Acquisition method of dynamic load of high-speed train gearbox bearing based on bench simulation model
-
摘要: 为获取高速列车齿轮箱轴承在服役振动环境下的动载荷,由动力学软件SIMPACK建立了某型高速列车齿轮箱台架仿真模型;基于谱修正的多点相干随机振动控制算法,通过虚拟激振器施加纵向、横向、垂向的轴箱实测加速度功率谱,再现了齿轮箱受到的多点相干线路激励;通过台架仿真模型获取了齿轮箱输入轴电机侧圆柱滚子轴承在服役振动环境下的轴承径向载荷、轴承中心轨迹和滚子与外圈滚道接触载荷。研究结果表明:通过谱修正控制算法,在优化速度指数为0.3,进行10次迭代后,轴箱的仿真与实测加速度功率谱相对误差趋于稳定,最大相对误差小于10%;不同的电机输入扭矩下,有无线路激励齿轮箱轴承动载荷表明,电机输入扭矩决定了齿轮箱轴承动载荷均值,而线路激励是齿轮箱轴承动载荷波动的主要原因;频谱分析显示,线路激励增大了轴承径向载荷在中低频带与齿轮啮合频率处的能量;同时线路激励增大了滚子与外圈滚道接触载荷,但是接触载荷的接触区和均值无明显变化;当无线路激励时,轴承中心轨迹沿齿轮的压力角振动,与垂直轴夹角为26°;线路激励使轴承中心轨迹波动范围更大、更随机,在方向上没有明显特征。可见,电机输入扭矩和线路激励是高速列车齿轮箱轴承动载荷的主要来源,台架仿真模型可为高速列车齿轮箱轴承动响应评估和载荷谱建立提供有价值的参考。Abstract: To acquire the dynamic loads of gearbox bearings for high-speed trains under the operational vibration environment, a bench simulation model for the gearbox of a high-speed train was built using the dynamics software SIMPACK. The multi-point coherent random vibration control algorithm based on the spectrum correction was used to reproduce the multi-point coherent line excitation on the gearbox by applying the longitudinal, lateral, and vertical measured acceleration power spectra of the axle box with a virtual exciter. Moreover, for the cylindrical roller bearing on the motor side of the gearbox input shaft, the bench simulation model was employed to obtain its radial load and center trajectory and the contact load between the roller and outer ring raceway under the operational vibration environment. Analysis results indicate that by the control algorithm based on the spectrum correction, when the optimization speed index is 0.3, the relative error between the simulated and measured acceleration power spectra of the axle box tends to be stable after 10 iterations, and the maximum relative error is less than 10%. Under different input torques of motors, the dynamic loads of gearbox bearings with and without line excitation show that the input torque of motors determines the mean of the dynamic loads, and line excitation is the main reason for the fluctuation in the dynamic loads. The spectrum analysis reveals that the line excitation increases the energy of the radial load of the bearing in the middle and low frequency bands and gear meshing frequency. Meanwhile, the line excitation increases the contact load between the roller and the outer ring raceway, but the contact area and mean of the contact load have no significant change. When there is no line excitation, the trajectory of the bearing center vibrates along the pressure angle of gears, and the angle with the vertical axis is 26°. The line excitation makes the fluctuation range of the trajectory of the bearing center larger and more random, and no obvious characteristic is shown in any direction. So, the input torque of motors and line excitation are the main sources of the dynamic loads of gearbox bearings for high-speed trains, and the bench simulation model can provide a valuable reference for the dynamic response evaluation and load spectrum establishment of gearbox bearings for high-speed trains. 2 tabs, 20 figs, 28 refs.
-
表 1 不同耦合约束齿轮箱箱体固有频率对比
Table 1. Comparison of natural frequencies of gearbox housing with different coupling constraints
模态阶数 固有频率/Hz 误差/% 试验模态 刚性MPC 柔性MPC 刚性MPC 柔性MPC 1 580.2 664.9 603.9 14.6 4.1 2 691.9 808.1 680.7 16.8 -1.6 3 771.8 941.4 783.8 22.0 1.6 4 814.2 980.2 861.1 20.4 5.8 5 891.4 1 113.2 880.6 24.9 -1.2 6 943.6 1 122.1 941.1 18.9 -0.3 7 994.7 1 317.6 984.4 32.5 -1.0 8 1 042.9 1 363.6 1 065.3 30.8 2.1 表 2 轴承径向载荷对比
Table 2. Comparison of bearing radial loads
输入扭矩/(N·m) 无线路激励/kN 线路激励/kN 均值 标准差 均值 标准差 600 4.08 0.02 4.10 0.51 1 100 7.55 0.04 7.56 0.49 1 600 10.97 0.08 11.11 0.45 -
[1] 黄冠华. 高速列车齿轮传动系统动态特性研究[D]. 成都: 西南交通大学, 2015.HUANG Guan-hua. Study on dynamic characteristic of gear transmission system of high-speed train[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese) [2] 王文静, 李广全, 韩俊臣, 等. 高速列车齿轮箱箱体动应力影响规律[J]. 交通运输工程学报, 2019, 19(1): 85-95. doi: 10.3969/j.issn.1671-1637.2019.01.009WANG Wen-jing, LI Guang-quan, HAN Jun-chen, et al. Influence rule of dynamic stress of high-speed train gearbox housing[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 85-95. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.01.009 [3] 李广全, 刘志明, 呙如兵, 等. 高速列车齿轮箱应力响应与疲劳损伤评估[J]. 交通运输工程学报, 2018, 18(1): 79-88. doi: 10.3969/j.issn.1671-1637.2018.01.008LI Guang-quan, LIU Zhi-ming, GUO Ru-bing, et al. Stress response and fatigue damage assessment of high-speed train gearbox[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 79-88. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.01.008 [4] HU Wei-gang, LIU Zhi-ming, LIU De-kun, et al. Fatigue failure analysis of high-speed train gearbox housings[J]. Engineering Failure Analysis, 2017, 73: 57-71. doi: 10.1016/j.engfailanal.2016.12.008 [5] WANG Zhi-wei, MEI Gui-ming, ZHANG Wei-hua, et al. Effects of polygonal wear of wheels on the dynamic performance of the gearbox housing of a high-speed train[J]. Journal of Rail and Rapid Transit, 2018, 232(6): 1852-1863. doi: 10.1177/0954409717752998 [6] ZHANG Bing, TAN A C C, LIN Jian-hui. Gearbox fault diagnosis of high-speed railway train[J]. Engineering Failure Analysis, 2016, 66: 407-420. doi: 10.1016/j.engfailanal.2016.04.020 [7] 李广全, 王文静, 杨广雪. 高速列车齿轮箱载荷特性分析[J]. 机械工程学报, 2018, 54(4): 270-277. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804039.htmLI Guang-quan, WANG Wen-jing, YANG Guang-xue. Analysis on load characteristics of high-speed train gearbox[J]. Journal of Mechanical Engineering, 2018, 54(4): 270-277. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804039.htm [8] HUANG Guan-hua, ZHOU Ning, ZHANG Wei-hua. Effect of internal dynamic excitation of the traction system on the dynamic behavior of a high-speed train[J]. Journal of Rail and Rapid Transit, 2016, 230(8): 1899-1907. doi: 10.1177/0954409715617787 [9] 黄冠华, 王兴宇, 梅桂明, 等. 内外激励下高速列车齿轮箱箱体动态响应分析[J]. 机械工程学报, 2015, 51(12): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201512016.htmHUANG Guan-hua, WANG Xing-yu, MEI Gui-ming, et al. Dynamic response analysis of gearbox housing system subjected to internal and external excitation in high-speed train[J]. Journal of Mechanical Engineering, 2015, 51(12): 95-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201512016.htm [10] 朱海燕. 高速动车组齿轮箱箱体振动特性及疲劳失效研究[D]. 成都: 西南交通大学, 2019.ZHU Hai-yan. Study on vibration behaviour and fatigue failure of gearbox housing of high speed EMU[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese) [11] WU Hao, WU Ping-bo, LI Fan-song, et al. Fatigue analysis of the gearbox housing in high-speed trains under wheel polygonization using a multibody dynamics algorithm[J]. Engineering Failure Analysis, 2019, 100: 351-364. doi: 10.1016/j.engfailanal.2019.02.058 [12] 朱海燕, 王超文, 邬平波, 等. 基于小滚轮高频激励的高速列车齿轮箱箱体振动试验[J]. 交通运输工程学报, 2020, 20(5): 135-150. doi: 10.19818/j.cnki.1671-1637.2020.05.011ZHU Hai-yan, WANG Chao-wen, WU Ping-bo, et al. High-speed train gearbox housing vibration test based on small roller high-frequency excitation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 135-150. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.011 [13] 宫海彬. 高速列车传动系统可靠性试验方法研究[D]. 长春: 吉林大学, 2013.GONG Hai-bin. Research on reliability test method of high-speed train drive system[D]. Changchun: Jilin University, 2013. (in Chinese) [14] 林新海, 关云辉. 地铁车辆齿轮箱加速疲劳试验方法研究[J]. 轨道交通装备与技术, 2014(3): 20-21. doi: 10.3969/j.issn.2095-5251.2014.03.008LIN Xin-hai, GUAN Yun-hui. Research on accelerated fatigue test method of metro vehicle gearbox[J]. Rail Transportation Equipment and Technology, 2014(3): 20-21. (in Chinese) doi: 10.3969/j.issn.2095-5251.2014.03.008 [15] 查浩, 任尊松, 徐宁. 车轮扁疤激起的轴箱轴承冲击特性[J]. 交通运输工程学报, 2020, 20(4): 165-173. doi: 10.19818/j.cnki.1671-1637.2020.04.013ZHA Hao, REN Zun-song, XU Ning. Impact characteristics of axle box bearing due to wheel flat scars[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 165-173. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.013 [16] WANG Zhi-wei, CHENG Yao, ALLEN P, et al. Analysis of vibration and temperature on the axle box bearing of a high-speed train[J]. Vehicle System Dynamics, 2020, 58(10): 1605-1628. doi: 10.1080/00423114.2019.1645340 [17] LI Tao, SUN Wei, MENG Zhi-chao, et al. Dynamic investigation on railway vehicle considering the dynamic effect from the axle box bearings[J]. Advances in Mechanical Engineering, 2019, 11(4): 1-13. [18] 刘德昆, 李强, 王曦, 等. 动车组轴箱轴承基于实测载荷的寿命预测方法[J]. 机械工程学报, 2016, 52(22): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201622007.htmLIU De-kun, LI Qiang, WANG Xi, et al. Life prediction method for EMU axle box bearings based on actual measured loadings[J]. Journal of Mechanical Engineering, 2016, 52(22): 45-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201622007.htm [19] HOU Yu, WANG Xi. Development of an experimental system to measure the cage slip of cylindrical roller bearing[J]. Structural Health Monitoring, 2020, 19(2): 510-519. doi: 10.1177/1475921719856826 [20] HELSEN J, VANHOLLEBEKE F, MARRANT B, et al. Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes[J]. Renewable Energy, 2011, 36(11): 3098-3113. doi: 10.1016/j.renene.2011.03.023 [21] YANG Yi, MACE B R, KINGAN M J. A wave and finite element based homogenised model for predicting sound transmission through honeycomb panels[J]. Journal of Sound and Vibration, 2019, 463: 114963. doi: 10.1016/j.jsv.2019.114963 [22] 朱宁. 高速列车转向架构架结构损伤一致性载荷谱理论研究[D]. 北京: 北京交通大学, 2016.ZHU Ning. Theoretical research of damage consistency load spectra on bogie frame structures of high-speed trains[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese) [23] 孙刚, 任尊松, 辛欣, 等. 高速动车组齿轮传动系统振动特性[J]. 机械工程学报, 2019, 55(18): 104-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201918014.htmSUN Gang, REN Zun-song, XIN Xin, et al. Dynamics of gear transmission system of high-speed vehicle[J]. Journal of Mechanical Engineering, 2019, 55(18): 104-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201918014.htm [24] 杨强. 基于轴箱振动的轨道不平顺估计方法研究[D]. 成都: 西南交通大学, 2013.YANG Qiang. Research on estimation methods of track irregularities based on axle-box vibration[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese) [25] 孙琦, 张兵, 李艳萍, 等. 一种波长固定的车轮多边形在线故障检测方法[J]. 铁道科学与工程学报, 2018, 15(9): 2343-2348. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201809022.htmSUN Qi, ZHANG Bing, LI Yan-ping, et al. Wavelength-fixing mechanisms for detecting the wheel polygon-shaped fault onsite[J]. Journal of Railway Science and Engineering, 2018, 15(9): 2343-2348. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201809022.htm [26] 刘力. 基于车辆轴箱振动加速度的钢轨波磨检测方法研究[D]. 成都: 西南交通大学, 2018.LIU Li. Research on the detection method of rail corrugation based on vibration acceleration of a vehicle axle box[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese) [27] 豆硕, 刘志明, 毛立勇. 基于谱修正法的多维随机载荷时域模拟[J]. 华南理工大学学报(自然科学版), 2021, 49(8): 140-148. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202108016.htmDOU Shuo, LIU Zhi-ming, MAO Li-yong. Multi-dimensional random load time domain simulation based on spectrum correction method[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(8): 140-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202108016.htm [28] 张志, 孟少平, 周臻, 等. 振动台试验加速度积分方法[J]. 振动、测试与诊断, 2013, 33(4): 627-633, 725. doi: 10.3969/j.issn.1004-6801.2013.04.016ZHANG Zhi, MENG Shao-ping, ZHOU Zhen, et al. Numerical integration method of acceleration recodes for shaking table test[J]. Journal of Vibration, Measurement and Diagnosis, 2013, 33(4): 627-633, 725. (in Chinese) doi: 10.3969/j.issn.1004-6801.2013.04.016