留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高密度航天发射期间亚轨道碎片危险区快速预测与改航路径规划方法

陈万通 田书雨

陈万通, 田书雨. 高密度航天发射期间亚轨道碎片危险区快速预测与改航路径规划方法[J]. 交通运输工程学报, 2022, 22(2): 268-276. doi: 10.19818/j.cnki.1671-1637.2022.02.021
引用本文: 陈万通, 田书雨. 高密度航天发射期间亚轨道碎片危险区快速预测与改航路径规划方法[J]. 交通运输工程学报, 2022, 22(2): 268-276. doi: 10.19818/j.cnki.1671-1637.2022.02.021
CHEN Wan-tong, TIAN Shu-yu. Rapid prediction and rerouting planning method of suborbital debris hazard zones during high-density space launches[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 268-276. doi: 10.19818/j.cnki.1671-1637.2022.02.021
Citation: CHEN Wan-tong, TIAN Shu-yu. Rapid prediction and rerouting planning method of suborbital debris hazard zones during high-density space launches[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 268-276. doi: 10.19818/j.cnki.1671-1637.2022.02.021

高密度航天发射期间亚轨道碎片危险区快速预测与改航路径规划方法

doi: 10.19818/j.cnki.1671-1637.2022.02.021
基金项目: 

国家重点研发计划 2020YFB1600101

国家自然科学基金项目 U1833112

天津市教委科研计划项目 2020KJ011

天津市自然科学基金项目 19JCQNJC00800

详细信息
    作者简介:

    陈万通(1986-), 男, 河北承德人, 中国民航大学副教授, 工学博士, 从事航空安全、航班广域监视和卫星导航研究

  • 中图分类号: V328.3

Rapid prediction and rerouting planning method of suborbital debris hazard zones during high-density space launches

Funds: 

National Key Research and Development Program of China 2020YFB1600101

National Natural Science Foundation of China U1833112

Scientific Research Program of Tianjin Municipal Education Commission 2020KJ011

Natural Science Foundation of Tianjin 19JCQNJC00800

More Information
    Author Bio:

    CHEN Wan-tong (1986-), male, associate professor, PhD, chenbnu@126.com

  • 摘要: 面对愈发频繁的商业亚轨道发射活动中可能出现的航空器潜在解体风险,利用协方差传播方法预测亚轨道解体事故中碎片的传播范围;将碎片运动方程转换为高斯马尔可夫过程,利用概率密度函数构造高斯马尔可夫过程在一定置信度下的概率椭球表征碎片分布;为避免亚轨道解体事故碎片对民航空域内的飞机造成碰撞风险,提出一种面向空管的亚轨道碎片危险区预测与路径规划方法;根据民航可接受的风险概率确定亚轨道碎片概率椭球的数学边界,计算概率椭球在水平方向的投影,利用几何方法将碎片危险区处理成凸多边形;通过改航点数量约束方法减少改航路径中改航点的数量,有利于飞机平稳改航。仿真结果表明:协方差传播方法在复杂大气环境中能够快速有效地预测出亚轨道解体事故碎片的传播过程,分别显示出置信度为99.999%和95.000%的椭球边界范围,置信度越高,概率椭球边界范围越大,越接近真实碎片下落传播范围;利用改航点数量约束方法优化后的改航路径距离相比约束前增加了0.13%,但改航点数量减少了50%。可见,利用协方差传播方法可及时、准确预测亚轨道解体事故碎片的传播范围,并在此基础上提出高效、安全的改航策略。

     

  • 图  1  平面凸包分治方法

    Figure  1.  Dividing and conquering method of plane convex hull

    图  2  改航路径规划

    Figure  2.  Diversion path planning

    图  3  改航点数量优化

    Figure  3.  Optimization of number of diversion points

    图  4  置信度为99.999%和95.000%时椭球边界

    Figure  4.  Ellipsoid boundaries at confidences of 99.999 % and 95.000%

    图  5  民航空域初始飞行改航区划设计

    Figure  5.  Initial flight diversion area design in civil aviation domain

    图  6  无约束条件下最终飞行改航区

    Figure  6.  Final flight diversion area without restriction

    图  7  改航点数量约束条件下最终飞行改航区

    Figure  7.  Final flight diversion area under restriction of number of diversion points

    表  1  改航路径距离和航路点数量

    Table  1.   Redirection path distance and number of waypoints

    条件 路径 路径长度/km 改航点数量 改航路径
    约束前 d1 368.88 10 qos10s9s8s7s6s5s4s3s2s1qf
    d2 360.92 8 qos11s12s13s14s15s16s17s18qf
    约束后 d1 372.27 4 qos4s3s2s1qf
    d2 361.39 4 qos5s6s7s8qf
    下载: 导出CSV
  • [1] GONG Y K, QIN T, WEI W, et al. Analysis of international commercial space market and policy[J]. Aerospace China, 2019, 20(4): 39-48. doi: 10.1007/978-3-662-55669-6_2
    [2] ROMITO J. Bringing Columbia home: the untold story of a lost space shuttle and her crew[J]. Air Power History, 2018, 65(1): 55-56. https://searchworks.stanford.edu/view/12285029
    [3] MORLANG F, FERRAND J, SEKER R. Why a future commercial spacecraft must be able to SWIM[J]. Journal of Space Safety Engineering, 2017, 4(1): 5-8. doi: 10.1016/j.jsse.2017.03.003
    [4] KALTENHÄUSER S, MORLANG F, LUCHKOVA T, et al. Facilitating sustainable commercial space transportation through an efficient integration into air traffic management[J]. New Space, 2017, 5(4): 244-256. doi: 10.1089/space.2017.0010
    [5] KARR D A, VIVONA R A, WOODS S, et al. Point-mass aircraft trajectory prediction using a hierarchical, highly-adaptable software design[C]//AIAA. 2017 Modeling and Simulation Technologies Conference. Reston: AIAA, 2017: 1-12.
    [6] FALSONE A, PRANDINI M. A randomized approach to probabilistic footprint estimation of a space debris uncontrolled reentry[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(10): 2657-2666. doi: 10.1109/TITS.2017.2654511
    [7] FALSONE A, NOCE F, PRANDINI M. A randomized approach to space debris footprint characterization[J]. IFAC Proceedings Volumes, 2014, 47(3): 6895-6900. doi: 10.3182/20140824-6-ZA-1003.00612
    [8] YOUNG J E, KEE M G E, YOUNG C M. Effects of future launch and reentry operations on the national airspace system[J]. Journal of Air Transportation, 2017, 25(1): 8-16. doi: 10.2514/1.D0039
    [9] HILTON S, SABATINI R, GARDI A, et al. Space traffic management: towards safe and unsegregated space transport operations[J]. Progress in Aerospace Sciences, 2019, 105: 98-125. doi: 10.1016/j.paerosci.2018.10.006
    [10] COLVIN T J, ALONSO J J. Near-elimination of airspace disruption from commercial space traffic using compact envelopes[C]//AIAA. AIAA Space 2015 Conference and Exposition. Reston: AIAA, 2015: 1-13.
    [11] COLVIN T J, ALONSO J J. Compact envelopes and SU-FARM for integrated air-and-space traffic management[C]//AIAA. 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015: 1-20.
    [12] STANSBURY R S, TOWHIDNEJAD M, TOURNOUR D, et al. Demonstration and evaluation of ADS-B technology for commercial space operations onboard reusable sub-orbital launch vehicles[C]//IEEE. 14th Integrated Communications, Navigation and Surveillance Conference. New York: IEEE, 2014: 1-10.
    [13] TOMPA R E, KOCHENDERFER M J. Optimal aircraft rerouting during space launches using adaptive spatial discretization[C]//IEEE. 37th Digital Avionics Systems Conference. New York: IEEE, 2018: 1-7.
    [14] 王兴隆, 徐肖豪, 冯江然. 基于改进人工势场法的多机改航路径规划[J]. 飞行力学, 2013, 31(4): 381-384. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201304021.htm

    WANG Xing-long, XU Xiao-hao, FENG Jiang-ran. Multi-aircraft rerouting path planning based on improved artificial potential field algorithm[J]. Flight Dynamics, 2013, 31(4): 381-384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201304021.htm
    [15] 田文, 杨帆, 尹嘉男, 等. 航路时空资源分配的多目标优化方法[J]. 交通运输工程学报, 2020, 20(6): 218-226. doi: 10.19818/j.cnki.1671-1637.2020.06.019

    TIAN Wen, YANG Fan, YIN Jia-nan, et al. Multi-objective optimization method of air route space-time resources allocation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 218-226. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.019
    [16] 王帝. 基于Maklink图与遗传算法的动态改航策略研究[J]. 航空计算技术, 2019, 49(1): 50-53. doi: 10.3969/j.issn.1671-654X.2019.01.012

    WANG Di. Research on dynamic navigation change strategy based on Maklink diagram and genetic algorithms[J]. Aeronautical Computing Technique, 2019, 49(1): 50-53. (in Chinese) doi: 10.3969/j.issn.1671-654X.2019.01.012
    [17] JULIAN K D, LOPEZ J, BRUSH J S, et al. Policy compression for aircraft collision avoidance systems[C]//IEEE. 35th Digital Avionics Systems Conference. New York: IEEE, 2016: 1-10.
    [18] TOMPA R E, KOCHENDERFER M J, COLE R, et al. Optimal aircraft rerouting during commercial space launches[C]//IEEE. 34th Digital Avionics Systems Conference. New York: IEEE, 2015: 1-9.
    [19] TOMPA R E, KOCHENDERFER M J. Efficient aircraft rerouting during commercial space launches[J]. New Space, 2019, 7(1): 12-18. doi: 10.1089/space.2018.0032
    [20] BOJORQUEZ O J, CHEN J. Risk level analysis forhazard area during commercial space launch[C]//IEEE. 38th Digital Avionics Systems Conference. New York: IEEE, 2019: 1-6.
    [21] BOJORQUEZ O, DOLAN N, CHEN J. Aircraft rerouting under risk tolerance during space launches[C]//AIAA. AIAA Scitech 2020 Forum. Reston: AIAA, 2020: 1-14.
    [22] LEE D J, CHOI E J, CHO S, et al. Effective computational approach for prediction and estimation of space object breakup dispersion during uncontrolled reentry[J]. International Journal of Aerospace Engineering, 2018, 2018: 6824978. http://downloads.hindawi.com/journals/ijae/2018/6824978.pdf
    [23] BILITZA D, ALTADILL D, TRUHLIK V, et al. International reference ionosphere 2016: from ionospheric climate to real-time weather predictions[J]. Space Weather, 2017, 15(2): 418-429. doi: 10.1002/2016SW001593
    [24] TANG Qiong, ZHOU Yu-feng, DU Zhi-tao, et al. A comparison of meteor radar observation over China region with horizontal wind model (HWM14)[J]. Atmosphere, 2021, 12(1): 98. doi: 10.3390/atmos12010098
    [25] REYHANOGLU M, ALVARADO J. Estimation of debris dispersion due to a space vehicle breakup during reentry[J]. Acta Astronautica, 2013, 86: 211-218. doi: 10.1016/j.actaastro.2013.01.018
    [26] 谢春生, 李雄. 危险天气影响航路飞行区域的划设及评估[J]. 中国安全科学学报, 2010, 20(10): 47-52. doi: 10.3969/j.issn.1003-3033.2010.10.009

    XIE Chun-sheng, LI Xiong. Division and evaluation of flight forbidden area in severe weather[J]. China Safety Science Journal, 2010, 20(10): 47-52. (in Chinese) doi: 10.3969/j.issn.1003-3033.2010.10.009
    [27] 李雄. 飞行危险天气下的航班改航路径规划研究[D]. 南京: 南京航空航天大学, 2009.

    LI Xiong. Flight rerouting path planning in severe weather[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
    [28] 王瑛, 郑煜坤, 姚頔, 等. 危险天气下改航路径网络规划[J]. 系统工程与电子技术, 2019, 41(6): 1309-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201906019.htm

    WANG Ying, ZHENG Yu-kun, YAO Di, et al. Rerouting path network planning under dangerous weather[J]. Systems Engineering and Electronics, 2019, 41(6): 1309-1315. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201906019.htm
    [29] 胡锐锋, 龚自正, 吴子牛. 无控航天器与空间碎片再入的工程预测方法研究现状[J]. 航天器环境工程, 2014, 31(5): 548-557. doi: 10.3969/j.issn.1673-1379.2014.05.017

    HU Rui-feng, GONG Zi-zheng, WU Zi-niu. Engineering methods for reentry prediction of uncontrolled spacecraft and space debris: the state of the art[J]. Spacecraft Environment Engineering, 2014, 31(5): 548-557. (in Chinese) doi: 10.3969/j.issn.1673-1379.2014.05.017
    [30] 柳敏. 基于RNP需求的大型客机导航信息综合处理及性能评估[D]. 南京: 南京航空航天大学, 2017.

    LIU Min. Comprehensive processing and performance evaluation of airliner navigation information based on RNP requirement[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese)
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  384
  • HTML全文浏览量:  109
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-21
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回