留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非自由交通流的non-FIFO车辆轨迹估计算法

胡尧 赵睿莎

胡尧, 赵睿莎. 非自由交通流的non-FIFO车辆轨迹估计算法[J]. 交通运输工程学报, 2022, 22(2): 246-258. doi: 10.19818/j.cnki.1671-1637.2022.02.019
引用本文: 胡尧, 赵睿莎. 非自由交通流的non-FIFO车辆轨迹估计算法[J]. 交通运输工程学报, 2022, 22(2): 246-258. doi: 10.19818/j.cnki.1671-1637.2022.02.019
HU Yao, ZHAO Rui-sha. Non-FIFO vehicle trajectory estimation algorithm under non-free traffic flow[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 246-258. doi: 10.19818/j.cnki.1671-1637.2022.02.019
Citation: HU Yao, ZHAO Rui-sha. Non-FIFO vehicle trajectory estimation algorithm under non-free traffic flow[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 246-258. doi: 10.19818/j.cnki.1671-1637.2022.02.019

非自由交通流的non-FIFO车辆轨迹估计算法

doi: 10.19818/j.cnki.1671-1637.2022.02.019
基金项目: 

国家自然科学基金项目 12161016

国家自然科学基金项目 11661018

贵州省科技计划项目 [2020]5016

贵州省科技计划项目 [2017]5788

详细信息
    作者简介:

    胡尧(1971-), 男, 贵州遵义人, 贵州大学教授, 从事城市道路交通问题与应用统计研究

    通讯作者:

    赵睿莎(1997-), 女, 贵州毕节人, 贵州大学理学硕士研究生

  • 中图分类号: U495

Non-FIFO vehicle trajectory estimation algorithm under non-free traffic flow

Funds: 

National Natural Science Foundation of China 12161016

National Natural Science Foundation of China 11661018

Guizhou Province Science and Technology Planning Project [2020]5016

Guizhou Province Science and Technology Planning Project [2017]5788

More Information
  • 摘要: 将三角基本图的交通状态细分为自由流、中断和拥堵;基于非自由流特性,重新划分了U型时空域,以此找到适合的波速范围;重新确定了上游边界累积流量,使得边界函数刻画不过于宽泛;建立了非自由流Newell模型,并提出了使用该模型的判断条件;引入了车辆秩参数,达到在多车道上描述车辆超车现象的目的,并建立了更精确的车辆秩估计模型,从而建立了非自由流Newell扩展模型;提出了针对非自由流下2种情形的车辆轨迹估计算法,根据是否存在超车现象分为先进先出(FIFO)情形与非先进先出(non-FIFO)情形;结合数值模拟和实际交通案例,验证了算法的有效性。研究结果表明:2种情形下的轨迹估计算法都是有效的,当超车现象存在时,non-FIFO情形的估计效果较准确和稳健;在数值模拟研究中,non-FIFO情形的估计误差相对FIFO情形下降13.45%,non-FIFO情形更优;实际交通案例中,2个小汽车数据集在non-FIFO情形的估计误差相对FIFO情形均有所下降,下降幅度分别为2.38%、2.04%,且估计误差均服从高斯混合模型;公交车数据集因不存在超车现象,non-FIFO与FIFO情形的估计误差相等,均为4.90%,且估计误差服从伽马分布。可见,所建立的非自由流Newell模型对于中断多或拥堵状态占比多的交通数据均是有效可行的,且所提出的non-FIFO和FIFO情形的轨迹估计算法效果表现良好。

     

  • 图  1  研究框架

    Figure  1.  Research framework

    图  2  细分交通状态

    Figure  2.  Refine traffic state

    图  3  U型时空域划分

    Figure  3.  U-shaped spatial-temporal domain devision

    图  4  t0时刻路段划分

    Figure  4.  Division of road section at time t0

    图  5  修正系数与平均估计误差关系

    Figure  5.  Relationship between correction factor and mean estimation error

    图  6  车辆轨迹估计曲线

    Figure  6.  Vehicle trajectory estimation curves

    图  7  估计误差分布

    Figure  7.  Distributions of estimation error

    图  8  车辆轨迹曲线

    Figure  8.  Vehicle trajectory curves

    图  9  车709轨迹估计曲线

    Figure  9.  Car 709 trajectory estimation curves

    图  10  数据集1估计误差分布

    Figure  10.  Estimated error distributions of dataset 1

    图  11  数据集2估计误差分布

    Figure  11.  Estimated error distributions of dataset 2

    图  12  数据集3估计误差分布

    Figure  12.  Estimated error distribution of dataset 3

    图  13  超车比例分布

    Figure  13.  Overtaking percentage distributions

    表  1  模拟数据集参数值

    Table  1.   Parameter values of simulated dataset

    N0/veh W/(km·h-1) K/(veh·km-1) λ M
    0 25.27 100 0.6 0.003 2
    下载: 导出CSV

    表  2  模拟数据估计误差汇总

    Table  2.   Summary of simulation data estimation errors

    Ef/% σ(Ef) En/% σ(En) $\tilde E$
    21.48 11.988 18.59 8.499 13.45
    下载: 导出CSV

    表  3  实际交通案例详细信息

    Table  3.   Details of actual traffic cases

    数据集 车辆类型 起点/km 终点/km 车辆数/veh 轨迹点/个
    1 小汽车 0.600 2.277 716 178 565
    2 小汽车 0.984 2.277 718 147 656
    3 公交车 0.874 1.590 35 4 233
    下载: 导出CSV

    表  4  实际交通案例参数值

    Table  4.   Parameter values of actual traffic cases

    数据集 N0/veh W/(km·h-1) K/(veh·km-1) λ M
    1 1 29.16 142.239 1.0 0.000 0
    2 1 25.74 185.074 1.3 0.002 5
    3 1 22.10 48.931 1.0 0.000 0
    下载: 导出CSV

    表  5  拟合分布参数值

    Table  5.   Fitted distribution parameter values

    数据集 情形 ω1 μ1 σ12 α ω2 μ2 σ22 β
    1 FIFO 0.365 6.692 5.655 0.635 16.032 12.539
    non-FIFO 0.382 6.654 5.871 0.618 15.826 10.667
    2 FIFO 0.279 4.477 1.573 0.721 13.928 20.061
    non-FIFO 0.289 4.368 1.685 0.711 13.788 19.281
    3 FIFO 12.889 2.627
    non-FIFO
    下载: 导出CSV

    表  6  实际交通案例估计误差汇总

    Table  6.   Summary of estimation errors for actual traffic cases

    数据集 Ef/% σ(Ef) En/% σ(En) $\tilde E$
    1 12.62 5.504 2 12.32 5.360 2 2.38
    2 11.30 5.740 2 11.07 5.721 5 2.04
    3 4.90 1.529 0 4.90 1.529 0 0.00
    下载: 导出CSV
  • [1] 胡明伟, 王守峰, 黄文柯, 等. 基于车牌识别数据的行驶轨迹重构和排放测算[J]. 深圳大学学报(理工版), 2020, 37(2): 111-120. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL202002001.htm

    HU Ming-wei, WANG Shou-feng, HUANG Wen-ke, et al. Vehicle trajectory reconstruction and emission estimation based on license plate recognition data[J]. Journal of Shenzhen University (Science and Engineering), 2020, 37(2): 111-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL202002001.htm
    [2] 陆键, 王可, 蒋愚明. 基于车辆行驶轨迹的道路不良驾驶行为实时辨识方法[J]. 交通运输工程学报, 2020, 20(6): 227-235. doi: 10.19818/j.cnki.1671-1637.2020.06.020

    LU Jian, WANG Ke, JIANG Yu-ming. Real-time identification method of abnormal road driving behavior based on vehicle driving trajectory[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 227-235. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.020
    [3] TAN Chao-peng, LIU Lei, WU Hao, et al. Fuzing license plate recognition data and vehicle trajectory data for lane-based queue length estimation at signalized intersections[J]. Journal of Intelligent Transportation Systems, 2020, 24(5): 449-466. doi: 10.1080/15472450.2020.1732217
    [4] NEWELL G F. A simplified theory of kinematic waves in highway traffic, Part Ⅰ: general theory[J]. Transportation Research Part B: Methodological, 1993, 27(4): 281-287. doi: 10.1016/0191-2615(93)90038-C
    [5] LIGHTHILL M J, WHITHAM G B. On kinematic waves. Ⅱ: a theory of traffic flow on long crowded roads[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1955, 229: 317-345.
    [6] RICHARDS P I. Shock waves on the highway[J]. Operations Research, 1956, 4(1): 42-51. doi: 10.1287/opre.4.1.42
    [7] MAZARÉ P E, DEHWAH A H, CLAUDEL C G, et al. Analytical and grid-free solutions to the Lighthill-Whitham-Richards traffic flow model[J]. Transportation Research Part B: Methodological, 2011, 45(10): 1727-1748. doi: 10.1016/j.trb.2011.07.004
    [8] MEHRAN B, KUWAHARA M, NAZNIN F, et al. Implementing kinematic wave theory to reconstruct vehicle trajectories from fixed and probe sensor data[J]. Transportation Research Part C: Emerging Technologies, 2012, 20(1): 144-163. doi: 10.1016/j.trc.2011.05.006
    [9] JIN Wen-long. Continuous formulations and analytical properties of the link transmission model[J]. Transportation Research Part B: Methodological, 2015, 74: 88-103. doi: 10.1016/j.trb.2014.12.006
    [10] MO B, LI Rui-ming, ZHAN Xian-yuan, et al. Speed profile estimation using license plate recognition data[J]. Transportation Research Part C: Emerging Technologies, 2017, 82: 358-378. doi: 10.1016/j.trc.2017.07.006
    [11] LI Jia, PERRINE K, WU Li-dong, et al. Cross-validating traffic speed measurements from probe and stationary sensors through state reconstruction[J]. International Journal of Transportation Science and Technology, 2019, 8(3): 290-303. doi: 10.1016/j.ijtst.2019.04.002
    [12] SUN Zhan-bo, HAO Peng, BAN Xue-gang, et al. Trajectory-based vehicle energy/emissions estimation for signalized arterials using mobile sensing data[J]. Transportation Research Part D: Transport and Environment, 2015, 34: 27-40. doi: 10.1016/j.trd.2014.10.005
    [13] WAN Nian-feng, VAHIDI A, LUCKOW A. Reconstructing maximum likelihood trajectory of probe vehicles between sparse updates[J]. Transportation Research Part C: Emerging Technologies, 2016, 65: 16-30. doi: 10.1016/j.trc.2016.01.010
    [14] 刘春立, 黄琳娜. 交通事故中车辆运动轨迹估计方法研究与仿真[J]. 计算机仿真, 2012, 29(4): 375-378. doi: 10.3969/j.issn.1006-9348.2012.04.092

    LIU Chun-li, HUANG Lin-na. Research and simulation of estimate method of traffic accident vehicle trajectory[J]. Computer Simulation, 2012, 29(4): 375-378. (in Chinese) doi: 10.3969/j.issn.1006-9348.2012.04.092
    [15] JIANG Zhou-tong, CHEN Xi-qun, OUYANG Yan-feng, et al. Traffic state and emission estimation for urban expressways based on heterogeneous data[J]. Transportation Research Part D: Transport and Environment, 2017, 53: 440-453. doi: 10.1016/j.trd.2017.04.042
    [16] 季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32(6): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906004.htm

    JI Xue-wu, FEI Cong, HE Xiang-kun, et al. Intention recognition and trajectory prediction for vehicles using LSTM network[J]. China Journal of Highway and Transport, 2019, 32(6): 34-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906004.htm
    [17] LI Xiao, ROSMAN G, GILITSCHENSKI I, et al. Vehicle trajectory prediction using generative adversarial network with temporal logic syntax tree features[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3459-3466. doi: 10.1109/LRA.2021.3062807
    [18] DONG Shuo-xuan, ZHOU Yang, CHEN Tian-yi, et al. An integrated empirical mode decomposition and Butterworth filter based vehicle trajectory reconstruction method[J]. Physica A: Statistical Mechanics and its Applications, 2021, 583: 126295. doi: 10.1016/j.physa.2021.126295
    [19] JIN Wen-long. Unifiable multi-commodity kinematic wave model[J]. Transportation Research Procedia, 2017, 23: 137-156. doi: 10.1016/j.trpro.2017.05.009
    [20] JIN Wen-long, YAN Qing-long. A formulation of unifiable multi-commodity kinematic wave model with relative speed ratios[J]. Transportation Research Part B: Methodological, 2019, 128: 236-253. doi: 10.1016/j.trb.2019.08.007
    [21] REY A, JIN Wen-long, RITCHIE S G, et al. An extension of Newell's simplified kinematic wave model to account for first-in-first-out violation: with an application to vehicle trajectory estimation[J]. Transportation Research Part C: Emerging Technologies, 2019, 109: 79-94. doi: 10.1016/j.trc.2019.10.005
    [22] WANG Ying, WEI Chong. A universal trajectory planning method for automated lane-changing and overtaking maneuvers[J]. Mathematical Problems in Engineering, 2020, 2020: 1023975.
    [23] HUI Fei, WEI Cheng, SHANGGUAN Wei, et al. Deep encoder-decoder-NN: a deep learning-based autonomous vehicle trajectory prediction and correction model[J]. Physica A: Statistical Mechanics and its Applications, 2022, 593: 126869. doi: 10.1016/j.physa.2022.126869
    [24] 胡尧, 韦维, 商明菊, 等. 基于交通流生存函数的交叉口通行能力计算模型[J]. 交通运输工程学报, 2019, 19(4): 137-150. doi: 10.3969/j.issn.1671-1637.2019.04.013

    HU Yao, WEI Wei, SHANG Ming-ju, et al. Calculation model of intersection capacity based on traffic flow survival function[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 137-150. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.04.013
    [25] DENG Xiao-li, HU Yao, HU Qian. Fundamental diagram estimation based on random probe pairs on sub-segments[J]. Promet-Traffic and Transportation, 2020, 33(5): 717-730.
    [26] LI Li, JIANG Rui, HE Zheng-bing, et al. Trajectory data-based traffic flow studies: a revisit[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 225-240. doi: 10.1016/j.trc.2020.02.016
    [27] 曹堉, 王成, 杨岳铭, 等. 基于贝叶斯网络的城市道路交通拥堵多原因自动实时识别[J]. 公路交通科技, 2020, 37(11): 89-97. doi: 10.3969/j.issn.1002-0268.2020.11.012

    CAO Yu, WANG Cheng, YANG Yue-ming, et al. Multi-cause automatic real-time recognition of urban road traffic congestion based on Bayesian network[J]. Journal of Highway and Transportation Research and Development, 2020, 37(11): 89-97. (in Chinese) doi: 10.3969/j.issn.1002-0268.2020.11.012
    [28] MUNJAL P K, HSU Y S, LAWRENCE R L. Analysis and validation of lane-drop effects on multi-lane freeways[J]. Transportation Research, 1971, 5: 257-266. doi: 10.1016/0041-1647(71)90037-2
    [29] SUN Zhe, JIN Wen-Long, RITCHIE S G. Simultaneous estimation of states and parameters in Newell's simplified kinematic wave model with Eulerian and Lagrangian traffic data[J]. Transportation Research Part B: Methodological, 2017, 104: 106-122. doi: 10.1016/j.trb.2017.06.012
    [30] REYNOLDS D. Gaussian mixture models[J]. Encyc-lopedia of biometrics, 2009, 741: 659-663.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  659
  • HTML全文浏览量:  146
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-16
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回