留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向快速路交通瓶颈的混合交通群体节流控制策略

赵杭 赵敏 孙棣华 杜成

赵杭, 赵敏, 孙棣华, 杜成. 面向快速路交通瓶颈的混合交通群体节流控制策略[J]. 交通运输工程学报, 2022, 22(3): 162-173. doi: 10.19818/j.cnki.1671-1637.2022.03.013
引用本文: 赵杭, 赵敏, 孙棣华, 杜成. 面向快速路交通瓶颈的混合交通群体节流控制策略[J]. 交通运输工程学报, 2022, 22(3): 162-173. doi: 10.19818/j.cnki.1671-1637.2022.03.013
ZHAO Hang, ZHAO Min, SUN Di-hua, DU Cheng. Mixed traffic group throttling control strategy for traffic bottleneck of expressway[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 162-173. doi: 10.19818/j.cnki.1671-1637.2022.03.013
Citation: ZHAO Hang, ZHAO Min, SUN Di-hua, DU Cheng. Mixed traffic group throttling control strategy for traffic bottleneck of expressway[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 162-173. doi: 10.19818/j.cnki.1671-1637.2022.03.013

面向快速路交通瓶颈的混合交通群体节流控制策略

doi: 10.19818/j.cnki.1671-1637.2022.03.013
基金项目: 

国家重点研发计划 2018YFB1600600

详细信息
    作者简介:

    赵杭(1993-), 男, 重庆江北人, 重庆大学工学博士研究生, 从事智能交通系统研究

    孙棣华(1962-), 男, 重庆渝北人,重庆大学教授,工学博士

    通讯作者:

    赵敏(1980-), 女, 四川南充人, 重庆大学副教授, 工学博士

  • 中图分类号: U491.2

Mixed traffic group throttling control strategy for traffic bottleneck of expressway

Funds: 

National Key Research and Development Program of China 2018YFB1600600

More Information
  • 摘要: 针对传统人驾车(HV)和网联自动车(CAV)组成混合交通条件下的快速路道路缩减瓶颈问题,从群体控制角度,提出了一种新的速度协调控制策略(简称节流控制策略);基于瓶颈交通状态和Greenshields模型,设计了领航CAV速度控制器;面向CAV节流群体组群过程的控制问题,提出了目标切换下的非线性控制器;构建了CAV节流群体类队列控制器,实现了基于瓶颈交通状态的群体形态与群体速度动态调节,进而联合领航CAV速度控制方法,周期性管控超过每组节流群体的车辆;提出了CAV纵向安全控制器来解决组群和群体演化过程的车辆安全问题。仿真结果表明:在快速路瓶颈路段下,对比传统交通系统,提出的动态节流控制策略CAV渗透率达到5%,在车流量分别为2 000、3 000、5 000、6 000 veh·h-1条件下,可对应分别提高通行效率约5.87%、16.97%、11.07%、10.25%;在固定车流量为3 000或6 000 veh·h-1的快速路混合交通瓶颈路段中,对比传统交通系统,若CAV渗透率分别为10%、20%、30%,受控交通系统的通行效率可提升约24%;通过对车头间距分析,受控CAV在节流全过程中无碰撞事故发生,且可与前车保持9 m以上安全距离。可见,节流控制策略在应对快速路瓶颈问题是有效的。

     

  • 图  1  基于CAV的节流控制

    Figure  1.  CAV-based throttling control

    图  2  节流控制执行逻辑

    Figure  2.  Execution logic of throttling control

    图  3  CAV节流群体与节流控制

    Figure  3.  Throttling group and throttling control of CAV

    图  4  跟随目标切换

    Figure  4.  Following target change

    图  5  目标切换控制增益非线性项

    Figure  5.  Nonlinear control gain in target changing control

    图  6  纵向安全控制增益非线性项

    Figure  6.  Nonlinear control gain in longitudinal safe control

    图  7  pCAV=0及无控制下车流密度-时间热力图

    Figure  7.  Density-time heat maps of traffic flow without control at pCAV=0

    图  8  pCAV=0及无控制下平均车速-时间热力图

    Figure  8.  Average velocity-time heat maps without control at pCAV=0

    图  9  pCAV=5%及节流控制下车流密度-时间热力图

    Figure  9.  Density-time heat maps of traffic flow under throttling control at pCAV=5%

    图  10  pCAV=5%及节流控制下平均车速-时间热力图

    Figure  10.  Average velocity-time heat maps under throttling control at pCAV=5%

    图  11  Q=3 000 veh·h-1及节流控制下车流密度-时间热力图

    Figure  11.  Density-time heat maps of traffic flow under throttling control at Q=3 000 veh·h-1

    图  12  Q=3 000 veh·h-1及节流控制下平均车速-时间热力图

    Figure  12.  Average velocity-time heat maps under throttling control at Q=3 000 veh·h-1

    图  13  Q=6 000 veh·h-1及节流控制下车流密度-时间热力图

    Figure  13.  Density-time heat maps of traffic flow under throttling control at Q=6 000 veh·h-1

    图  14  Q=6 000 veh·h-1及节流控制下平均车速-时间热力图

    Figure  14.  Average velocity-time heat maps under throttling control at Q=6 000 veh·h-1

    图  15  CAV与前车车头间距

    Figure  15.  Space headways between CAVs and their predecessors

    表  1  VISSIM换道模型参数取值

    Table  1.   Parameter values of lane-changing model in VISSIM

    参数 取值
    必要的跟换车道 最大减速度/(m·s-2) 本车为-4,被超车为-3
    单位减速度变化率对应距离/m 本车与被超车均为100
    可接受的减速度/(m·s-2) 本车与被超车均为-1
    消失前的等待时间/s 60
    最小车头空距(前/后)/m 0.5
    协调刹车的最大减速度/(m·s-2) -3
    下载: 导出CSV

    表  2  VISSIM跟驰模型参数取值

    Table  2.   Parameter values of car-following model in VISSIM

    跟驰模型 Wiedemann 99
    停车时的平均期望车辆间距/m 2.0
    期望保持的车头时间距/m 2.0
    前视距离/m 最小为0, 最大为250
    后视距离/m 最小为0,最大为250
    下载: 导出CSV

    表  3  1 h通过瓶颈区车辆数统计

    Table  3.   Statistics of vehicles passing bottleneck region in 1 h

    控制方式 车流量/(veh·h-1) 预设CAV渗透率/% 通过瓶颈区车辆数 效率提升比/%
    无控制 2 000 0 1 804
    3 000 0 2 310
    5 000 0 3 818
    6 000 0 3 676
    节流控制 2 000 5 1 910 5.87
    3 000 5 2 702 16.97
    5 000 5 4 241 11.07
    6 000 5 4 053 10.26
    3 000 10 2 787 20.65
    3 000 20 2 812 21.73
    3 000 30 2 885 24.89
    6 000 10 4 633 26.03
    6 000 20 4 915 33.70
    6 000 30 5 008 36.23
    下载: 导出CSV
  • [1] WANG Jia-wei, ZHENG Yang, CHEN Chao-yi, et al. Leading cruise control in mixed traffic flow: system modeling, controllability, and string stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, DOI: 10.1109/TITS.2021.3118021.
    [2] GUO Qian-qiang, BAN Xue-gang, AZIZ H M A. Mixed traffic flow of human driven vehicles and automated vehicles on dynamic transportation networks[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103159. doi: 10.1016/j.trc.2021.103159
    [3] SARKER A, SHEN H Y, RAHMAN M, et al. A review of sensing and communication, human factors, and controller aspects for information-aware connected and automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 7-29. doi: 10.1109/TITS.2019.2892399
    [4] MA Jia-qi, LI Xiao-peng, SHLADOVER S, et al. Freeway speed harmonization[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 78-89. doi: 10.1109/TIV.2016.2551540
    [5] ENGLUND C, CHEN L, VORONOV A. Cooperative speed harmonization for efficient road utilization[C]//IEEE. 7th International Workshop on Communication Technologies for Vehicles. New York: IEEE, 2014: 19-23.
    [6] YANG H, RAKHA H. Feedback control speed harmonization algorithm: methodology and preliminary testing[J]. Transportation Research Part C: Emerging Technologies, 2017, 81: 209-226. doi: 10.1016/j.trc.2017.06.002
    [7] LU Xiao-yun, SHLADOVER S E. Review of variable speed limits and advisories[J]. Journal of the Transportation Research Board, 2014, 2423(1): 15-23. doi: 10.3141/2423-03
    [8] ZHANG Yi-hang, IOANNOU P A. Combined variable speed limit and lane change control for highway traffic[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(7): 1812-1823. doi: 10.1109/TITS.2016.2616493
    [9] GRUMERT E, MA Xiao-liang, TAPANI A. Analysis of a cooperative variable speed limit system using microscopic traffic simulation[J]. Transportation Research Part C: Emerging Technologies, 2015, 52: 173-186. doi: 10.1016/j.trc.2014.11.004
    [10] JIN Hui-yun, JIN Wen-long. Control of a lane-drop bottleneck through variable speed limits[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 568-584. doi: 10.1016/j.trc.2014.08.024
    [11] WU Yuan-kai, TAN Hua-chun, QIN Ling-qiao, et al. Differential variable speed limits control for freeway recurrent bottlenecks via deep reinforcement learning[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: 102649. doi: 10.1016/j.trc.2020.102649
    [12] KE Ze-mian, LI Zhi-bin, CAO Ze-hong, et al. Enhancing transferability of deep reinforcement learning-based variable speed limit control using transfer learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4684-4695. doi: 10.1109/TITS.2020.2990598
    [13] TALEBPOUR A, MAHMASSANI H S, HAMDAR S H. Speed harmonization: Evaluation of effectiveness under congested conditions[J]. Journal of the Transportation Research Board, 2013, 2391(1): 69-79. doi: 10.3141/2391-07
    [14] YANG H, RAKHA H. Feedback control speed harmonization algorithm: methodology and preliminary testing[J]. Transportation Research Part C: Emerging Technologies, 2017, 81: 209-226. doi: 10.1016/j.trc.2017.06.002
    [15] HAN Yu, WANG Meng, HE Zi-ang, et al. A linear Lagrangian model predictive controller of macro- and micro-variable speed limits to eliminate freeway jam waves[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103121. doi: 10.1016/j.trc.2021.103121
    [16] RAADSEN M P H, BLIEMER M C J. Variable speed limits in the link transmission model using an information propagation method[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103184. doi: 10.1016/j.trc.2021.103184
    [17] MALIKOPOULOS A A, HONG S, PARK B B, et al. Optimal control for speed harmonization of automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(7): 2405-2417. doi: 10.1109/TITS.2018.2865561
    [18] HAN Y, CHEN Dan-jue, AHN S. Variable speed limit control at fixed freeway bottlenecks using connected vehicles[J]. Transportation Research Part B: Methodological, 2017, 98: 113-134. doi: 10.1016/j.trb.2016.12.013
    [19] WANG Yi-bing, YU Xiang-hua, ZHANG Si-yu, et al. Freeway traffic control in presence of capacity drop[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1497-1516. doi: 10.1109/TITS.2020.2971663
    [20] GHIASI A, LI Xiao-peng, MA Jia-qi. A mixed traffic speed harmonization model with connected autonomous vehicles[J]. Transportation Research Part C: Emerging Technologies, 2019, 104: 210-233. doi: 10.1016/j.trc.2019.05.005
    [21] GOULET N, AYALEW B. Distributed maneuver planning with connected and automated vehicles for boosting traffic efficiency[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, DOI: 10.1109/TITS.2021.3096878.
    [22] RIOS-TORRES J, MALIKOPOULOS A A. Impact of partial penetrations of connected and automated vehicles on fuel consumption and traffic flow[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(4): 453-462.
    [23] ARD T, DOLLAR R A, VAHIDI A, et al. Microsimulation of energy and flow effects from optimal automated driving in mixed traffic[J]. Transportation Research Part C: Emerging Technologies, 2020, 120: 102806. doi: 10.1016/j.trc.2020.102806
    [24] ČIČIĆ M, XIONG Xi, JIN Li, et al. Coordinating vehicle platoons for highway bottleneck decongestion and throughput improvement[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, DOI: 10.1109/TITS.2021.3088775.
    [25] ZU Yue, LIU Chen-hui, DAI Ran, et al. Real-time energy-efficient traffic controlvia convex optimization[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 119-136. doi: 10.1016/j.trc.2018.04.017
    [26] LI Yong-fu, TANG Chuan-chong, LI Ke-zhi, et al. Consensus- based cooperative control for multi-platoon under the connected vehicles environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2220-2229. doi: 10.1109/TITS.2018.2865575
    [27] JIA Dong-yao, NGODUY D. Platoon based cooperative driving model with consideration of realistic inter-vehicle communication[J]. Transportation Research Part C: Emerging Technologies, 2016, 68: 245-264.
    [28] ZHAO Hang, SUN Di-hua, ZHAO Min, et al. Combined longitudinal and lateral control for heterogeneous nodes in mixed vehicle platoon under V2I communication[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, DOI: 10.1109/TITS.2021.3061413.
    [29] 于晓海, 郭戈. 车队控制中的一种通用可变时距策略[J]. 自动化学报, 2019, 45(7): 1335-1343. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201907010.htm

    YU Xiao-hai, GUO Ge. A general variable time headway policy in platoon control[J]. Acta Automatica Sinica, 2019, 45(7): 1335-1343. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201907010.htm
    [30] JIANG Rui, WU Qing-song, ZHU Zuo-jin. Full velocity difference model for a car-following theory[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2001, 64: 017101.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  631
  • HTML全文浏览量:  196
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回