留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车路协同混合交通场景要素解析与测试案例生成

赵通 上官伟 柴琳果 郭蓬

赵通, 上官伟, 柴琳果, 郭蓬. 车路协同混合交通场景要素解析与测试案例生成[J]. 交通运输工程学报, 2022, 22(3): 263-276. doi: 10.19818/j.cnki.1671-1637.2022.03.021
引用本文: 赵通, 上官伟, 柴琳果, 郭蓬. 车路协同混合交通场景要素解析与测试案例生成[J]. 交通运输工程学报, 2022, 22(3): 263-276. doi: 10.19818/j.cnki.1671-1637.2022.03.021
ZHAO Tong, SHANGGUAN Wei, CHAI Lin-guo, GUO Peng. Scenario factor analysis and test case generation for vehicle-infrastructure cooperative mixed traffic[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 263-276. doi: 10.19818/j.cnki.1671-1637.2022.03.021
Citation: ZHAO Tong, SHANGGUAN Wei, CHAI Lin-guo, GUO Peng. Scenario factor analysis and test case generation for vehicle-infrastructure cooperative mixed traffic[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 263-276. doi: 10.19818/j.cnki.1671-1637.2022.03.021

车路协同混合交通场景要素解析与测试案例生成

doi: 10.19818/j.cnki.1671-1637.2022.03.021
基金项目: 

国家重点研发计划 2018YFB1600600

中国国家铁路集团有限公司科技研究开发计划 N2021G045

详细信息
    作者简介:

    赵通(1996-),男,甘肃白银人,北京交通大学工学博士研究生,从事车路协同系统研究

    上官伟(1979-),男,陕西乾县人,北京交通大学教授,工学博士

    通讯作者:

    上官伟(1979-),男,陕西乾县人,北京交通大学教授,工学博士

  • 中图分类号: U495

Scenario factor analysis and test case generation for vehicle-infrastructure cooperative mixed traffic

Funds: 

National Key Research and Development Program of China 2018YFB1600600

Science and Technology Research and Development Program of China Railway N2021G045

More Information
  • 摘要: 面向混合交通环境下多车效率类和单车安全类场景测试需求,研究了基于混合交通场景要素解析的车路协同测试案例生成方法; 为提高测试案例的多样性和覆盖度,分析了混合交通特征要素相互作用机理,构建了混合交通场景要素层次模型,提出了场景要素重要度的一致性描述指标,并在此基础上建立了测试案例复杂度模型; 针对多车效率类场景仿真测试,提出了复杂度激励的组合测试案例生成方法,设计了场景要素强耦合组合策略; 针对单车安全类场景仿真测试,提出了基于复杂度聚类的蒙特卡洛测试案例生成方法,设计了风险场景特征参数抽样机制; 选取车路协同混合交通典型场景开展仿真试验,验证了提出的测试案例生成方法的有效性。研究结果表明,对于多车效率类混合交通高速公路匝道合流场景测试,提出的方法比传统成对测试方法的场景最大复杂度提高了11.93%,高复杂度场景占比提高了60.02%,测试案例覆盖度提高了12.08%;对于单车安全类车路协同换道预警场景测试,提出的方法比传统蒙特卡洛测试方法的危险场景数提高了195%,且其参数估计误差降低了5.95%,高风险场景数提高了119%,且其参数估计误差降低了4.78%。可见,提出的方法能够提高测试案例的多样性和覆盖度,有助于开展复杂环境和风险条件下车路协同系统功能测试,能够有效满足多车效率类和单车安全类场景测试需求。

     

  • 图  1  异构车辆驾驶类型示意

    Figure  1.  Illustration of driving types of heterogeneous vehicles

    图  2  匝道合流场景要素层次模型

    Figure  2.  Hierarchical model of ramp merging scenario factors

    图  3  马氏链转移和接受概率示意

    Figure  3.  Illustration of Markov chain transfer and acceptance probabilities

    图  4  MH抽样算法流程

    Figure  4.  MH sampling algorithm flow

    图  5  复杂度与交通流流量关系

    Figure  5.  Relationship between complexity and traffic flow volume

    图  6  PICT改进算法与ET生成测试案例数对比

    Figure  6.  Comparison of numbers of test cases generated by improved PICT algorithm and ET

    图  7  测试案例复杂度占比对比

    Figure  7.  Comparison of test case complexity proportions

    图  8  CAV换道预警场景

    Figure  8.  CAV lane change warning scenario

    图  9  场景实例与测试案例风险程度对比

    Figure  9.  Comparison of risk degrees between scenario instances and test cases

    图  10  MC方法生成测试案例的分布

    Figure  10.  Distribution of test cases generated by MC method

    图  11  IS生成测试案例的分布

    Figure  11.  Distribution of test cases generated by IS

    表  1  不同测试案例生成方法的适用性对比

    Table  1.   Applicability comparison of different test case generation methods

    适用条件 复杂度激励的组合测试案例生成方法 基于复杂度聚类的蒙特卡洛测试案例生成方法
    需求导向 效率类 安全类
    车辆数 多车 单车
    场景规模 大规模 小规模
    下载: 导出CSV

    表  2  匝道合流场景要素示例

    Table  2.   Examples of ramp merging scenario factors

    场景要素 异属元要素 耦合指数
    光照环境 天气 0.000 4
    时段 早晨 0.000 4
    道路 主路 车道数 3 0.014 9
    限速/(m·s-1) 22 0.012 6
    匝道 车道数 1 0.011 3
    限速/(m·s-1) 11 0.033 7
    加速车道 车道数 1 0.008 2
    限速/(m·s-1) 22 0.003 5
    交通设施 路侧通信设备 0.014 0
    路侧控制设备 0.059 5
    异构机动车 HDV 加速度/(m·s-2) 2 0.008 6
    减速度/(m·s-2) 2 0.011 3
    CAV 加速度/(m·s-2) 2 0.010 0
    减速度/(m·s-2) 2 0.012 1
    混合交通流 流量 主路上游/(veh·h-1) 6 000 0.047 4
    匝道上游/(veh·h-1) 1 000 0.033 8
    CAV渗透率 0.4 0.080 5
    下载: 导出CSV

    表  3  测试案例复杂度分布对比

    Table  3.   Comparison of test case complexity distributions

    统计量 PICT算法 AETG算法 PICT改进算法
    最小值 0.096 3 0.128 0 0.107 2
    下四分位数值 0.146 7 0.209 5 0.323 8
    中值 0.233 9 0.244 3 0.440 5
    上四分位数值 0.356 8 0.315 7 0.503 4
    最大值 0.477 1 0.431 4 0.534 0
    下载: 导出CSV

    表  4  区间划分统计结果

    Table  4.   Interval partitioning statistical results

    对象类型 区间数
    单个区间内场景数 合计
    [1, 5) [5, 10) [10, 20) [20, +∞)
    场景实例 62 35 31 36 164
    测试案例 104 41 30 33 208
    下载: 导出CSV

    表  5  不同类型场景测试案例数及占比

    Table  5.   Numbers and proportions of test cases for different types of scenarios

    场景类型 方法类型 ΔtT/s 数量 占总数比例/%
    危险场景 MC (0, 0.9] 20 0.20
    IS 59 0.59
    高风险场景 MC (0.9, 1.9] 443 4.43
    IS 969 9.69
    中风险场景 MC (1.9, 2.9] 1 402 13.02
    IS 2 627 26.27
    低风险场景 MC (2.9, 20] 4 475 44.75
    IS 2 951 29.51
    下载: 导出CSV

    表  6  高危风险场景的估计概率和相对误差

    Table  6.   Estimated probabilities and relative errors for high-risk and hazardous scenarios

    场景类型 方法类型 估计概率 相对误差/%
    危险场景 MC 0.001 9 14.68
    IS 0.001 8 8.73
    高风险场景 MC 0.042 8 8.74
    IS 0.043 1 3.96
    下载: 导出CSV
  • [1] MENZEL T, BAGSCHIK G, MAURER M. Scenarios for development, test and validation of automated vehicles[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium (Ⅳ). New York: IEEE, 2018: 1821-1827.
    [2] WEBER H, BOCK J, KLIMKE J, et al. A framework for definition of logical scenarios for safety assurance of automated driving[J]. Traffic Injury Prevention, 2019, 20(S1): 65-70.
    [3] ULBRICH S, MENZEL T, RESCHKA A, et al. Defining and substantiating the terms scene, situation, and scenario for automated driving[C]//IEEE. 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2018: 982-988.
    [4] 徐向阳, 胡文浩, 董红磊, 等. 自动驾驶汽车测试场景构建关键技术综述[J]. 汽车工程, 2021, 43(4): 610-619. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202104021.htm

    XU Xiang-yang, HU Wen-hao, DONG Hong-lei, et al. Review of key technologies for autonomous vehicle test scenario construction[J]. Automotive Engineering, 2021, 43(4): 610-619. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202104021.htm
    [5] 朱冰, 张培兴, 赵健, 等. 基于场景的自动驾驶汽车虚拟测试研究进展[J]. 中国公路学报, 2019, 32(6): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906002.htm

    ZHU Bing, ZHANG Pei-xing, ZHAO Jian, et al. Review of scenario-based virtual validation methods for automated vehicles[J]. China Journal of Highway and Transport, 2019, 32(6): 1-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906002.htm
    [6] ELROFAI H, PAARDEKOOPER J, GELDER E, et al. Scenario-based safety validation of connected and automated driving[R]. Helmond: TNO, 2018.
    [7] HINA M D, SOUKANE A, RAMDANE-CHERIF A. Cognition of driving context in a connected and semi-autonomous vehicle: a perspective[J]. Ada User Journal, 2017, 38(4): 222-226.
    [8] ROCKLAGE E, KRAFT H, KARATAS A, et al. Automated scenario generation for regression testing of autonomous vehicles[C]//IEEE. 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2017: 476-483.
    [9] 白雪松, 邓伟文, 任秉韬, 等. 一种自动驾驶仿真场景要素的提取方法[J]. 汽车工程, 2021, 43(7): 1030-1036, 1065. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202107011.htm

    BAI Xue-song, DENG Wei-wen, REN Bing-tao, et al. An extraction method of scenario elements for autonomous driving simulation[J]. Automotive Engineering, 2021, 43(7): 1030-1036, 1065. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202107011.htm
    [10] XIA Qin, DUAN Jian-li, GAO Feng, et al. Test scenario design for intelligent driving system ensuring coverage and effectiveness[J]. International Journal of Automotive Technology, 2018, 19(4): 751-758. doi: 10.1007/s12239-018-0072-6
    [11] XIA Qin, DUAN Jian-li, GAO Feng, et al. Automatic generation method of test scenario for ADAS based on complexity[J]. SAE Technical Paper Series, 2017-01-1992.
    [12] GAO Feng, DUAN Jian-li, HAN Zai-dao, et al. Automatic virtual test technology for intelligent driving systems considering both coverage and efficiency[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14365-14376. doi: 10.1109/TVT.2020.3033565
    [13] GAO Feng, DUAN Jian-li, HE Ying-dong, et al. A test scenario automatic generation strategy for intelligent driving systems[J]. Mathematical Problems in Engineering, 2019, 2019: 3737486.
    [14] ROESENER C, FAHRENKROG F, UHLIG A, et al. A scenario-based assessment approach for automated driving by using time series classification of human-driving behaviour[C]//IEEE. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2016: 1360-1365.
    [15] HALLERBACH S, XIA Yi-qun, EBERLE U, et al. Simulation-based identification of critical scenarios for cooperative and automated vehicles[J]. SAE International Journal of Connected and Automated Vehicles, 2018, 1(2): 93-106. doi: 10.4271/2018-01-1066
    [16] LANGNER J, BACH J, RIES L, et al. Estimating the uniqueness of test scenarios derived from recorded real-world-driving-data using autoencoders[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium (IV). New York: IEEE, 2018: 1860-1866.
    [17] FELLNER A, KRENN W, SCHLICK R, et al. Model-based, mutation-driven test-case generation via heuristic-guided branching search[J]. ACM Transactions on Embedded Computing Systems, 2019, 18(1): 1-28.
    [18] 舒红, 袁康, 修海林, 等. 自动驾驶汽车基础测试场景构建研究[J]. 中国公路学报, 2019, 32(11): 245-254. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911026.htm

    SHU Hong, YUAN Kang, XIU Hai-lin, et al. Construction of basic test scenarios of automated vehicles[J]. China Journal of Highway and Transport, 2019, 32(11): 245-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911026.htm
    [19] DUAN Jian-li, GAO Feng, HE Ying-dong. Test scenario generation and optimization technology for intelligent driving systems[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(1): 115-127. doi: 10.1109/MITS.2019.2926269
    [20] 上官伟, 张凤娇, 蔡伯根, 等. 基于萤火虫-免疫算法的CVIS测试序列优化方法[J]. 中国公路学报, 2017, 30(11): 129-137, 155. doi: 10.3969/j.issn.1001-7372.2017.11.014

    SHANGGUAN Wei, ZHANG Feng-jiao, CAI Bai-gen, et al. IFA-based test sequence optimization method for CVIS[J]. China Journal of Highway and Transport, 2017, 30(11): 129-137, 155. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.11.014
    [21] MULLINS G E, STANKIEWICZ P G, HAWTHORNE R C, et al. Adaptive generation of challenging scenarios for testing and evaluation of autonomous vehicles[J]. Journal of Systems and Software, 2018, 137: 197-215. doi: 10.1016/j.jss.2017.10.031
    [22] KLISCHAT M, LIU E I, HOLTKE F, et al. Scenario factory: creating safety-critical traffic scenarios for automated vehicles[C]//IEEE. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2020: 1-7.
    [23] KLISCHAT M, ALTHOFF M. Generating critical test scenarios for automated vehicles with evolutionary algorithms[C]//IEEE. 2019 IEEE Intelligent Vehicles Symposium (IV). New York: IEEE, 2019: 2352-2358.
    [24] FENG Shuo, FENG Yi-heng, SUN Hao-wei, et al. Testing scenario library generation for connected and automated vehicles: n adaptive framework[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1213-1222. doi: 10.1109/TITS.2020.3023668
    [25] HUANG Li, XIA Qin, XIE Fei, et al. Study on the test scenarios of level 2 automated vehicles[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium (Ⅳ). New York: IEEE, 2018: 49-54.
    [26] 周文帅, 朱宇, 赵祥模, 等. 面向高速公路车辆切入场景的自动驾驶测试用例生成方法[J]. 汽车技术, 2021(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS202101003.htm

    ZHOU Wen-shuai, ZHU Yu, ZHAO Xiang-mo, et al. Vehicle cut-in test case generation methods for testing of autonomous driving on highway[J]. Automobile Technology, 2021(1): 11-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS202101003.htm
    [27] ZHAO Ding, HUANG Xia-nan, PENG H, et al. Accelerated evaluation of automated vehicles in car-following maneuvers[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 733-744. doi: 10.1109/TITS.2017.2701846
    [28] ZHANG Song-an, PENG H, ZHAO Ding, et al. Accelerated evaluation of autonomous vehicles in the lane change scenario based on subset simulation technique[C]//IEEE. 2018 21st International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2018: 3935-3940.
    [29] ARIEF M, HUANG Zhi-yuan, KUMAR G K S, et al. Deep probabilistic accelerated evaluation: a robust certifiable rare-event simulation methodology for black-box safety-critical systems[C]//BANERJEE A, FUKUMIZU K. 24th International Conference on Artificial Intelligence and Statistics (AISTATS). Brookline: Microtome Publishing, 2021: 595-603.
    [30] 邓伟文, 李江坤, 任秉韬, 等. 面向自动驾驶的仿真场景自动生成方法综述[J]. 中国公路学报, 2022, 35(1): 316-333. doi: 10.3969/j.issn.1001-7372.2022.01.027

    DENG Wei-wen, LI Jiang-kun, REN Bing-tao, et al. A survey on automatic simulation scenario generation methods for autonomous driving[J]. China Journal of Highway and Transport, 2022, 35(1): 316-333. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.01.027
    [31] 王润民, 朱宇, 赵祥模, 等. 自动驾驶测试场景研究进展[J]. 交通运输工程学报, 2021, 21(2): 21-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202102006.htm

    WANG Run-min, ZHU Yu, ZHAO Xiang-mo, et al. Research progress on test scenario of autonomous driving[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 21-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202102006.htm
    [32] KIM B, MASUDA T, SHIRAISHI S. Test specification and generation for connected and autonomous vehicle in virtual environments[J]. ACM Transactions on Cyber-Physical Systems, 2020, 4(1): 1-26.
    [33] KESTING A, TREIBER M, HELBING D. Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368(1928): 4585-4605.
    [34] MILANÉS V, SHLADOVER S. Modelling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 285-300.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  1770
  • HTML全文浏览量:  659
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-12
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回