留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于正态云模型和模糊层次分析法的列车通信网络性能评估方法

贺德强 柳国强 陈彦君 苗剑 姚晓阳

贺德强, 柳国强, 陈彦君, 苗剑, 姚晓阳. 基于正态云模型和模糊层次分析法的列车通信网络性能评估方法[J]. 交通运输工程学报, 2022, 22(2): 310-320. doi: 10.19818/j.cnki.1671-1637.2022.02.025
引用本文: 贺德强, 柳国强, 陈彦君, 苗剑, 姚晓阳. 基于正态云模型和模糊层次分析法的列车通信网络性能评估方法[J]. 交通运输工程学报, 2022, 22(2): 310-320. doi: 10.19818/j.cnki.1671-1637.2022.02.025
HE De-qiang, LIU Guo-qiang, CHEN Yan-jun, MIAO Jian, YAO Xiao-yang. Evaluation method of train communication network performance based on normal cloud model and fuzzy analytic hierarchy process[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 310-320. doi: 10.19818/j.cnki.1671-1637.2022.02.025
Citation: HE De-qiang, LIU Guo-qiang, CHEN Yan-jun, MIAO Jian, YAO Xiao-yang. Evaluation method of train communication network performance based on normal cloud model and fuzzy analytic hierarchy process[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 310-320. doi: 10.19818/j.cnki.1671-1637.2022.02.025

基于正态云模型和模糊层次分析法的列车通信网络性能评估方法

doi: 10.19818/j.cnki.1671-1637.2022.02.025
基金项目: 

国家自然科学基金项目 52072081

广西科技计划项目 AA20302010

广西自然科学基金项目 2017GXNSFDA198012

广西制造系统与先进制造技术重点实验室课题 19-050-44-S015

详细信息
    作者简介:

    贺德强(1973-),男,湖南桃江人,广西大学教授,工学博士,从事列车控制和网络、信息化研究

  • 中图分类号: U285.5

Evaluation method of train communication network performance based on normal cloud model and fuzzy analytic hierarchy process

Funds: 

National Natural Science Foundation of China 52072081

Science and Technology Project of Guangxi AA20302010

Natural Science Foundation of Guangxi 2017GXNSFDA198012

Key Laboratory Project of Manufacturing System and Advanced Manufacturing Technology of Guangxi 19-050-44-S015

More Information
  • 摘要: 为保证高速列车安全、可靠运行,研究了列车通信网络性能评估方法;综合考虑列车通信网络的实时性、可靠性和服务质量,建立了合理的列车通信网络性能评价指标体系,采用模糊层次分析法确定列车通信网络性能评估指标的权重;考虑列车通信网络评估过程中具有不确定性,构建了基于正态云模型和模糊熵的二维评估模型;建立了基于交换式以太网的大容量和高可靠性列车通信网络仿真平台,获取各指标样本数据,运用二维评估模型计算各指标的隶属度,依据模糊理论最大隶属度法则确定列车通信网络性能等级。研究结果表明:在列车通信网络状态良好时,60%评估样本的网络性能等级为Ⅰ、Ⅱ级,在网络丢包率和误码率较大时,40%评估样本的评估等级为Ⅲ、Ⅳ级,表明二维评估模型能够有效地反映列车通信网络状态;与仅运用模糊综合评价法相比较,两者的评估结果基本一致,反映了二维评估模型的准确性;模糊综合评价法不能消除评估过程中不确定性因素的影响,从而导致评估结果缺乏精确度,因此,提出的方法更适合于列车通信网络性能评估。

     

  • 图  1  云图特征

    Figure  1.  Cloud feature

    图  2  云发生器

    Figure  2.  Cloud generators

    图  3  列车通信网络评价体系

    Figure  3.  Evaluation system of train communication network

    图  4  吞吐量评价云图

    Figure  4.  Evaluation cloud map of throughput

    图  5  端到端时延评价云图

    Figure  5.  Evaluation cloud map of end-to end delay

    图  6  丢包率评价云图

    Figure  6.  Evaluation cloud map of packet loss rate

    图  7  误码率评价云图

    Figure  7.  Evaluation cloud map of bit error rate

    图  8  链路利用率评价云图

    Figure  8.  Evaluation cloud map of link utilization

    图  9  基于交换式以太网的列车通信网络拓扑结构

    Figure  9.  Topological structure of train communication network based on switched ethernet

    图  10  吞吐量

    Figure  10.  Throughput

    图  11  端到端时延

    Figure  11.  End-to-end delay

    图  12  丢包率

    Figure  12.  Packe tloss rate

    图  13  误码率

    Figure  13.  Bit error rate

    图  14  链路利用率

    Figure  14.  Link utilization

    图  15  列车通信网络性能评估流程

    Figure  15.  Flow of performance evaluation of train communication network

    表  1  各评价等级的含义

    Table  1.   Meanings of each evaluation level

    列车通信网络等级 含义
    网络性能理想,适当增加娱乐信息业务量
    网络性能较好,适当增加重要数据业务量
    网络性能一般,能完成正常通信
    网络性能差,处于瘫痪临界状态
    网络瘫痪,可能造成事故
    下载: 导出CSV

    表  2  列车通信网络性能评价指标赋值标准

    Table  2.   Assignment standards of performance evaluation indexes of train communication network

    列车通信网络等级 端到端时延/ms 丢包率/% 误码率/% 链路利用率/% 吞吐量/Mbps
    ≤1 ≤2 ≤2 ≤20 ≤70
    ≤4 ≤4 ≤6 ≤40 ≤55
    ≤7 ≤6 ≤10 ≤60 ≤40
    ≤10 ≤10 ≤25 ≤80 ≤20
    ≤20 ≥10 ≥25 ≥80 ≤10
    下载: 导出CSV

    表  3  评价指标重要程度判断准则

    Table  3.   Importance judging criteria of evaluation indexes

    重要性 三角模糊数
    同等重要 (0.5, 0.5, 0.5)
    稍微重要 (0.5, 0.6, 0.7)
    明显重要 (0.6, 0.7, 0.8)
    强烈重要 (0.7, 0.8, 0.9)
    绝对重要 (0.8, 0.9, 1.0)
    反比较 1-rij
    下载: 导出CSV

    表  4  列车通信网络云数字特征

    Table  4.   Cloud digital features of train communication network

    列车通信网络等级 云数字特征 端到端延时/ms 丢包率/% 误码率/% 链路利用率/% 吞吐量/Mbps
    E 0.0 0.0 0.0 0.0 70.0
    F 0.33 0.67 0.67 6.67 5.00
    H 0.01 0.01 0.02 0.05 0.05
    E 2.5 3.0 4.0 30.0 47.5
    F 1.00 0.67 1.33 6.67 5.00
    H 0.01 0.01 0.02 0.05 0.05
    E 5.5 5.0 8.0 50.0 30.0
    F 1.00 0.67 1.33 6.67 6.67
    H 0.01 0.01 0.02 0.05 0.05
    E 8.5 8.0 17.5 70.0 15.0
    F 1.00 1.33 5.00 6.67 3.33
    H 0.01 0.01 0.02 0.05 0.05
    E 20.0 20.0 40.0 90.0 5.0
    F 3.33 3.33 5.00 6.67 3.33
    H 0.01 0.01 0.02 0.05 0.05
    下载: 导出CSV

    表  5  指标权重

    Table  5.   Weights of indexes

    网络性能指标 权重
    端到端时延 0.248 3
    丢包率 0.249 9
    吞吐量 0.152 2
    误码率 0.202 8
    链路利用率 0.110 8
    下载: 导出CSV

    表  6  评估结果

    Table  6.   Evaluation results

    样本编号 综合隶属度 模糊熵 本文评估结果 模糊综合评价法评估结果
    1 8.9×10-7 8.9×10-2 8.8×10-4 0.0 0.0 1.2×10-1
    2 3.5×10-1 7.1×10-3 3.1×10-8 0.0 0.0 2.8×10-1
    3 1.0×10-9 1.7×10-2 0.0 0.0 0.0 3.4×10-2
    4 3.6×10-1 7.2×10-3 9.8×10-4 0.0 0.0 1.3×10-1
    5 1.6×10-6 9.9×10-2 8.2×10-4 0.0 0.0 3.4×10-6
    6 0.0 3.6×10-9 3.2×10-7 0.0 0.0 2.9×10-6
    7 0.0 4.1×10-6 2.7×10-5 0.0 0.0 1.5×10-4
    8 0.0 0.0 0.0 6.9×10-6 0.0 3.5×10-5
    9 0.0 1.4×10-9 1.7×10-7 1.9×10-7 0.0 2.6×10-6
    10 4.0×10-4 2.1×10-1 1.7×10-7 0.0 0.0 2.1×10-1
    下载: 导出CSV
  • [1] 张利芝, 韩露, 刘贵, 等. 我国列车通信网络技术标准发展历程[J]. 机车电传动, 2020(5): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202005003.htm

    ZHANG Li-zhi, HAN Lu, LIU Gui, et al. Development history of technical standards of train communication network in China[J]. Electric Drive for Locomotives, 2020(5): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202005003.htm
    [2] 李召召, 王立德, 岳川, 等. 基于MKLSVM的MVB端接故障诊断[J]. 北京交通大学学报, 2019, 43(2): 100-106. doi: 10.11860/j.issn.1673-0291.20180128

    LI Zhao-zhao, WANG Li-de, YUE Chuan, et al. Terminating fault diagnosis of MVB based on MKLSVM[J]. Journal of Beijing Jiaotong University, 2019, 43(2): 100-106. (in Chinese) doi: 10.11860/j.issn.1673-0291.20180128
    [3] 万海, 孙雷, 王恬, 等. 列车通信网络WTB链路层攻击方法研究[J]. 清华大学学报(自然科学版), 2016, 56(1): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201601007.htm

    WAN Hai, SUN Lei, WANG Tian, et al. Analysis of a method for attacking WTB link layers in a train communication network[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(1): 42-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201601007.htm
    [4] HE De-qiang, LIU Chen-yu, JIN Zhen-zhen, et al. Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning[J]. Energy, 2022, 239 (1): 122108.
    [5] JIN Zhen-zhen, HE De-qiang, Ma Rui, et al. Fault diagnosis of train rotating parts based on multi-objective VMD optimization and ensemble learning[J]. Digital Signal Processing, 2022, 121: 103312. doi: 10.1016/j.dsp.2021.103312
    [6] HE De-qiang, ZOU Zhi-heng, CHEN Yan-jun, et al. Rail transit obstacle detection based on improved CNN[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14. https://www.hindawi.com/journals/sp/2018/4832972/
    [7] 熊嘉阳, 沈志云. 中国高速铁路的崛起和今后的发展[J]. 交通运输工程学报, 2021, 21(5): 6-29. doi: 10.19818/j.cnki.1671-1637.2021.05.002

    XIONG Jia-yang, SHEN Zhi-yun. Rise and future development of Chinese high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 6-29. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.05.002
    [8] YUE Chuan, WANG Li-de, WANG Deng-rui, et al. An ensemble intrusion detection method for train ethernet consist network based on CNN and RNN[J]. IEEE Access, 2021, 9: 59527-59539. doi: 10.1109/ACCESS.2021.3073413
    [9] HE De-qiang, SUN Da-liang, CHEN Yan-jun, et al. Topology design and optimization of train communication network based on industrial ethernet[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 844-855. doi: 10.1109/TVT.2021.3128143
    [10] 贺德强, 王亚松, 陈彦君, 等. 基于分层调度算法的列车通信网络实时性研究[J]. 铁道学报, 2020, 42(11): 102-109. doi: 10.3969/j.issn.1001-8360.2020.11.014

    HE De-qiang, WANG Ya-song, CHEN Yan-jun, et al. Research on real-time performance of train communication network based on hierarchical scheduling algorithm[J]. Journal of the China Railway Society, 2020, 42(11): 102-109. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.11.014
    [11] 赵冬, 杨奇科, 叶彪. 基于以太网的第2代分布式列车网络控制系统(DTECS-2)[J]. 城市轨道交通研究, 2016, 19(1): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201601023.htm

    ZHAO Dong, YANG Qi-ke, YE Biao. Distributed train network control system-2 based on Ethernet network[J]. Urban Mass Transit, 2016, 19(1): 69-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201601023.htm
    [12] 王景波, 王吉松, 张鹏. 350 km/h中国标准动车组网络控制系统[J]. 机车电传动, 2018(2): 12-15.

    WANG Jing-bo, WANG Ji-song, ZHANG Peng. Network control system of 350 km/h CEMU[J]. Electric Drive for Locomotives, 2018(2): 12-15. (in Chinese)
    [13] LUDICKE D, LEHNER A. Train communication networks and prospects[J]. IEEE Communications Magazine, 2019, 57(9): 39-43. doi: 10.1109/MCOM.001.1800957
    [14] ONWUCHEKWA D, OBERMAISSER R. Performance evaluation of deterministic communication in the railway domain[C]//IEEE. Sixth International Conference on Internet of Things systems. New York: IEEE, 2019: 337-343.
    [15] SOUTO P F, PORTUGAL P, VASQUES F. Reliability evaluation of broadcast protocols for flexray[J]. IEEE Transactions on Vehicular Technology, 2016, 65(2): 525-541. doi: 10.1109/TVT.2015.2402216
    [16] SALARI-MOGHADDAM S, TAHERI H, KARIMI A. Trust based routing algorithm to improve quality of service in DSR protocol[J]. Wireless Personal Communications, 2019, 109(1): 1-16. doi: 10.1007/s11277-019-06546-0
    [17] SAMATHA T, REDDY P C. Performance evaluation of TFRC for video streaming over wireless network[C]//IEEE. International Conference on Communication and Electronics Systems (ICCES). New York: IEEE, 2017: 594-598.
    [18] VNLV B, ÖZCEYLAN B, BAYAYKAL B. Performance evaluation of network startup in TSCH protocol[C]//IEEE. 2017 25th Signal Processing and Communications Applications Conference (SIU). New York: IEEE, 2017: 978-982.
    [19] 周雪, 左忠义, 程伟. 基于组合赋权云模型的铁路旅客运输安全评价[J]. 中国安全科学学报, 2020, 30(S1): 158-164. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK2020S1034.htm

    ZHOU Xue, ZUO Zhong-yi, CHENG Wei. Safety evaluation of railway passenger transportation based on combined weighting cloud model[J]. China Safety Science Journal, 2020, 30(S1): 158-164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK2020S1034.htm
    [20] 张友鹏, 杨金凤. 基于云模型和组合赋权法的CTCS-3级列控系统可靠性评价[J]. 铁道学报, 2016, 38(6): 59-67. doi: 10.3969/j.issn.1001-8360.2016.06.011

    ZHANG You-peng, YANG Jin-feng. Reliability evaluation of CTCS-3 based on cloud model and combination weighting method[J]. Journal of the China Railway Society, 2016, 38(6): 59-67. (in Chinese) doi: 10.3969/j.issn.1001-8360.2016.06.011
    [21] 诸葛暄雨, 郭其一, 王梦超. 列车通信网络可靠性评价技术研究[J]. 机车电传动, 2017(4): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201704003.htm

    ZHUGE Xuan-yu, GUO Qi-yi, WANG Meng-chao. Research on reliability evaluation method of train communication network[J]. Electric Drive for Locomotives, 2017(4): 9-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201704003.htm
    [22] 柳国强, 贺德强, 陈彦君, 等. 基于云模型和组合赋权法的列车通信网络性能评估[J]. 机车电传动, 2020(4): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202004030.htm

    LIU Guo-qiang, HE De-qiang, CHEN Yan-jun, et al. Performance evaluation of train communication network based on cloud model and combination weighting method[J]. Electric Drive for Locomotives, 2020(4): 128-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202004030.htm
    [23] DUO Rui-feng, NIE Xiao-bo, YANG Ning, et al. Anomaly detection and attack classification for train real-time Ethernet[J]. IEEE Access, 2021, 9: 22528-22541. doi: 10.1109/ACCESS.2021.3055209
    [24] 班玉友, 贺德强, 陈彦君, 等. 基于旗鱼优化器的列车通信网络拓扑优化研究[J]. 铁道科学与工程学报, 2021, 18(12): 3146-3154. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202112009.htm

    BAN Yu-you, HE De-qiang, CHEN Yan-jun, et al. Research on topology optimization of train communication network based on sailfish optimizer[J]. Journal of Railway Science and Engineering, 2021, 18(12): 3146-3154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202112009.htm
    [25] XU C L, WANG G Y. A novel cognitive transformation algorithm based on Gaussian cloud model and its application in image segmentation[J]. Numerical Algorithms, 2017, 76(4): 1039-1070. doi: 10.1007/s11075-017-0296-y
    [26] AYDIN S, KAHRAMAN C. Evaluation of firms applying to Malcolm Baldrige National Quality Award: a modified fuzzy AHP method[J]. Complex and Intelligent Systems, 2019, 5(1): 53-63. doi: 10.1007/s40747-018-0069-9
    [27] WANG X, LI S, XU Z, et al. Risk assessment of water inrush in Karst tunnels excavation based on normal cloud model[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(5): 3783-3798. doi: 10.1007/s10064-018-1294-6
    [28] 邓廷权, 王占江, 汪培培, 等. 二型模糊集的模糊熵研究[J]. 控制与决策, 2012, 27(3): 408-412. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201203017.htm

    DENG Ting-quan, WANG Zhan-jiang, WANG Pei-pei, et al. Study on fuzzy entropy of type-2 fuzzy sets[J]. Control and Decision, 2012, 27(3): 408-412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201203017.htm
    [29] 周世波, 唐基宏, 熊振南. 基于优化模糊C均值算法的锚泊船聚集特性[J]. 交通运输工程学报, 2019, 19(6): 137-148. doi: 10.19818/j.cnki.1671-1637.2019.06.013

    ZHOU Shi-bo, TANG Ji-hong, XIONG Zhen-nan. Aggregation characteristics of anchored vessels based on optimized FCM algorithm[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 137-148. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.06.013
    [30] 张玉琢, 曹源, 闻映红. 基于交换式以太网的列车通信网络建模与性能分析[J]. 通信学报, 2015, 36(9): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201509019.htm

    ZHANG Yu-zhuo, CAO Yuan, WEN Ying-hong. Modeling and performance analysis of train communication network based on switched Ethernet[J]. Journal on Communications, 2015, 36(9): 181-187. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201509019.htm
    [31] 王涛, 王立德, 周洁琼, 等. 基于交换式以太网的列车通信网络实时性研究[J]. 铁道学报, 2015, 37(4): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201504008.htm

    WANG Tao, WANG Li-de, ZHOU Jie-qiong, et al. Research on real-time performance of train communication network based on the switched Ethernet technology[J]. Journal of the China Railway Society, 2015, 37(4): 39-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201504008.htm
    [32] MA Bo-zhen, LI Chang-xian, TANG Chang-xian. Research on modeling and simulation of train network fusion system based on OPNET[C]//IEEE. 15th International Conference on Electronic Measurement and Instruments (ICEMI). New York: IEEE, 2021: 158-161.
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  638
  • HTML全文浏览量:  301
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-19
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回