留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向群体行驶场景的时空信息融合车辆轨迹预测…

李立 平振东 朱进玉 徐志刚 汪贵平

李立, 平振东, 朱进玉, 徐志刚, 汪贵平. 面向群体行驶场景的时空信息融合车辆轨迹预测…[J]. 交通运输工程学报, 2022, 22(3): 104-114. doi: 10.19818/j.cnki.1671-1637.2022.03.008
引用本文: 李立, 平振东, 朱进玉, 徐志刚, 汪贵平. 面向群体行驶场景的时空信息融合车辆轨迹预测…[J]. 交通运输工程学报, 2022, 22(3): 104-114. doi: 10.19818/j.cnki.1671-1637.2022.03.008
LI Li, PING Zhen-dong, ZHU Jin-yu, XU Zhi-gang, WANG Gui-ping. Vehicle trajectory prediction based on spatio-temporal information fusion in crowded driving scenario[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 104-114. doi: 10.19818/j.cnki.1671-1637.2022.03.008
Citation: LI Li, PING Zhen-dong, ZHU Jin-yu, XU Zhi-gang, WANG Gui-ping. Vehicle trajectory prediction based on spatio-temporal information fusion in crowded driving scenario[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 104-114. doi: 10.19818/j.cnki.1671-1637.2022.03.008

面向群体行驶场景的时空信息融合车辆轨迹预测…

doi: 10.19818/j.cnki.1671-1637.2022.03.008
基金项目: 

国家重点研发计划 2018YFB1600600

国家自然科学基金项目 71901040

国家自然科学基金项目 71971029

陕西省自然科学基础研究计划项目 2021JC-28

详细信息
    作者简介:

    李立(1985-),男,陕西西安人,长安大学副教授,工学博士,从事智能交通系统研究

  • 中图分类号: U491.2

Vehicle trajectory prediction based on spatio-temporal information fusion in crowded driving scenario

Funds: 

National Key Research and Development Program of China 2018YFB1600600

National Natural Science Foundation of China 71901040

National Natural Science Foundation of China 71971029

Natural Science Basic Research Program of Shaanxi 2021JC-28

More Information
    Author Bio:

    LI Li(1985-), male, associate professor, PhD, lili@chd.edu.cn

  • 摘要: 将车辆间时空交互信息融入卷积社会池化网络中,提出了一种面向群体行驶场景的有人驾驶车辆轨迹预测模型;使用长短时记忆(LSTM)网络预测群体车辆速度,基于此预测值计算群体车辆间的速度差;构造LSTM编码器捕捉群体车辆行驶轨迹的时间序列特征,设计卷积社会池化网络提取群体车辆间的空间依赖关系,使用LSTM解码器预测未来车辆各种动作的出现概率和相应轨迹,将具有最高出现概率的动作及其轨迹作为最终轨迹预测结果;使用真实轨迹数据集对所构建模型进行了参数标定和性能验证,测试了不同轨迹编解码与速度预测方法对模型性能的影响,确定了最优模型结构。计算结果表明:相较于历史速度,使用预测速度计算速度差作为模型输入可将均方根误差(RMSE)降低19.45%;相较于门控循环神经网络,使用LSTM进行速度预测可将RMSE降低4.91%;相较于原始卷积社会池化网络,所提出模型的轨迹预测误差在RMSE与负似然对数2个指标上分别降低了20.32%和21.04%,明显优于其他卷积社会池化网络变体;所提出模型与原始卷积社会池化网络计算耗时差距约3 ms,能够满足实时应用要求。

     

  • 图  1  车辆运动坐标系

    Figure  1.  Coordinate system of vehicle motion

    图  2  建模流程

    Figure  2.  Modelling process

    图  3  轨迹预测子网络

    Figure  3.  Subnetwork of trajectory prediction

    图  4  LSTM速度预测模块

    Figure  4.  LSTM speed prediction module

    图  5  LSTM编码器

    Figure  5.  LSTM encoder

    图  6  LSTM解码器

    Figure  6.  LSTM decoder

    图  7  模型误差曲线对比

    Figure  7.  Comparison of model error curves

    图  8  换道场景中原始与改进卷积社会池化网络预测结果对比

    Figure  8.  Comparison of prediction results of original and improved convolutional social pooling networks in lane changing scenario

    图  9  跟驰场景中原始与改进卷积社会池化网络预测结果对比

    Figure  9.  Comparison of prediction results of original and improved convolutional social pooling networks in car-following scenario

    表  1  轨迹预测子网络部分参数

    Table  1.   Partial parameters of trajectory prediction subnetwork

    网络模块 网络类型 网络设置 输出数据维度
    编码器 输入层 16×2
    词嵌入层(Embedding) 16×32
    LSTM编码层(Encoding) 64 1×64
    卷积社会池化网络 社会张量(Social Tensor) 13×3 13×3×64
    卷积层1(Conv1) 3×3×64 11×1×64
    卷积层2(Conv2) 3×1×16 9×1×16
    最大池化层(Maxpool) 2×1 5×1×16
    扁平层(Flatten) 1×80
    解码器 LSTM解码层(Decoding) 128 6×25×5
    下载: 导出CSV

    表  2  A~C组模型RMSE对比

    Table  2.   Comparison of RMSEs in model groups A-C

    组别 未来不同时刻的RMSE/m 未来5 s时降低百分比/%
    未来1 s时 未来2 s时 未来3 s时 未来4 s时 未来5 s时
    A 0.576 8 1.264 1 2.113 8 3.190 5 4.538 9
    B 0.571 1 1.262 6 2.106 6 3.168 0 4.489 8 1.08
    C 0.551 0 1.109 9 1.654 3 2.366 2 3.252 7 28.34
    下载: 导出CSV

    表  3  A~C组模型NLL对比

    Table  3.   Comparison of NLLs in model groups A-C

    组别 未来不同时刻的NLL 未来5 s时降低百分比/%
    未来1 s时 未来2 s时 未来3 s时 未来4 s时 未来5 s时
    A 1.575 0 3.071 3 3.928 8 4.560 1 5.085 8
    B 0.689 6 2.212 2 3.083 8 3.714 1 4.228 6 16.85
    C 0.728 5 2.119 6 2.843 5 3.429 6 3.923 5 22.85
    下载: 导出CSV

    表  4  A、C~E组模型RMSE对比

    Table  4.   Comparison of RMSEs in model groups A and C-E

    组别 未来不同时刻的RMSE/m 未来5 s时降低百分比/%
    未来1 s时 未来2 s时 未来3 s时 未来4 s时 未来5 s时
    A 0.576 8 1.264 1 2.113 8 3.190 5 4.538 9
    C 0.551 0 1.109 9 1.654 3 2.366 2 3.252 7 28.34
    D 0.541 3 1.121 2 1.768 5 2.597 3 3.616 4 20.32
    E 0.555 0 1.193 7 1.914 6 2.771 9 3.803 3 16.21
    下载: 导出CSV

    表  5  A、C~E组模型NLL对比

    Table  5.   Comparison of NLLs of groups A and C-E

    组别 未来不同时刻的NLL 未来5 s时降低百分比/%
    未来1 s时 未来2 s时 未来3 s时 未来4 s时 未来5 s时
    A 1.575 0 3.071 3 3.928 8 4.560 1 5.085 8
    C 0.728 5 2.119 6 2.843 5 3.429 6 3.923 5 22.85
    D 0.642 2 2.079 5 2.880 8 3.499 2 4.015 8 21.04
    E 0.684 1 2.189 7 3.046 1 3.655 7 4.147 1 18.46
    下载: 导出CSV

    表  6  A、F组模型RMSE对比

    Table  6.   Comparison of RMSEs in model groups A and F

    组别 未来不同时刻的RMSE/m 未来5 s时降低百分比/%
    未来1 s时 未来2 s时 未来3 s时 未来4 s时 未来5 s时
    A 0.576 8 1.264 1 2.113 8 3.190 5 4.538 9
    F 0.577 6 1.256 6 2.100 2 3.172 9 4.495 5 0.96
    下载: 导出CSV

    表  7  A、F组模型NLL对比

    Table  7.   Comparison of NLLs in model groups A and F

    组别 未来不同时刻的NLL 未来5 s时降低百分比/%
    未来1 s时 未来2 s时 未来3 s时 未来4 s时 未来5 s时
    A 1.575 0 3.071 3 3.928 8 4.560 1 5.085 8
    F 1.638 9 3.118 7 3.965 0 4.589 9 5.100 7 -0.29
    下载: 导出CSV

    表  8  模型耗时对比

    Table  8.   Time-consuming comparison of models

    组别 A B C D E F
    时间/ms 10.71 12.21 12.81 13.81 14.69 20.07
    下载: 导出CSV
  • [1] 李立, 徐志刚, 赵祥模, 等. 智能网联汽车运动规划方法研究综述[J]. 中国公路学报, 2019, 32(6): 20-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906003.htm

    LI Li, XU Zhi-gang, ZHAO Xiang-mo, et al. Review of motion planning methods of intelligent connected vehicles[J]. China Journal of Highway and Transport, 2019, 32(6): 20-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906003.htm
    [2] 采国顺, 刘昊吉, 冯吉伟, 等. 智能汽车的运动规划与控制研究综述[J]. 汽车安全与节能学报, 2021, 12(3): 279-297. doi: 10.3969/j.issn.1674-8484.2021.03.002

    CAI Guo-shun, LIU Hao-ji, FENG Ji-wei, et al. Review on the research of motion planning and control for intelligent vehicles[J]. Journal of Automotive Safety and Energy, 2021, 12(3): 279-297. (in Chinese) doi: 10.3969/j.issn.1674-8484.2021.03.002
    [3] 李柏, 张友民, 邵之江. 自动驾驶车辆运动规划方法综述[J]. 控制与信息技术, 2018(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-BLJS201806002.htm

    LI Bai, ZHANG You-min, SHAO Zhi-jiang. Motion planning methodologies for automated vehicles: a critical review[J]. Control and Information Technology, 2018(6): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BLJS201806002.htm
    [4] 杨澜, 赵祥模, 吴国垣, 等. 智能网联汽车协同生态驾驶策略综述[J]. 交通运输工程学报, 2020, 20(5): 58-72. doi: 10.19818/j.cnki.1671-1637.2020.05.004

    YANG Lan, ZHAO Xiang-mo, WU Guo-yuan, et al. Review on connected and automated vehicles based cooperative eco-driving strategies[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 58-72. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.004
    [5] 王殿海, 金盛. 车辆跟驰行为建模的回顾与展望[J]. 中国公路学报, 2012, 25(1): 115-127. doi: 10.3969/j.issn.1001-7372.2012.01.018

    WANG Dian-hai, JIN Sheng. Review and outlook of modeling of car following behavior[J]. China Journal of Highway and Transport, 2012, 25(1): 115-127. (in Chinese) doi: 10.3969/j.issn.1001-7372.2012.01.018
    [6] ZHENG Zu-duo. Recent developments and research needs in modeling lane changing[J]. Transportation Research Part B: Methodological, 2014, 60: 16-32. doi: 10.1016/j.trb.2013.11.009
    [7] SCHREIER M, WILLERT V, ADAMY J. An integrated approach to maneuver-based trajectory prediction and criticality assessment in arbitrary road environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2751-2766. doi: 10.1109/TITS.2016.2522507
    [8] SIMMONS R, BROWNING B, ZHANG Yi-lu, et al. Learning to predict driver route and destination intent[C]//IEEE. 2006 IEEE Intelligent Transportation Systems Conference. New York: IEEE, 2006: 127-132.
    [9] RATHORE P, KUMAR D, RAJASEGARAR S, et al. A scalable framework for trajectory prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3860-3874. doi: 10.1109/TITS.2019.2899179
    [10] ALTCHÉ F, DE LA FORTELLE A. An LSTM network for highway trajectory prediction[C]//IEEE. 2017 IEEE 20th International Conference on Intelligent Transportation Systems. New York: IEEE, 2017: 353-359.
    [11] ZHANG Xiao-hui, SUN Jie, QI Xiao, et al. Simultaneous modeling of car-following and lane-changing behaviors using deep learning[J]. Transportation Research Part C: Emerging Technologies, 2019, 104: 287-304. doi: 10.1016/j.trc.2019.05.021
    [12] XING Yang, LYU Chen, MO Xiao-yu, et al. Toward safe and smart mobility: energy-aware deep learning for driving behavior analysis and prediction of connected vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4267-4280. doi: 10.1109/TITS.2021.3052786
    [13] CHEN Meng, ZUO Yi-xuan, JIA Xiao-yi, et al. CEM: a convolutional embedding model for predicting next locations[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(7): 3349-3358.
    [14] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 961-971.
    [15] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
    [16] 赵祥模, 连心雨, 刘占文, 等. 基于MM-STConv的端到端自动驾驶行为决策模型[J]. 中国公路学报, 2020, 33(3): 170-183. doi: 10.3969/j.issn.1001-7372.2020.03.016

    ZHAO Xiang-mo, LIAN Xin-yu, LIU Zhan-wen, et al. End-to-end autonomous driving-behavior decision model based on MM-STConv[J]. China Journal of Highway and Transport, 2020, 33(3): 170-183. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.03.016
    [17] DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]//IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE, 2018: 1549-1557.
    [18] MAHMUDS M, FERREIRA L, HOQUE M S, et al. Application of proximal surrogate indicators for safety evaluation: a review of recent developments and research needs[J]. IATSS Research, 2017, 41(4): 153-163.
    [19] PINNOWJ, MASOUD M, ELHENAWY M, et al. A review of naturalistic driving study surrogates and surrogate indicator viability within the context of different road geometries[J]. Accident Analysis and Prevention, 2021, 157: 106185.
    [20] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//IEEE. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. New York: IEEE, 2014: 1724-1734.
    [21] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[C]//MIT Press. 28th Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 1-9.
    [22] 刘创, 梁军. 基于注意力机制的车辆运动轨迹预测[J]. 浙江大学学报(工学版), 2020, 54(6): 1156-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202006012.htm

    LIU Chuang, LIANG Jun. Vehicle motion trajectory prediction based on attention mechanism[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(6): 1156-1163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202006012.htm
    [23] HASAN M, SOLERNOU A, PASCHALIDIS E, et al. Maneuver-aware pooling for vehicle trajectory prediction[J]. arXiv, 2021: 20210095519.
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  1293
  • HTML全文浏览量:  454
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回