留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低可见度环境下基于同步定位与构图的无人驾驶汽车定位算法

高扬 曹王欣 夏洪垚 赵亦辉

高扬, 曹王欣, 夏洪垚, 赵亦辉. 低可见度环境下基于同步定位与构图的无人驾驶汽车定位算法[J]. 交通运输工程学报, 2022, 22(3): 251-262. doi: 10.19818/j.cnki.1671-1637.2022.03.020
引用本文: 高扬, 曹王欣, 夏洪垚, 赵亦辉. 低可见度环境下基于同步定位与构图的无人驾驶汽车定位算法[J]. 交通运输工程学报, 2022, 22(3): 251-262. doi: 10.19818/j.cnki.1671-1637.2022.03.020
GAO Yang, CAO Wang-xin, XIA Hong-yao, ZHAO Yi-hui. Driverless vehicle positioning algorithm based on simultaneous positioning and mapping in low-visibility environment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 251-262. doi: 10.19818/j.cnki.1671-1637.2022.03.020
Citation: GAO Yang, CAO Wang-xin, XIA Hong-yao, ZHAO Yi-hui. Driverless vehicle positioning algorithm based on simultaneous positioning and mapping in low-visibility environment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 251-262. doi: 10.19818/j.cnki.1671-1637.2022.03.020

低可见度环境下基于同步定位与构图的无人驾驶汽车定位算法

doi: 10.19818/j.cnki.1671-1637.2022.03.020
基金项目: 

国家重点研发计划 2019YFB1600100

陕西省自然科学基金项目 2019JLP-07

详细信息
    作者简介:

    高扬(1982-),男,江西吉安人,长安大学副教授,工学博士,从事移动机器人导航技术与人工智能技术研究

  • 中图分类号: U491.2

Driverless vehicle positioning algorithm based on simultaneous positioning and mapping in low-visibility environment

Funds: 

National Key Research and Development Program of China 2019YFB1600100

Natural Science Foundation of Shaanxi Province 2019JLP-07

More Information
  • 摘要: 为在大范围低可见度环境下实现无人驾驶汽车的高精度定位,基于VINS-Mono算法的系统框架,在系统的前端与后端分别增添了RFAST弱光图像增强模块与VG融合定位模块,提出了一种融合定位算法LVG_SLAM; RFAST弱光图像增强模块采用小波变换将原始输入图像的细节信息与亮度信息分离,对于包含原始图像噪声的细节信息通过统一阈值和均值滤波2种方式实现噪声抑制,并利用双边纹理滤波算法进行细节增强,在此基础上,根据多尺度Retinex算法增强图像的对比度,提高低可见度环境下角点提取的成功率,从而保证图像跟踪的稳定性,改善定位算法的鲁棒性; 基于无迹卡尔曼滤波算法,VG融合定位模块将GNSS定位信息与惯性导航测量信息进行松耦合,融合定位结果作为约束引入VI-SLAM后端,通过联合非线性优化的方式减少累积误差对算法定位精度的影响。计算结果表明:相较于VINS-Mono算法,改进的LVG_SLAM融合定位算法在EuRoC与Kitti公开数据集上表现更加出色,均方根误差分别降低了38.76%与58.39%,运动轨迹更贴近真实轨迹; 在实际夜晚道路场景下,LVG_SLAM算法将定位误差控制在一定范围内,顺利检测到闭环使得定位表现得到大幅改善,均方根误差、平均误差、最大误差、中位数误差分别降低了79.61%、82.50%、71.31%、83.77%,与VINS-Mono算法相比,在定位精度与鲁棒性方面具有明显的优势。

     

  • 图  1  LVG_SLAM算法框架

    Figure  1.  Framework of LVG_SLAM algorithm

    图  2  RFAST弱光图像增强算法

    Figure  2.  RFAST enhancement algorithm for low-light images

    图  3  图像小波分解

    Figure  3.  Wavelet decomposition of image

    图  4  均值滤波模板

    Figure  4.  Templates of mean filter

    图  5  VG融合定位算法

    Figure  5.  VG fusion positioning algorithm

    图  6  RFAST弱光图像增强算法试验结果

    Figure  6.  Experimental results of RFAST low-light image enhancement algorithm

    图  7  VINS-Mono与VINS_LOV运动轨迹对比

    Figure  7.  Comparison of motion trajectories between VINS-Mono and VINS_LOV

    图  8  VINS-Mono与VG运动轨迹对比

    Figure  8.  Comparison of motion trajectories between VINS-Mono and VG

    图  9  实车试验平台

    Figure  9.  Test platform for actual vehicles

    图  10  夜晚道路试验场景

    Figure  10.  Experimental scenes of night road

    图  11  图像增强效果对比

    Figure  11.  Comparison of image enhancement effects

    图  12  夜晚道路试验轨迹对比

    Figure  12.  Comparison of trajectories in night road experiment

    表  1  角点提取数量对比

    Table  1.   Comparison of corner extraction numbers

    图像 角点提取个数 提升幅度/%
    原始图像 增强图像
    1 264 277 4.924
    2 173 219 26.590
    3 130 235 80.769
    下载: 导出CSV

    表  2  VINS-Mono与VINS_LOV误差对比

    Table  2.   Comparison of errors between VINS-Mono and VINS_LOV

    评价指标 VINS_LOV VINS-Mono
    均方根误差/m 0.199 629 0.325 981
    平均误差/m 0.168 457 0.307 540
    最大误差/m 0.455 183 0.472 395
    最小误差/m 0.014 413 0.050 871
    中位数误差/m 0.130 769 0.365 190
    下载: 导出CSV

    表  3  VINS-Mono与VG误差对比

    Table  3.   Comparison of errors between VINS-Mono and VG

    评价指标 VG VINS-Mono
    均方根误差/m 6.238 162 14.991 978
    平均误差/m 5.578 558 13.337 583
    最大误差/m 11.140 413 33.867 193
    最小误差/m 0.126 134 5.506 336
    中位数误差/m 5.704 954 10.387 250
    下载: 导出CSV

    表  4  夜晚道路试验运动轨迹误差对比

    Table  4.   Comparison of motion trajectory errors in night road experiment

    评价指标 LVG_SLAM VINS-Mono
    均方根误差/m 2.692 074 13.204 907
    平均误差/m 1.951 224 11.147 574
    最大误差/m 7.870 044 27.429 693
    最小误差/m 0.114 326 0.092 444
    中位数误差/m 1.489 543 9.178 928
    下载: 导出CSV
  • [1] BRESSON G, ALSAYED Z, YU Li, et al. Simultaneous localization and mapping: a survey of current trends in autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2017, 2(3): 194-220. doi: 10.1109/TIV.2017.2749181
    [2] DOMÍNGUEZ-CONTI J, YIN Jian-feng, ALAMI Y, et al. Visual-inertial SLAM initialization: a general linear formulation and a gravity-observing non-linear optimization[C]//IEEE. 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). New York: IEEE, 2018: 37-45.
    [3] HUANG Jia-wei, LIU Shi-guang. Robust simultaneous localization and mapping in low-light environment[J]. Computer Animation and Virtual Worlds, 2019, 30(3/4): 155-161.
    [4] WANG Jun, WANG Rui, WU An-wen. Improved gamma correction for visual SLAM in low-light scenes[C]//IEEE. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference. New York: IEEE, 2019: 1159-1163.
    [5] LORE K G, AKINTAYO A, SARKAR S. LLNet: a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650-662. doi: 10.1016/j.patcog.2016.06.008
    [6] WEI Chen, WANG Wen-jing, YANG Wen-han, et al. Deep retinex decomposition for low-light enhancement[J]. ArXiv, 2018, DOI: arXiv:1808.04560.
    [7] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. doi: 10.1109/TIP.2007.901238
    [8] ZHANG Kai, ZUO Wang-meng, CHEN Yun-jin, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE transactions on Image Processing, 2017, 26(7): 3142-3155. doi: 10.1109/TIP.2017.2662206
    [9] QIN Tong, LI Pei-liang, SHEN Shao-jie. VINS-mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. doi: 10.1109/TRO.2018.2853729
    [10] ROESLER C, LARSON K M. Software tools for GNSS interferometric reflectometry (GNSS-IR)[J]. GPS Solutions, 2018, 22(3): 987-995.
    [11] 章为川, 孔祥楠, 宋文. 图像的角点检测研究综述[J]. 电子学报, 2015, 43(11): 2315-2321. doi: 10.3969/j.issn.0372-2112.2015.11.026

    ZHANG Wei-chuan, KONG Xiang-nan, SONG Wen. Review of image corner detection algorithms[J]. Acta Electronica Sinica, 2015, 43(11): 2315-2321. (in Chinese) doi: 10.3969/j.issn.0372-2112.2015.11.026
    [12] LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision[C]//IJCAI. Proceedings of the 7th International Joint Conference on Artificial Intelligence. Vancouver: IJCAI, 1981: 674-679.
    [13] AGARWAL S, SNAVELY N, SEITZ S M, et al. Bundle adjustment in the large[C]//Springer. 11th European Conference on Computer Vision. Berlin: Springer, 2010: 29-42.
    [14] 唐崇武. 图像统计建模与噪声分析关键技术的研究[D]. 上海: 上海交通大学, 2015.

    TANG Chong-wu. Research onkey techniques of image statistical modeling and noise analysis[D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese)
    [15] 郝志成, 吴川, 杨航, 等. 基于双边纹理滤波的图像细节增强方法[J]. 中国光学, 2016, 9(4): 423-431. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201604005.htm

    HAO Zhi-cheng, WU Chuan, YANG Hang, et al. Image detail enhancement method based on multi-scale bilateral texture filter[J]. Chinese Optics, 2016, 9(4): 423-431. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201604005.htm
    [16] LIN Hao-ming, SHI Zhen-wei. Multi-scale retinex improvement for nighttime image enhancement[J]. Optik, 2014, 125(24): 7143-7148. doi: 10.1016/j.ijleo.2014.07.118
    [17] HAN Nian-long, HU Jin-xing, ZHANG Wei. Multi-spectral and SAR images fusion via Mallat and À trous wavelet transform[C]//IEEE. 2010 18th International Conference on Geoinformatics. New York : IEEE, 2010: 1-4.
    [18] 田流芳. 基于中值滤波和小波变换的图像去噪算法研究[D]. 保定: 河北大学, 2014.

    TIAN Liu-fang. Research onimage denoising algorithm based on median filtering and wavelet transform[D]. Baoding: Hebei University, 2014. (in Chinese)
    [19] FEBIN I P, JIDESH P, BINI A A. A retinex-based variational model for enhancement and restoration of low-contrast remote-sensed images corrupted by shot noise[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 941-949. doi: 10.1109/JSTARS.2020.2975044
    [20] COSTA D S, MELLO C A B. Enhancement ofweakly illuminated images using CNN and retinex theory[C]//IEEE. 2020 IEEE International Conference on Systems, Man, and Cybernetics. New York: IEEE, 2020: 2559-2564.
    [21] MA Shi-ping, MA Hong-qiang, XU Yue-lei, et al. A low-light sensor image enhancement algorithm based on HSI color model[J]. Sensors, 2018, 18(10): 524-536.
    [22] MUSTAFA W A, YAZID H, YAACOB S B. Illumination normalization of non-uniform images based on double mean filtering[C]//IEEE. 2014 IEEE international conference on control system, computing and engineering. New York: IEEE, 2014: 366-371.
    [23] 李晓飞. 基于小波变换的图像去噪方法研究[D]. 南京: 南京邮电大学, 2016.

    LI Xiao-fei. Research onimage denoising method based on wavelet transform[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2016. (in Chinese)
    [24] FERNANDES L C, DE MENEZES L R A X, LOUREIRO A J F. Using the unscented transform to reduce the number of measurements in drive tests[J]. SN Applied Sciences, 2021, 3(2): 145-152. doi: 10.1007/s42452-020-04130-x
    [25] BURRI M, NIKOLIC J, GOHL P, et al. The EuRoC micro aerial vehicle datasets[J]. The International Journal of Robotics Research, 2016, 35(10): 1157-1163. doi: 10.1177/0278364915620033
    [26] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. doi: 10.1177/0278364913491297
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  525
  • HTML全文浏览量:  187
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-11
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回