Evaluation method of train communication network performance based on normal cloud model and fuzzy analytic hierarchy process
-
摘要: 为保证高速列车安全、可靠运行,研究了列车通信网络性能评估方法;综合考虑列车通信网络的实时性、可靠性和服务质量,建立了合理的列车通信网络性能评价指标体系,采用模糊层次分析法确定列车通信网络性能评估指标的权重;考虑列车通信网络评估过程中具有不确定性,构建了基于正态云模型和模糊熵的二维评估模型;建立了基于交换式以太网的大容量和高可靠性列车通信网络仿真平台,获取各指标样本数据,运用二维评估模型计算各指标的隶属度,依据模糊理论最大隶属度法则确定列车通信网络性能等级。研究结果表明:在列车通信网络状态良好时,60%评估样本的网络性能等级为Ⅰ、Ⅱ级,在网络丢包率和误码率较大时,40%评估样本的评估等级为Ⅲ、Ⅳ级,表明二维评估模型能够有效地反映列车通信网络状态;与仅运用模糊综合评价法相比较,两者的评估结果基本一致,反映了二维评估模型的准确性;模糊综合评价法不能消除评估过程中不确定性因素的影响,从而导致评估结果缺乏精确度,因此,提出的方法更适合于列车通信网络性能评估。Abstract: To ensure the safety and reliability of high-speed trains, a method for evaluating the performance of train communication networks (TCNs) was studied. A suitable system of performance evaluation indexes was proposed by considering the stringent requirements for TCNs in terms of real-time responsiveness, reliability, and service quality. Fuzzy analytic hierarchy process (FAHP) was used to determine the weights of performance evaluation indexes of TCN. To address the uncertainty of TCN evaluation process, a two-dimensional (2D) evaluation model based on the normal cloud model and fuzzy entropy was constructed. A TCN simulation platform was constructed by using switched Ethernet with large capacity and high reliability, and then used to obtain sample data for each index. The membership degrees of each index were computed by using the 2D evaluation model, and the performance grade of the TCN was determined by the maximum membership degree (from fuzzy theory) principle. Research results show that 60% of the evaluated samples have network performance grades of Ⅰ and Ⅱ when the TCN is in a good state. When the network has high packet loss rate and bit error rate, 40% of the evaluated samples have performance grades of Ⅲ and Ⅳ. Therefore, the result of the 2D evaluation model accurately reflects the state of the TCN. The result is largely consistent with the result from the fuzzy comprehensive evaluation (FCE), indicating that the 2D evaluation model is accurate. However, as it is not possible for the FCE method to exclude the influence of uncertainty in the evaluation process, its result lacks precision. Hence, the proposed method is more suitable for the evaluation of TCN performance. 6 tabs, 15 figs, 32 refs.
-
表 1 各评价等级的含义
Table 1. Meanings of each evaluation level
列车通信网络等级 含义 Ⅰ 网络性能理想,适当增加娱乐信息业务量 Ⅱ 网络性能较好,适当增加重要数据业务量 Ⅲ 网络性能一般,能完成正常通信 Ⅳ 网络性能差,处于瘫痪临界状态 Ⅴ 网络瘫痪,可能造成事故 表 2 列车通信网络性能评价指标赋值标准
Table 2. Assignment standards of performance evaluation indexes of train communication network
列车通信网络等级 端到端时延/ms 丢包率/% 误码率/% 链路利用率/% 吞吐量/Mbps Ⅰ ≤1 ≤2 ≤2 ≤20 ≤70 Ⅱ ≤4 ≤4 ≤6 ≤40 ≤55 Ⅲ ≤7 ≤6 ≤10 ≤60 ≤40 Ⅳ ≤10 ≤10 ≤25 ≤80 ≤20 Ⅴ ≤20 ≥10 ≥25 ≥80 ≤10 表 3 评价指标重要程度判断准则
Table 3. Importance judging criteria of evaluation indexes
重要性 三角模糊数 同等重要 (0.5, 0.5, 0.5) 稍微重要 (0.5, 0.6, 0.7) 明显重要 (0.6, 0.7, 0.8) 强烈重要 (0.7, 0.8, 0.9) 绝对重要 (0.8, 0.9, 1.0) 反比较 1-rij 表 4 列车通信网络云数字特征
Table 4. Cloud digital features of train communication network
列车通信网络等级 云数字特征 端到端延时/ms 丢包率/% 误码率/% 链路利用率/% 吞吐量/Mbps Ⅰ E 0.0 0.0 0.0 0.0 70.0 F 0.33 0.67 0.67 6.67 5.00 H 0.01 0.01 0.02 0.05 0.05 Ⅱ E 2.5 3.0 4.0 30.0 47.5 F 1.00 0.67 1.33 6.67 5.00 H 0.01 0.01 0.02 0.05 0.05 Ⅲ E 5.5 5.0 8.0 50.0 30.0 F 1.00 0.67 1.33 6.67 6.67 H 0.01 0.01 0.02 0.05 0.05 Ⅳ E 8.5 8.0 17.5 70.0 15.0 F 1.00 1.33 5.00 6.67 3.33 H 0.01 0.01 0.02 0.05 0.05 Ⅴ E 20.0 20.0 40.0 90.0 5.0 F 3.33 3.33 5.00 6.67 3.33 H 0.01 0.01 0.02 0.05 0.05 表 5 指标权重
Table 5. Weights of indexes
网络性能指标 权重 端到端时延 0.248 3 丢包率 0.249 9 吞吐量 0.152 2 误码率 0.202 8 链路利用率 0.110 8 表 6 评估结果
Table 6. Evaluation results
样本编号 综合隶属度 模糊熵 本文评估结果 模糊综合评价法评估结果 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 1 8.9×10-7 8.9×10-2 8.8×10-4 0.0 0.0 1.2×10-1 Ⅱ Ⅱ 2 3.5×10-1 7.1×10-3 3.1×10-8 0.0 0.0 2.8×10-1 Ⅰ Ⅱ 3 1.0×10-9 1.7×10-2 0.0 0.0 0.0 3.4×10-2 Ⅱ Ⅱ 4 3.6×10-1 7.2×10-3 9.8×10-4 0.0 0.0 1.3×10-1 Ⅰ Ⅰ 5 1.6×10-6 9.9×10-2 8.2×10-4 0.0 0.0 3.4×10-6 Ⅱ Ⅱ 6 0.0 3.6×10-9 3.2×10-7 0.0 0.0 2.9×10-6 Ⅲ Ⅲ 7 0.0 4.1×10-6 2.7×10-5 0.0 0.0 1.5×10-4 Ⅲ Ⅲ 8 0.0 0.0 0.0 6.9×10-6 0.0 3.5×10-5 Ⅳ Ⅲ 9 0.0 1.4×10-9 1.7×10-7 1.9×10-7 0.0 2.6×10-6 Ⅳ Ⅳ 10 4.0×10-4 2.1×10-1 1.7×10-7 0.0 0.0 2.1×10-1 Ⅱ Ⅱ -
[1] 张利芝, 韩露, 刘贵, 等. 我国列车通信网络技术标准发展历程[J]. 机车电传动, 2020(5): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202005003.htmZHANG Li-zhi, HAN Lu, LIU Gui, et al. Development history of technical standards of train communication network in China[J]. Electric Drive for Locomotives, 2020(5): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202005003.htm [2] 李召召, 王立德, 岳川, 等. 基于MKLSVM的MVB端接故障诊断[J]. 北京交通大学学报, 2019, 43(2): 100-106. doi: 10.11860/j.issn.1673-0291.20180128LI Zhao-zhao, WANG Li-de, YUE Chuan, et al. Terminating fault diagnosis of MVB based on MKLSVM[J]. Journal of Beijing Jiaotong University, 2019, 43(2): 100-106. (in Chinese) doi: 10.11860/j.issn.1673-0291.20180128 [3] 万海, 孙雷, 王恬, 等. 列车通信网络WTB链路层攻击方法研究[J]. 清华大学学报(自然科学版), 2016, 56(1): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201601007.htmWAN Hai, SUN Lei, WANG Tian, et al. Analysis of a method for attacking WTB link layers in a train communication network[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(1): 42-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201601007.htm [4] HE De-qiang, LIU Chen-yu, JIN Zhen-zhen, et al. Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning[J]. Energy, 2022, 239 (1): 122108. [5] JIN Zhen-zhen, HE De-qiang, Ma Rui, et al. Fault diagnosis of train rotating parts based on multi-objective VMD optimization and ensemble learning[J]. Digital Signal Processing, 2022, 121: 103312. doi: 10.1016/j.dsp.2021.103312 [6] HE De-qiang, ZOU Zhi-heng, CHEN Yan-jun, et al. Rail transit obstacle detection based on improved CNN[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14. https://www.hindawi.com/journals/sp/2018/4832972/ [7] 熊嘉阳, 沈志云. 中国高速铁路的崛起和今后的发展[J]. 交通运输工程学报, 2021, 21(5): 6-29. doi: 10.19818/j.cnki.1671-1637.2021.05.002XIONG Jia-yang, SHEN Zhi-yun. Rise and future development of Chinese high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 6-29. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.05.002 [8] YUE Chuan, WANG Li-de, WANG Deng-rui, et al. An ensemble intrusion detection method for train ethernet consist network based on CNN and RNN[J]. IEEE Access, 2021, 9: 59527-59539. doi: 10.1109/ACCESS.2021.3073413 [9] HE De-qiang, SUN Da-liang, CHEN Yan-jun, et al. Topology design and optimization of train communication network based on industrial ethernet[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 844-855. doi: 10.1109/TVT.2021.3128143 [10] 贺德强, 王亚松, 陈彦君, 等. 基于分层调度算法的列车通信网络实时性研究[J]. 铁道学报, 2020, 42(11): 102-109. doi: 10.3969/j.issn.1001-8360.2020.11.014HE De-qiang, WANG Ya-song, CHEN Yan-jun, et al. Research on real-time performance of train communication network based on hierarchical scheduling algorithm[J]. Journal of the China Railway Society, 2020, 42(11): 102-109. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.11.014 [11] 赵冬, 杨奇科, 叶彪. 基于以太网的第2代分布式列车网络控制系统(DTECS-2)[J]. 城市轨道交通研究, 2016, 19(1): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201601023.htmZHAO Dong, YANG Qi-ke, YE Biao. Distributed train network control system-2 based on Ethernet network[J]. Urban Mass Transit, 2016, 19(1): 69-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201601023.htm [12] 王景波, 王吉松, 张鹏. 350 km/h中国标准动车组网络控制系统[J]. 机车电传动, 2018(2): 12-15.WANG Jing-bo, WANG Ji-song, ZHANG Peng. Network control system of 350 km/h CEMU[J]. Electric Drive for Locomotives, 2018(2): 12-15. (in Chinese) [13] LUDICKE D, LEHNER A. Train communication networks and prospects[J]. IEEE Communications Magazine, 2019, 57(9): 39-43. doi: 10.1109/MCOM.001.1800957 [14] ONWUCHEKWA D, OBERMAISSER R. Performance evaluation of deterministic communication in the railway domain[C]//IEEE. Sixth International Conference on Internet of Things systems. New York: IEEE, 2019: 337-343. [15] SOUTO P F, PORTUGAL P, VASQUES F. Reliability evaluation of broadcast protocols for flexray[J]. IEEE Transactions on Vehicular Technology, 2016, 65(2): 525-541. doi: 10.1109/TVT.2015.2402216 [16] SALARI-MOGHADDAM S, TAHERI H, KARIMI A. Trust based routing algorithm to improve quality of service in DSR protocol[J]. Wireless Personal Communications, 2019, 109(1): 1-16. doi: 10.1007/s11277-019-06546-0 [17] SAMATHA T, REDDY P C. Performance evaluation of TFRC for video streaming over wireless network[C]//IEEE. International Conference on Communication and Electronics Systems (ICCES). New York: IEEE, 2017: 594-598. [18] VNLV B, ÖZCEYLAN B, BAYAYKAL B. Performance evaluation of network startup in TSCH protocol[C]//IEEE. 2017 25th Signal Processing and Communications Applications Conference (SIU). New York: IEEE, 2017: 978-982. [19] 周雪, 左忠义, 程伟. 基于组合赋权云模型的铁路旅客运输安全评价[J]. 中国安全科学学报, 2020, 30(S1): 158-164. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK2020S1034.htmZHOU Xue, ZUO Zhong-yi, CHENG Wei. Safety evaluation of railway passenger transportation based on combined weighting cloud model[J]. China Safety Science Journal, 2020, 30(S1): 158-164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK2020S1034.htm [20] 张友鹏, 杨金凤. 基于云模型和组合赋权法的CTCS-3级列控系统可靠性评价[J]. 铁道学报, 2016, 38(6): 59-67. doi: 10.3969/j.issn.1001-8360.2016.06.011ZHANG You-peng, YANG Jin-feng. Reliability evaluation of CTCS-3 based on cloud model and combination weighting method[J]. Journal of the China Railway Society, 2016, 38(6): 59-67. (in Chinese) doi: 10.3969/j.issn.1001-8360.2016.06.011 [21] 诸葛暄雨, 郭其一, 王梦超. 列车通信网络可靠性评价技术研究[J]. 机车电传动, 2017(4): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201704003.htmZHUGE Xuan-yu, GUO Qi-yi, WANG Meng-chao. Research on reliability evaluation method of train communication network[J]. Electric Drive for Locomotives, 2017(4): 9-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201704003.htm [22] 柳国强, 贺德强, 陈彦君, 等. 基于云模型和组合赋权法的列车通信网络性能评估[J]. 机车电传动, 2020(4): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202004030.htmLIU Guo-qiang, HE De-qiang, CHEN Yan-jun, et al. Performance evaluation of train communication network based on cloud model and combination weighting method[J]. Electric Drive for Locomotives, 2020(4): 128-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202004030.htm [23] DUO Rui-feng, NIE Xiao-bo, YANG Ning, et al. Anomaly detection and attack classification for train real-time Ethernet[J]. IEEE Access, 2021, 9: 22528-22541. doi: 10.1109/ACCESS.2021.3055209 [24] 班玉友, 贺德强, 陈彦君, 等. 基于旗鱼优化器的列车通信网络拓扑优化研究[J]. 铁道科学与工程学报, 2021, 18(12): 3146-3154. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202112009.htmBAN Yu-you, HE De-qiang, CHEN Yan-jun, et al. Research on topology optimization of train communication network based on sailfish optimizer[J]. Journal of Railway Science and Engineering, 2021, 18(12): 3146-3154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202112009.htm [25] XU C L, WANG G Y. A novel cognitive transformation algorithm based on Gaussian cloud model and its application in image segmentation[J]. Numerical Algorithms, 2017, 76(4): 1039-1070. doi: 10.1007/s11075-017-0296-y [26] AYDIN S, KAHRAMAN C. Evaluation of firms applying to Malcolm Baldrige National Quality Award: a modified fuzzy AHP method[J]. Complex and Intelligent Systems, 2019, 5(1): 53-63. doi: 10.1007/s40747-018-0069-9 [27] WANG X, LI S, XU Z, et al. Risk assessment of water inrush in Karst tunnels excavation based on normal cloud model[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(5): 3783-3798. doi: 10.1007/s10064-018-1294-6 [28] 邓廷权, 王占江, 汪培培, 等. 二型模糊集的模糊熵研究[J]. 控制与决策, 2012, 27(3): 408-412. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201203017.htmDENG Ting-quan, WANG Zhan-jiang, WANG Pei-pei, et al. Study on fuzzy entropy of type-2 fuzzy sets[J]. Control and Decision, 2012, 27(3): 408-412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201203017.htm [29] 周世波, 唐基宏, 熊振南. 基于优化模糊C均值算法的锚泊船聚集特性[J]. 交通运输工程学报, 2019, 19(6): 137-148. doi: 10.19818/j.cnki.1671-1637.2019.06.013ZHOU Shi-bo, TANG Ji-hong, XIONG Zhen-nan. Aggregation characteristics of anchored vessels based on optimized FCM algorithm[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 137-148. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.06.013 [30] 张玉琢, 曹源, 闻映红. 基于交换式以太网的列车通信网络建模与性能分析[J]. 通信学报, 2015, 36(9): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201509019.htmZHANG Yu-zhuo, CAO Yuan, WEN Ying-hong. Modeling and performance analysis of train communication network based on switched Ethernet[J]. Journal on Communications, 2015, 36(9): 181-187. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201509019.htm [31] 王涛, 王立德, 周洁琼, 等. 基于交换式以太网的列车通信网络实时性研究[J]. 铁道学报, 2015, 37(4): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201504008.htmWANG Tao, WANG Li-de, ZHOU Jie-qiong, et al. Research on real-time performance of train communication network based on the switched Ethernet technology[J]. Journal of the China Railway Society, 2015, 37(4): 39-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201504008.htm [32] MA Bo-zhen, LI Chang-xian, TANG Chang-xian. Research on modeling and simulation of train network fusion system based on OPNET[C]//IEEE. 15th International Conference on Electronic Measurement and Instruments (ICEMI). New York: IEEE, 2021: 158-161.