留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向车路协同孪生仿真测试的多尺度滤波同步方法

邱威智 上官伟 柴琳果 褚端峰

邱威智, 上官伟, 柴琳果, 褚端峰. 面向车路协同孪生仿真测试的多尺度滤波同步方法[J]. 交通运输工程学报, 2022, 22(3): 199-209. doi: 10.19818/j.cnki.1671-1637.2022.03.016
引用本文: 邱威智, 上官伟, 柴琳果, 褚端峰. 面向车路协同孪生仿真测试的多尺度滤波同步方法[J]. 交通运输工程学报, 2022, 22(3): 199-209. doi: 10.19818/j.cnki.1671-1637.2022.03.016
QIU Wei-zhi, SHANGGUAN Wei, CHAI Lin-guo, CHU Duan-feng. Multi-scale filtering synchronization method for vehicle-infrastructure cooperative twin-simulation testing[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 199-209. doi: 10.19818/j.cnki.1671-1637.2022.03.016
Citation: QIU Wei-zhi, SHANGGUAN Wei, CHAI Lin-guo, CHU Duan-feng. Multi-scale filtering synchronization method for vehicle-infrastructure cooperative twin-simulation testing[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 199-209. doi: 10.19818/j.cnki.1671-1637.2022.03.016

面向车路协同孪生仿真测试的多尺度滤波同步方法

doi: 10.19818/j.cnki.1671-1637.2022.03.016
基金项目: 

国家重点研发计划 2018YFB1600600

北京市自然科学基金-丰台轨道交通前沿研究联合基金项目 L191013

详细信息
    作者简介:

    邱威智(1995-),男,浙江台州人,北京交通大学工学博士研究生,从事智能系统测试技术研究

    上官伟(1979-),男,陕西乾县人,北京交通大学教授,工学博士

    通讯作者:

    上官伟(1979-),男,陕西乾县人,北京交通大学教授,工学博士

  • 中图分类号: U491.2

Multi-scale filtering synchronization method for vehicle-infrastructure cooperative twin-simulation testing

Funds: 

National Key Research and Development Program of China 2018YFB1600600

Beijing Natural Science Foundation-Fengtai Rail Transit Frontier Research Joint Fund L191013

More Information
  • 摘要: 为提升车路协同孪生仿真测试系统的同步性能,明确了孪生主体的运行机理,分析了影响系统同步性能的干扰因素,建立了孪生状态同步映射模型; 针对孪生状态采样的时钟异步问题,设计了时钟误差估计策略,修正了孪生仿真测试系统的量测时间偏差; 在此基础上,结合卡尔曼滤波原理,引入多尺度滤波器更新机制,建立了考虑同步采样误差的量测噪声模型,提出了多尺度滤波同步优化方法; 最后,在搭建的孪生仿真测试原型系统中,选取NGSIM数据集的车辆轨迹开展试验。研究结果表明:在不同车辆速度条件下,提出的多尺度滤波同步优化方法能够保持良好的同步性能; 在横向坐标同步方面,平均绝对误差小于1 mm,99.5%的绝对误差控制在8 mm以内; 在纵向坐标同步方面,平均绝对误差小于9 mm,99.5%的绝对误差控制在38 mm以内; 在速度同步方面,平均绝对误差小于2.8 cm·s-1,99.5%的绝对误差控制在24 cm·s-1以内; 在偏航角同步方面,平均绝对误差小于1.1×10-3 rad,99.5%的绝对误差控制在1.1×10-2 rad以内; 与航迹推算方法相比,提出的方法能够在横向坐标、纵向坐标、速度和偏航角方面平均提升30.0%的同步精度,能够有效解决孪生主体的状态异步问题,可保障车路协同孪生仿真测试系统的实时同步与精准运行。

     

  • 图  1  孪生仿真测试系统状态采集与传输机制

    Figure  1.  State collection and transmission mechanism in twin-simulation testing system

    图  2  孪生仿真测试系统状态映射原理

    Figure  2.  Principle of state mapping in twin-simulation testing system

    图  3  时间戳采样流程

    Figure  3.  Sampling process of timestamp

    图  4  孪生仿真测试系统时钟采样流程

    Figure  4.  Clock sampling process in twins-simulation testing system

    图  5  多尺度滤波同步原理

    Figure  5.  Principle of multi-scale filtering synchronization

    图  6  同步方法测试流程

    Figure  6.  Testing flow of synchronization method

    图  7  测试系统的数据交互性能

    Figure  7.  Data interaction performance of test system

    图  8  横向坐标同步结果示例

    Figure  8.  Example of synchronization results of lateral coordinates

    图  9  不同平均速度的车辆轨迹分布

    Figure  9.  Distributions of vehicle trajectories with different average speeds

    图  10  对比试验的车辆轨迹分布

    Figure  10.  Distributions of vehicle trajectories in comparative experiment

    表  1  同步方法参数配置

    Table  1.   Parameters configuration of synchronization method

    参数 取值
    σ (8.8 m·s-2, 0.1 rad·s-2, 0.5 m·s-2, 1.0 rad·s-2)
    κQ (1.0, 1.0, 1.0×10-4, 0.2, 1.0, 1.0)
    κR (1.0, 1.0, 1.0, 1.0)
    fv/s-1 100
    fr/s-1 10
    下载: 导出CSV

    表  2  不同速度条件下的同步误差统计结果

    Table  2.   Statistical results of synchronization errors under different speeds conditions

    性能指标 S1 S2 S3
    平均绝对误差 A1/mm 0.88 0.84 0.89
    A2/mm 5.15 6.43 8.27
    A3/(cm·s-1) 2.20 2.45 2.75
    A4/10-3 rad 1.07 0.88 0.93
    均方根误差 R1/mm 1.67 1.76 1.37
    R2/mm 8.28 9.74 11.88
    R3/(cm·s-1) 5.50 5.29 6.43
    R4/10-3 rad 2.18 1.54 1.50
    单侧置信区间 C1/mm 7.81 6.36 5.67
    C2/mm 27.63 33.57 37.58
    C3/(cm·s-1) 16.80 20.96 23.93
    C4/10-3 rad 10.13 7.19 6.58
    下载: 导出CSV

    表  3  不同优化方法的同步误差统计结果

    Table  3.   Statistical results of synchronization errors using different optimization methods

    性能指标 方法1 方法2 方法3
    平均绝对误差 A1/mm 4.08 9.93 0.85
    A2/mm 8.41 755.93 7.42
    A3/(cm·s-1) 2.88 4.84 2.18
    A4/10-3 rad 0.97 1.57 0.92
    均方根误差 R1/mm 8.44 19.05 1.37
    R2/mm 11.52 990.76 10.14
    R3/(cm·s-1) 4.50 7.95 3.43
    R4/10-3 rad 1.65 2.82 1.53
    单侧置信区间 C1/mm 46.77 99.51 5.87
    C2/mm 38.76 2771.49 31.24
    C3/(cm·s-1) 18.93 34.76 14.96
    C4/10-3 rad 7.87 13.94 6.92
    下载: 导出CSV
  • [1] 王云鹏, 鲁光泉, 于海洋. 车路协同环境下的交通工程[J]. 中国工程科学, 2018, 20(2): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201802017.htm

    WANG Yun-peng, LU Guang-quan, YU Hai-yang. Traffic engineering considering cooperative vehicle infrastructure system[J]. Engineering Science, 2018, 20(2): 106-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201802017.htm
    [2] 伍毅平, 李海舰, 赵晓华, 等. 车路协同雾天预警系统对车辆运行生态特性的影响[J]. 交通运输工程学报, 2021, 21(4): 259-268. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202104023.htm

    WU Yi-ping, LI Hai-jian, ZHAO Xiao-hua, et al. Effect of fog weather warning system under cooperative vehicle infrastructure on vehicle operating eco-characteristics[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 259-268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202104023.htm
    [3] 唐立, 卿三东, 徐志刚, 等. 自动驾驶公众接受度研究综述[J]. 交通运输工程学报, 2020, 20(2): 131-146. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002011.htm

    TANG Li, QING San-dong, XU Zhi-gang, et al. Research review on public acceptance of autonomous driving[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 131-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002011.htm
    [4] 范志翔, 孙巍, 潘汉中, 等. 自动驾驶汽车测试技术发展现状与思考[J]. 中国标准化, 2017(20): 47-48, 55. doi: 10.3969/j.issn.1002-5944.2017.20.037

    FAN Zhi-xiang, SUN Wei, PAN Han-zhong, et al. Current situations and considerations of automated vehicle testing technology[J]. China Standardization, 2017(20): 47-48, 55. (in Chinese) doi: 10.3969/j.issn.1002-5944.2017.20.037
    [5] 余卓平, 邢星宇, 陈君毅. 自动驾驶汽车测试技术与应用进展[J]. 同济大学学报(自然科学版), 2019, 47(4): 540-547. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201904013.htm

    YU Zhuo-ping, XING Xing-yu, CHEN Jun-yi. Review on automated vehicle testing technology and its application[J]. Journal of Tongji University (Natural Science), 2019, 47(4): 540-547. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201904013.htm
    [6] 徐志刚, 李金龙, 赵祥模, 等. 智能公路发展现状与关键技术[J]. 中国公路学报, 2019, 32(8): 1-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201908002.htm

    XU Zhi-gang, LI Jin-long, ZHAO Xiang-mo, et al. A review on intelligent road and its related key technologies[J]. China Journal of Highway and Transport, 2019, 32(8): 1-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201908002.htm
    [7] BRUNELLI L, CAPANCIONI A, GONNELLA P, et al. A hybrid vehicle hardware-in-the-loop system with integrated connectivity for ehorizon functions validation[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 4340-4352. doi: 10.1109/TVT.2021.3073807
    [8] TUEGELE J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011: 154798.
    [9] SEMERAROC, LEZOCHE M, PANETTO H, et al. Digital twin paradigm: a systematic literature review[J]. Computers in Industry, 2021, 130: 1-23.
    [10] 宋学官, 来孝楠, 何西旺, 等. 重大装备形性一体化数字孪生关键技术[J]. 机械工程学报, 2022, 58(10): 298-325. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202210028.htm

    SONG Xue-guan, LAI Xiao-nan, HE Xi-wang, et al. Key technologies of shape-performance integrated digital twin for major equipment[J]. Journal of Mechanical Engineering, 2022, 58(10): 298-325. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202210028.htm
    [11] 缪炳荣, 张卫华, 刘建新, 等. 工业4.0下智能铁路前沿技术问题综述[J]. 交通运输工程学报, 2021, 21(1): 115-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101008.htm

    MIAO Bing-rong, ZHANG Wei-hua, LIU Jian-xin, et al. Review on frontier technical issues of intelligent railways under Industry 4.0[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 115-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101008.htm
    [12] LU Yu-qian, LIU Chao, WANG K I, et al. Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61: 101837. doi: 10.1016/j.rcim.2019.101837
    [13] FENG Yi-heng, YU Chun-hui, XU Shao-bing, et al. An augmented reality environment for connected and automated vehicle testing and evaluation[C]//IEEE. 2018 Intelligent Vehicles Symposium. New York: IEEE, 2018: 1549-1554.
    [14] ZHENG Han-ying, TANG Xue-yan. Analysis of server provisioning for distributed interactive applications[J]. IEEE Transactions on Computers, 2015, 64(10): 2752-2766. doi: 10.1109/TC.2014.2378252
    [15] 张彤, 任丰原, 舒然. 基于分布式优化的数据中心网络混流调度机制[J]. 清华大学学报(自然科学版), 2021, 61(6): 618-625. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202106016.htm

    ZHANG Tong, REN Feng-yuan, SHU Ran. Distributed-optimization-based mix-flow scheduling mechanism for data center networks[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(6): 618-625. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202106016.htm
    [16] 田彬, 赵祥模, 徐志刚, 等. 车路协同条件下智能网联高速公路通行效率信息自适应分发协议: NRT-V2X[J]. 中国公路学报, 2019, 32(6): 293-307. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906030.htm

    TIAN Bin, ZHAO Xiang-mo, XU Zhi-gang, et al. NRT-V2X: adaptive data dissemination protocol for traffic efficiency of connected and automated highways[J]. China Journal of Highway and Transport, 2019, 32(6): 293-307. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906030.htm
    [17] BOCCA M, ERIKSSON L M, MAHMOOD A, et al. A synchronized wireless sensor network for experimental modal analysis in structural health monitoring[J]. Computer-Aided Civil and Infrastructure Engineering, 2011, 26(7): 483-499. doi: 10.1111/j.1467-8667.2011.00718.x
    [18] 王頲, 白桦, 唐晓铭, 等. 分布式全局精确时钟同步状态追踪: 能观测性观测器分析[J]. 电子学报, 2019, 47(9): 1855-1862. doi: 10.3969/j.issn.0372-2112.2019.09.006

    WANG Ting, BAI Hua, TANG Xiao-ming, et al. Distributed global precise clock synchronization state tracking: analysis of observable observer[J]. Acta Electronica Sinica, 2019, 47(9): 1855-1862. (in Chinese) doi: 10.3969/j.issn.0372-2112.2019.09.006
    [19] 余世明, 周景远, 何德峰, 等. 随机有界通信时延下传感器网络中的一致性时钟同步算法[J]. 控制与决策, 2020, 35(5): 1159-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202005015.htm

    YU Shi-ming, ZHOU Jing-yuan, HE De-feng, et al. Time synchronization based on consensus in WSN with random bounded communication delay[J]. Control and Decision, 2020, 35(5): 1159-1166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202005015.htm
    [20] 张杨, 董士程. 面向并发程序中锁机制的智能化推荐方法[J]. 计算机应用, 2021, 41(6): 1597-1603. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202106010.htm

    ZHANG Yang, DONG Shi-cheng. Intelligent recommendation method for lock mechanism in concurrent program[J]. Journal of Computer Applications, 2021, 41(6): 1597-1603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202106010.htm
    [21] 朱涛, 郭进伟, 周欢, 等. 分布式数据库中一致性与可用性的关系[J]. 软件学报, 2018, 29(1): 131-149. https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201801007.htm

    ZHU Tao, GUO Jin-wei, ZHOU Huan, et al. Consistency and availability in distributed database systems[J]. Journal of Software, 2018, 29(1): 131-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201801007.htm
    [22] VEGAM T, MEHMLI T, VAN DER HOOFT J, et al. Enabling virtual reality for the tactile internet: hurdles and opportunities[C]//IEEE. 14th International Conference on Network and Service Management (CNSM). New York: IEEE, 2018: 378-383.
    [23] LIN K C, SCHAB D E. The performance assessment of the dead reckoning algorithms in DIS[J]. Simulation, 1994, 63(5): 318-325. doi: 10.1177/003754979406300507
    [24] FUNGY S, LUI J C S. Hack-proof synchronization protocol for multi-player online games[J]. Multimedia Tools and Applications, 2009, 41(2): 305-331. doi: 10.1007/s11042-008-0230-3
    [25] MONDOLONIS, ROZEN N. Aircraft trajectory prediction and synchronization for air traffic management applications[J]. Progress in Aerospace Sciences, 2020, 119: 100640. doi: 10.1016/j.paerosci.2020.100640
    [26] GÖRÜR B K, İMRE K M, OǦUZTÜZÜN H, et al. Predetermined rollbacks: an extension to time warp for spatially parallel agent-based simulation[J]. Simulation Modelling Practice and Theory, 2019, 95: 60-77. doi: 10.1016/j.simpat.2019.04.008
    [27] CHEN You-fu, LIU E S. Comparing dead reckoning algorithms for distributed car simulations[C]//ACM. 32nd SIGSIM Conference on Principles of Advanced Discrete Simulation. New York: ACM, 2018: 105-111.
    [28] DIBERNARDO M D, SALVI A, STEFANI S. Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 102-112. doi: 10.1109/TITS.2014.2328439
    [29] 梁华刚, 程加乐, 孙小喃, 等. 道路监控系统中非同步相机时间校正方法[J]. 交通运输工程学报, 2015, 15(4): 118-126. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201504017.htm

    LIANG Hua-gang, CHENG Jia-le, SUN Xiao-nan, et al. Time correction method of asynchronous cameras in road monitoring system[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 118-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201504017.htm
    [30] QIU Wei-zhi, SHANGGUAN Wei, CHAI Lin-guo, et al. Parallel hierarchical control-based efficiency enhancement for large-scale virtual reality traffic simulation[J]. IEEE Intelligent Transportation Systems Magazine, 2021, 14(4): 145-162.
    [31] 惠阳, 王永岗, 彭辉, 等. 基于优化PSO-BP算法的耦合时空特征下地铁客流预测[J]. 交通运输工程学报, 2021, 21(4): 210-222. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202104019.htm

    HUI Yang, WANG Yong-gang, PENG Hui, et al. Subway passenger flow prediction based on optimized PSO-BP algorithm with coupled spatial-temporal characteristics[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 210-222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202104019.htm
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  450
  • HTML全文浏览量:  130
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-12
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回