留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PReNet和YOLOv4融合的雨天交通目标检测网络

陈婷 姚大春 高涛 仇会会 郭昶鑫 刘占文 李永会 边浩毅

陈婷, 姚大春, 高涛, 仇会会, 郭昶鑫, 刘占文, 李永会, 边浩毅. 基于PReNet和YOLOv4融合的雨天交通目标检测网络[J]. 交通运输工程学报, 2022, 22(3): 225-237. doi: 10.19818/j.cnki.1671-1637.2022.03.018
引用本文: 陈婷, 姚大春, 高涛, 仇会会, 郭昶鑫, 刘占文, 李永会, 边浩毅. 基于PReNet和YOLOv4融合的雨天交通目标检测网络[J]. 交通运输工程学报, 2022, 22(3): 225-237. doi: 10.19818/j.cnki.1671-1637.2022.03.018
CHEN Ting, YAO Da-chun, GAO Tao, QIU Hui-hui, GUO Chang-xin, LIU Zhan-wen, LI Yong-hui, BIAN Hao-yi. A fused network based on PReNet and YOLOv4 for traffic object detection in rainy environment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 225-237. doi: 10.19818/j.cnki.1671-1637.2022.03.018
Citation: CHEN Ting, YAO Da-chun, GAO Tao, QIU Hui-hui, GUO Chang-xin, LIU Zhan-wen, LI Yong-hui, BIAN Hao-yi. A fused network based on PReNet and YOLOv4 for traffic object detection in rainy environment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 225-237. doi: 10.19818/j.cnki.1671-1637.2022.03.018

基于PReNet和YOLOv4融合的雨天交通目标检测网络

doi: 10.19818/j.cnki.1671-1637.2022.03.018
基金项目: 

国家重点研发计划 2019YFE0108300

国家重点研发计划 2018YFB1600600

国家自然科学基金项目 62001058

国家自然科学基金项目 52172379

中央高校基本科研业务费专项资金项目 300102241201

中央高校基本科研业务费专项资金项目 300102242901

浙江省科技厅软科学项目 2021C25005

浙江省交通运输厅科技计划项目 2021032

详细信息
    作者简介:

    陈婷(1982-),女,陕西西安人,长安大学副教授,工学博士,从事图像处理、模式识别与人工智能研究

    通讯作者:

    高涛(1980-),男,陕西西安人,长安大学教授,工学博士

  • 中图分类号: U491.2

A fused network based on PReNet and YOLOv4 for traffic object detection in rainy environment

Funds: 

National Key Research and Development Program of China 2019YFE0108300

National Key Research and Development Program of China 2018YFB1600600

National Natural Science Foundation of China 62001058

National Natural Science Foundation of China 52172379

Fundamental Research Funds for the Central Universities 300102241201

Fundamental Research Funds for the Central Universities 300102242901

Soft Science Project of Science and Technology Department of Zhejiang Province 2021C25005

Science and Technology Project of Department of Transportation of Zhejiang Province 2021032

More Information
  • 摘要: 为提高恶劣雨天交通环境下车辆目标检测精度,提出一种基于PReNet和YOLOv4融合的深度学习网络DTOD-PReYOLOv4,融合了改进的图像复原子网D-PReNet和改进的目标检测子网TOD-YOLOv4;将多尺度膨胀卷积融合模块和添加了挤压激励块的注意机制残差模块引入PReNet,获得的D-PReNet可更有效提取雨纹特征; 使用轻量化的CSPDarknet26代替YOLOv4骨干模块CSPDarknet53,为YOLOv4的颈部路径聚合网络模块添加复合残差块,同时采用k-means++算法取代原始网络聚类算法,获得的TOD-YOLOv4可在改善交通小目标检测精度的同时进一步提高检测效率; 基于构建的雨天交通场景车辆目标数据集VOD-RTE对DTOD-PReYOLOv4进行了验证。研究结果表明:与当前YOLO系列主流网络相比,提出的DTOD-PReYOLOv4对原浅层ResBlock_body1叠加残差块,可以更好地提取分辨率较小的特征; 对原深层ResBlock_body3、ResBlock_body4和ResBlock_body5进行裁剪,获得ResBlock_body3×2、ResBlock_body4×2和ResBlock_body5×2,可以有效降低卷积层冗余,提高内存利用率; 为PANet中的Concat+Conv×5添加跳跃连接形成CRB模块,可以有效缓解网络层数加深引起的小目标检测效果退化问题; 采用k-means++算法,在多尺度检测过程中为较大的特征图分配更加适合的较小先验框,为较小的特征图分配更加适合的较大先验框,进一步提高了目标检测的精度; 与MYOLOv4相比,精确率和召回率的调和平均值、平均精度、检测速度分别提升了5.02%、6.70%、15.63帧·s-1,与TOD-YOLOv4相比,分别提升了3.51%、4.31%、2.17帧·s-1,与YOLOv3相比,分别提升了46.07%、48.05%、18.97帧·s-1,与YOLOv4相比,分别提升了31.06%、29.74%、16.26帧·s-1

     

  • 图  1  PReNet架构

    Figure  1.  Architecture of PReNet

    图  2  YOLOv4网络架构

    Figure  2.  Network architecture of YOLOv4

    图  3  雨天交通目标检测网络DTOD-YOLOv4

    Figure  3.  Network DTOD-YOLOv4 of traffic object detection in rainy environment

    图  4  D-PReNet架构

    Figure  4.  Architecture of D-PReNet

    图  5  MSECFM结构

    Figure  5.  Structure of MSECFM

    图  6  AMRM结构

    Figure  6.  Structure of AMRM

    图  7  TOD-YOLOv4网络架构

    Figure  7.  Network architecture of TOD-YOLOv4

    图  8  CRB结构

    Figure  8.  Structure of CRB

    图  9  VOD-RTE数据集示例

    Figure  9.  Examples of VOD-RTE

    图  10  车辆标注示例

    Figure  10.  Examples of vehicle labeling

    图  11  损失值下降曲线

    Figure  11.  Decline curve of loss value

    图  12  真实雨天交通场景下的车辆目标检测结果对比

    Figure  12.  Comparison of vehicle object detection results in real rainy traffic scene

    表  1  CSPDarknet26网络参数

    Table  1.   Network parameters of CSPDarknet26

    网络分层 卷积核个数 卷积核尺度 输出分辨率/pixel
    Conv 32 3×3 416×416
    Conv 64 3×3/2 208×208
    ResBlock_body1×2 32 1×1 208×208
    64 3×3
    Conv 128 3×3/2 104×104
    ResBlock_body2×2 64 1×1 104×104
    128 3×3
    Conv 256 3×3/2 52×52
    ResBlock_body3×2 128 1×1 52×52
    256 3×3
    Conv 512 3×3/2 26×26
    ResBlock_body4×2 256 1×1 26×26
    512 3×3
    Conv 1 024 3×3/2 13×13
    ResBlock_body5×2 512 1×1 13×13
    1 024 3×3
    下载: 导出CSV

    表  2  Car型锚点框信息示例

    Table  2.   Examples of car anchor box information

    标签名称 Xmin/pixel Ymin/pixel Xmax/pixel Ymax/pixel
    Car 1 312 609 417 701
    Car 2 389 600 480 672
    Car 3 685 549 767 612
    Car 4 510 503 573 539
    Car 5 521 463 572 510
    Car 6 488 389 528 427
    Car 7 526 381 568 409
    下载: 导出CSV

    表  3  车辆检测结果

    Table  3.   Vehicle detection result

    网络 YOLOv3 YOLOv4 MYOLOv4 TOD-YOLOv4 DTOD-PReYOLOv4
    车辆总数 9 9 9 9 9
    检出车辆数 1 4 5 6 9
    漏检车辆数 8 5 4 3 0
    误检车辆数 0 1 0 0 0
    下载: 导出CSV

    表  4  目标检测评价结果

    Table  4.   Evaluation result of object detection

    网络 P/% R/% F/% $\bar P $ /% S/(帧·s-1)
    YOLOv3 35.00 76.00 47.93 45.56 32.13
    YOLOv4 49.00 88.00 62.94 63.87 34.84
    MYOLOv4 88.00 90.00 88.98 86.91 35.47
    TOD-YOLOv4 90.00 91.00 90.49 89.30 48.93
    DTOD-PReYOLOv4 96.00 91.00 94.00 93.61 51.10
    下载: 导出CSV
  • [1] 唐立, 卿三东, 徐志刚, 等. 自动驾驶公众接受度研究综述[J]. 交通运输工程学报, 2020, 20(2): 131-146. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002011.htm

    TANG Li, QING San-dong, XU Zhi-gang, et al. Research review on public acceptance of autonomous driving[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 131-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002011.htm
    [2] 缪炳荣, 张卫华, 刘建新, 等. 工业4.0下智能铁路前沿技术问题综述[J]. 交通运输工程学报, 2021, 21(1): 115-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101008.htm

    MIAO Bing-rong, ZHANG Wei-hua, LIU Jian-xin, et al. Review on frontier technical issues of intelligent railways under industry 4.0[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 115-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101008.htm
    [3] 杨澜, 赵祥模, 吴国垣, 等. 智能网联汽车协同生态驾驶策略综述[J]. 交通运输工程学报, 2020, 20(5): 58-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202005008.htm

    YANG Lan, ZHAO Xiang-mo, WU Guo-yuan, et al. Review on connected and automated vehicles based cooperative eco-driving strategies[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 58-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202005008.htm
    [4] 马永杰, 马芸婷, 程时升, 等. 基于改进YOLOv3模型与Deep-SORT算法的道路车辆检测方法[J]. 交通运输工程学报, 2021, 21(2): 222-231. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202102022.htm

    MA Yong-jie, MA Yun-ting, CHENG Shi-sheng, et al. Road vehicle detection method based on improved YOLOv3 model and deep-SORT algorithm[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 222-231. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202102022.htm
    [5] ZHANG He, PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]//IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 695-704.
    [6] LI Xia, WU Jian-long, LIN Zhou-chen, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]//Springer. 2014 European Conference on Computer Vision. Berlin: Springer, 2018: 262-277.
    [7] REN D, ZUO W, HU Q, et al. Progressive image deraining networks: A better and simpler baseline[C]//IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 3932-3941.
    [8] JIN Xin, CHEN Zhi-bo, LI Wei-ping. AI-GAN: asynchronous interactive generative adversarial network for single image rain removal[J]. Pattern Recognition, 2020, 100: 107143. doi: 10.1016/j.patcog.2019.107143
    [9] 柳长源, 王琪, 毕晓君. 基于多通道多尺度卷积神经网络的单幅图像去雨方法[J]. 电子与信息学报, 2020, 42(9): 2285-2292. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202009027.htm

    LIU Chang-yuan, WANG Qi, BI Xiao-jun. Research on rain removal method for single image based on multi-channel and multi-scale CNN[J]. Journal of Electronics and Information Technology, 2020, 42(9): 2285-2292. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202009027.htm
    [10] LIN Xiao, MA Li-zhuang, SHENG Bin, et al. Utilizing two-phase processing with FBLS for single image deraining[J]. IEEE Transactions on Multimedia, 2020, 23: 664-676.
    [11] PENG Jia-yi, XU Yong, CHEN Tian-yi, et al. Single-image raindrop removal using concurrent channel-spatial attention and long-short skip connections[J]. Pattern Recognition Letters, 2020, 131: 121-127. doi: 10.1016/j.patrec.2019.12.012
    [12] SUN Guo-min, LENG Jin-song, CATTANI C. A particular directional multilevel transform based method for single-image rain removal[J]. Knowledge-Based Systems, 2020, 200: 106000. doi: 10.1016/j.knosys.2020.106000
    [13] PENG Long, JIANG Ai-wen, Yi Qiao-si, et al. Cumulative rain density sensing network for single image Derain[J]. IEEE Signal Processing Letters, 2020, 27: 406-410. doi: 10.1109/LSP.2020.2974691
    [14] BI Xiao-jun, XING Jun-yao. Multi-scale weighted fusion attentive generative adversarial network for single image de-raining[J]. IEEE Access, 2020, 8: 69838-69848. doi: 10.1109/ACCESS.2020.2983436
    [15] WANG Hong, WU Yi-chen, XIE Qi, et al. Structural residual learning for single image rain removal[J]. Knowledge-Based Systems, 2021, 213: 106595. doi: 10.1016/j.knosys.2020.106595
    [16] 高涛, 刘梦尼, 陈婷, 等. 结合暗亮通道先验的远近景融合去雾算法[J]. 西安交通大学学报, 2021, 55(10): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202110009.htm

    GAO Tao, LIU Meng-ni, CHEN Ting, et al. A far and near scene fusion defogging algorithm based on the prior of dark-light channel[J]. Journal of Xi'an Jiaotong University, 2021, 55(10): 78-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202110009.htm
    [17] CHEN Ting, LIU Meng-ni, GAO Tao, et al. A fusion-based defogging algorithm[J]. Remote Sensing, 2022, 14(2): 425. doi: 10.3390/rs14020425
    [18] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 779-788.
    [19] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 6517-6525.
    [20] REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv, 2018: 20200100292.
    [21] BOCHKOVSKIY A, WANG Chien-yao, LIAO Hong-yuan. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv, 2020: 20200411830.
    [22] NING Zhang, MI Zhi-wei. Research on surface defect detection algorithm of strip steel based on improved YOLOv3[J]. Journal of Physics: Conference Series, 2021, 1907(1): 012015. doi: 10.1088/1742-6596/1907/1/012015
    [23] YU Pei-dong, WANG Xin, LIU Jian-hui, et al. Bridge target detection in remote sensing image based on improved YOLOv4 algorithm[C]//ACM. 2020 4th International Conference on Computer Science and Artificial Intelligence. New York: ACM, 2020: 139-145.
    [24] CHEN Wen-kang, LU Sheng-lian, LIU Bing-hao, et al. Detecting citrus in orchard environment by using improved YOLOv4[J]. Scientific Programming, 2020, 2020: 8859237.
    [25] ZHU Qin-feng, ZHENG Hui-feng, WANG Yue-bing, et al. Study on the evaluation method of sound phase cloud maps based on an improved YOLOv4 algorithm[J]. Sensors, 2020, 20(15): 4314. doi: 10.3390/s20154314
    [26] HU Jie, SHEN Li, ALBANIE S. Squeeze-and-excitation networks[C]// IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 7132-7141.
    [27] DENG Jie, DONG Wei, SOCHER R, et al. Imagenet: A large-scale hierarchical image database[C]//IEEE. 2009 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2009: 248-255.
    [28] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Springer. 13th European Conference on Computer Vision. Berlin: Springer, 2014: 740-755.
    [29] ARTHUR D, VASSILVITSKⅡ S. k-means++: the advantages of careful seeding[C]//ACM. 18th Annual ACM-SIAM Symposium on Discrete Algorithms. New York: ACM, 2007: 1027-1035.
    [30] CHOWDHURY K, CHAUDHURI D, PAL A K, et al. Seed selection algorithm through k-means on optimal number of clusters[J]. Multimedia Tools and Applications, 2019, 78(13): 18617-18651. doi: 10.1007/s11042-018-7100-4
    [31] YAMAMICHI K, HAN Xian-hua. MCGKT-Net: Multi-level context gating knowledge transfer network for single image deraining[C]//Springer. 15th Asian Conference on Computer Vision. Berlin: Springer, 2020: 1-17.
    [32] YANG Wen-han, TAN R T, FENG Jia-shi, et al. Deep joint rain detection and removal from a single image[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 1357-1366.
    [33] LI Yu, TAN Robby T, GUO Xiao-jie, et al. Rain streak removal using layer priors[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 2736-2744.
    [34] ZHANG He, SINDAGI V, PATEL V M. Image de-raining using a conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(11): 3943-3956. doi: 10.1109/TCSVT.2019.2920407
    [35] FU Xue-yang, HUANG Jia-bin, ZENG De-lu, et al. Removing rain from single images via a deep detail network[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 3855-3863.
    [36] ZHANG He, PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]//IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 695-704.
    [37] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the KITTI vision benchmark suite[C]//IEEE. 25th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2012: 3354-3361.
    [38] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 3213-3223.
    [39] NEUHOLD G, OLLMANN T, BULÒ S R, et al. The mapillary vistas dataset for semantic understanding of street scenes[C]//IEEE. 30th IEEE International Conference on Computer Vision. New York: IEEE, 2017: 4990-4999.
    [40] YU Fisher, XIAN Wen-qi, CHEN Ying-ying, et al. BDD100K: a diverse driving video database with scalable annotation tooling[EB/OL]. (2020-04-08)[2022-07-02]. https://arxiv.org/abs/1805.04687v2.
    [41] CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]//IEEE. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2020: 11618-11628.
    [42] HUANG Xin-yu, WANG Peng, CHENG Xin-jing, et al. The ApolloScape open dataset for autonomous driving and its application[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2702-2719. doi: 10.1109/TPAMI.2019.2926463
    [43] ZHU Zhe, LIANG Dun, ZHANG Song-hai, et al. Traffic-sign detection and classification in the wild[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 2110-2118.
    [44] STALLKAMP J, SCHLIPSING M, SALMEN J, et al. The German traffic sign recognition benchmark: a multi-class classification competition[C]// IEEE. 2011 International Joint Conference on Neural Networks. New York: IEEE, 2011: 1453-1460.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  1291
  • HTML全文浏览量:  459
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-22
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回