.
    [12] 李伟, 温泽峰, 吴磊, 等. 车轮滑动时钢轨热弹塑性有限元分析[J]. 机械工程学报, 2010, 46(10): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201010019.htm

    LI Wei, WEN Ze-feng, WU Lei, et al. Thermo-elasto-plastic finite element analysis of rail during wheel sliding[J]. Journal of Mechanical Engineering, 2010, 46(10): 95-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201010019.htm
    [13] 李伟, 温泽峰, 吴磊, 等. 滚滑接触下钢轨热力耦合分析[J]. 工程力学, 2010, 27(8): 199-204, 216. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201008035.htm

    LI Wei, WEN Ze-feng, WU Lei, et al. Thermo-mechanical coupling analysis of rail in rolling-sliding contact[J]. Engineering Mechanics, 2010, 27(8): 199-204, 216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201008035.htm
    [14] 李伟, 温泽峰, 吴磊, 等. 车轮滑动时钢轨热机耦合有限元分析[J]. 润滑与密封, 2009, 34(1): 24-28. doi: 10.3969/j.issn.0254-0150.2009.01.007

    LI Wei, WEN Ze-feng, WU Lei, et al. Thermo-mechanical coupling FEM analysis of rail during wheel sliding[J]. Lubrication Engineering, 2009, 34(1): 24-28. (in Chinese) doi: 10.3969/j.issn.0254-0150.2009.01.007
    [15] 刘洋, 蒋硕, 吴亚平, 等. 剥离掉块对轮轨滑动接触热弹塑性的影响[J]. 交通运输工程学报, 2016, 16(2): 46-55. doi: 10.3969/j.issn.1671-1637.2016.02.006

    LIU Yang, JIANG Shuo, WU Ya-ping, et al. Effects of spallation on rail thermo-elasto-plasticity in wheel-rail sliding contact[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 46-55. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.02.006
    [16] 刘洋, 刘振, 吴亚平, 等. 考虑变摩擦系数的轮轨系统滑动接触热弹塑性应力分析[J]. 中国铁道科学, 2015, 36(5): 87-93. doi: 10.3969/j.issn.1001-4632.2015.05.13

    LIU Yang, LIU Zhen, WU Ya-ping, et al. Thermo-elasto-plastic analysis of wheel-rail sliding contact stress with variable friction coefficient[J]. China Railway Science, 2015, 36(5): 87-93. (in Chinese) doi: 10.3969/j.issn.1001-4632.2015.05.13
    [17] SHI Xi, WU Ai-zhong, JIN Chuan, et al. Thermomechanical modeling and transient analysis of sliding contacts between an elastic-plastic asperity and a rigid isothermal flat[J]. Tribology International, 2015, 81: 53-60. doi: 10.1016/j.triboint.2014.08.004
    [18] WU Lei, WEN Ze-feng, LI Wei, et al. Thermo-elastic-plastic finite element analysis of wheel/rail sliding contact[J]. Wear, 2011, 271(1/2): 437-443.
    [19] 吴磊, 温泽峰, 金学松. 车轮全滑动轮轨摩擦温升三维有限元分析[J]. 机械工程学报, 2008, 44(3): 57-63. doi: 10.3321/j.issn:0577-6686.2008.03.010

    WU Lei, WEN Ze-feng, JIN Xue-song. Finite element analysis of wheel/rail frictional temperature during wheel complete slides on rail[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 57-63. (in Chinese) doi: 10.3321/j.issn:0577-6686.2008.03.010
    [20] 吴磊, 温泽峰, 金学松. 车轮原地打滑时轮轨接触界面摩擦温升分析[J]. 工程力学, 2007, 24(10): 150-155. doi: 10.3969/j.issn.1000-4750.2007.10.026

    WU Lei, WEN Ze-feng, JIN Xue-song. Wheel/rail frictional temperature analysis under wheel rolling[J]. Engineering Mechanics, 2007, 24(10): 150-155. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.10.026
    [21] 肖乾, 张海, 王成国, 等. 函数型摩擦系数条件下轮轨滚动和滑动接触的热机耦合分析[J]. 中国铁道科学, 2013, 34(4): 60-65. doi: 10.3969/j.issn.1001-4632.2013.04.10

    XIAO Qian, ZHANG Hai, WANG Cheng-guo, et al. Thermal mechanical coupling analysis of wheel rail rolling and sliding contacts under functional friction coefficient[J]. China Railway Science, 2013, 34(4): 60-65. (in Chinese) doi: 10.3969/j.issn.1001-4632.2013.04.10
    [22] 肖乾, 王成国, 周新建, 等. 不同摩擦系数条件下的轮轨滚动接触特性分析[J]. 中国铁道科学, 2011, 32(4): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201104013.htm

    XIAO Qian, WANG Cheng-guo, ZHOU Xin-jian, et al. Analysis on the characteristics of wheel/rail rolling contact under different friction coefficient[J]. China Railway Science, 2011, 32(4): 66-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201104013.htm
    [23] 肖乾, 林凤涛, 王成国, 等. 变摩擦系数条件下的轮轨滚动接触特性分析[J]. 铁道学报, 2012, 34(6): 24-28. doi: 10.3969/j.issn.1001-8360.2012.06.005

    XIAO Qian, LIN Feng-tao, WANG Cheng-guo, et al. Analysis on wheel-rail rolling contact characteristics with variable friction coefficient[J]. Journal of the China Railway Society, 2012, 34(6): 24-28. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.06.005
    [24] CAPRIOLI S, EKBERG A. Numerical evaluation of the material response of a railway wheel under thermomechanical braking conditions[J]. Wear, 2014, 314(1/2): 181-188.
    [25] WU Ya-ping, WEI Yun-peng, LIU Yang, et al. 3-D analysis of thermal-mechanical behavior of wheel/rail sliding contact considering temperature characteristics of materials[J]. Applied Thermal Engineering, 2017, 115: 455-462. doi: 10.1016/j.applthermaleng.2016.12.136
    [26] 俞辉, 王赞农, 孙纲. 地铁列车轮对卡死应急处置探讨[J]. 城市轨道交通研究, 2014, 17(6): 114-116, 120. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201406036.htm

    YU Hui, WANG Zan-nong, SUN Gang. On the emergency disposal of wheel stuck in metro cars[J]. Urban Mass Transit, 2014, 17(6): 114-116, 120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201406036.htm
    [27] 李大伟, 何开浒, 李兰. 贵阳地铁1号线电客车轮轴卡死、闸片抱死异常情况下应急处理措施研究[J]. 科技创新与应用, 2020(22): 128-130. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY202022054.htm

    LI Da-wei, HE Kai-hu, LI Lan. Study on emergency treatment measures in the case of abnormal wheel axel jams and brake pads locking of the electric passenger car on Guiyang Metro Line 1[J]. Technology Innovation and Application, 2020(22): 128-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY202022054.htm
    [28] 赵鑫, 温泽峰, 金学松. 表面不平顺对轮轨摩擦温度场的影响[J]. 交通运输工程学报, 2005, 5(2): 19-22. doi: 10.3321/j.issn:1671-1637.2005.02.005

    ZHAO Xin, WEN Ze-feng, JIN Xue-song. Uneven surface effect on temperature distribution of wheel and rail contact[J]. Journal of Traffic and Transportation Engineering, 2005, 5(2): 19-22. (in Chinese) doi: 10.3321/j.issn:1671-1637.2005.02.005
    [29] 季怀中, 苏航, 杨才福, 等. 车轮钢摩擦热影响区的相变及其损伤机理[J]. 钢铁研究学报, 2005, 17(4): 55-59. doi: 10.3321/j.issn:1001-0963.2005.04.013

    JI Huai-zhong, SU Hang, YANG Cai-fu, et al. Friction heat induced phase transformation and spalling mechanism of train wheel steel[J]. Journal of Iron and Steel Research, 2005, 17(4): 55-59. (in Chinese) doi: 10.3321/j.issn:1001-0963.2005.04.013
    [30] 朱敏, 徐光, 王瑞敏, 等. U77CrNb钢轨钢连续冷却转变曲线研究[J]. 钢铁研究, 2016, 44(2): 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYJ201602011.htm

    ZHU Min, XU Guang, WANG Rui-min, et al. Study on continuous cooling transformation curves of rail steel U77CrNb[J]. Research on Iron and Steel, 2016, 44(2): 29-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTYJ201602011.htm
    [31] JERGÉUS J, ODENMARCK C, LUNDÉN R, et al. Full-scale railway wheel flat experiments[J]. Journal of Rail and Rapid Transit, 1999, DOI: 10.1243/0954409991530985.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  614
  • HTML全文浏览量:  255
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-27
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回