留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绿色集装箱港口节能减排策略综述

彭云 李相达 王文渊 任莉

彭云, 李相达, 王文渊, 任莉. 绿色集装箱港口节能减排策略综述[J]. 交通运输工程学报, 2022, 22(4): 28-46. doi: 10.19818/j.cnki.1671-1637.2022.04.003
引用本文: 彭云, 李相达, 王文渊, 任莉. 绿色集装箱港口节能减排策略综述[J]. 交通运输工程学报, 2022, 22(4): 28-46. doi: 10.19818/j.cnki.1671-1637.2022.04.003
PENG Yun, LI Xiang-da, WANG Wen-yuan, REN Li. Review on energy saving and emission reduction strategies of green container ports[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 28-46. doi: 10.19818/j.cnki.1671-1637.2022.04.003
Citation: PENG Yun, LI Xiang-da, WANG Wen-yuan, REN Li. Review on energy saving and emission reduction strategies of green container ports[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 28-46. doi: 10.19818/j.cnki.1671-1637.2022.04.003

绿色集装箱港口节能减排策略综述

doi: 10.19818/j.cnki.1671-1637.2022.04.003
基金项目: 

国家重点研发计划 2021YFB2600200

详细信息
    作者简介:

    彭云(1988-), 女, 辽宁铁岭人, 大连理工大学副教授, 工学博士, 从事绿色及生态型港口规划研究

    通讯作者:

    任莉(1973-), 女, 辽宁沈阳人, 大连海洋大学副教授, 工学博士

  • 中图分类号: U691

Review on energy saving and emission reduction strategies of green container ports

Funds: 

National Key Research and Development Program of China 2021YFB2600200

More Information
  • 摘要: 综述了绿色集装箱港口节能减排策略,总结了国内外针对在港船舶、场桥、集卡与岸桥节能减排的措施与减排效果量化方面的研究成果,提出了未来的研究方向。研究结果表明:船用替代燃料(包括液化天然气、生物燃料、新能源)减排效果明显,针对替代燃料动力船应用困难问题,未来可重点研究替代燃料配套设施建设时序、补贴政策确定等问题;船舶采用岸电技术依据各地区碳排放系数不同可减少48.0%~70.0%的船舶在泊CO2排放,考虑岸电设施使用率低等问题,港口岸电定价、船舶与码头配套设施改造时序等问题成为未来研究重点;降低船速可减少8.0%~20.0%的船舶在港CO2排放;降低船舶非生产等待时间及辅助作业时间,并不能显著降低船舶在港CO2排放,后续还可进一步研究如何通过港口资源合理调度等方式减少船舶在港等待时间;设立硫排放控制区可减少33.0%~34.6%的SO2排放,还可继续研究排放控制区对船舶运营与港口运营的影响;场桥、集卡与岸桥节能减排措施主要为设备改造及优化调度,未来可继续研究既有设施设备节能改造时序,并分析在港船舶与装卸设备各减排措施集成下的综合减排效果;新能源供电系统在港口中的应用尚处于起步阶段,未来可研究港口新能源电力系统设计方法,构建清洁低碳的港口能源体系。

     

  • 图  1  2009~2022年绿色集装箱港口相关文献数量统计

    Figure  1.  Quantitative statistics of literatures on green container port from 2009 to 2022

    图  2  不同研究方向的文献分布

    Figure  2.  Distribution of literatures in different research aspects

    图  3  综述内容

    Figure  3.  Overview components

    图  4  在港船舶节能减排策略文献分布

    Figure  4.  Distribution of literatures on energy saving and emission reduction strategies for ships at port

    表  1  在港船舶节能减排策略研究汇总(替代燃料)

    Table  1.   Research summary on strategies of energy saving and emission reduction for ships at port (alternative fuels)

    替代燃料 研究方法 研究对象 减排效果 参考文献
    CO2 NOx
    LNG 统计 船队 23.8%~25.9% 75.0%~83.0% 罗婷婷(2018)[34]
    文献综述 船队 5.0%~30.0% 未提及 Bouman等(2017)[36]
    公式计算 船队 10.0% 未提及 Gilbert等(2014)[12]
    生物燃料 仿真 鹿特丹港 2.45×104 t 707 t Vleugel等(2015)[42]
    统计 船队 19.0%~38.0% 未提及 Eide等(2014)[41]
    文献综述 船队 25.0%~84.0% 未提及 Bouman等(2017)[36]
    下载: 导出CSV

    表  2  在港船舶节能减排策略研究汇总(替代能源)

    Table  2.   Research summary on strategies of energy saving and emission reduction for ships at port (alternative energy)

    替代能源 研究方法 研究对象 减排效果 参考文献
    CO2 SO2 NOx
    岸电 实测数据分析 洛杉矶港 未提及 未提及 1.7 t·艘-1 Cannon等(2015)[50]
    公式计算 洛杉矶港、汉堡港等 48.0%~70.0% 3.0%~60.0% 40.0%~60.0% Zis等(2014)[52]
    实测数据分析 上海港等 未提及 8.1 g·kWh-1 11.9 g·kWh-1 Peng等(2016)[53]
    公式计算 欧洲港口 40.0% 未提及 未提及 Sciberras等(2016)[51]
    新能源 仿真 巴西港口 90.0% 72.0% 99.0% Yigit等(2018)[72]
    日本港口 23.0% 未提及 85.0%
    土耳其港口 33.0% 未提及 92.0%
    英国港口 49.0% 16.0% 91.0%
    印度港口 未提及 未提及 90.0%
    下载: 导出CSV

    表  3  在港船舶节能减排策略研究汇总(运营策略优化)

    Table  3.   Research summary on strategies of energy saving and emission reduction for ships at port (optimization of operation strategies)

    具体措施 研究方法 研究对象 减排效果 参考文献
    燃料/能源 CO2 SO2 NOx
    降低船舶航速 仿真 洛杉矶港,汉堡港等 未提及 8.0%~20.0% 9.0%~40.0% 9.0%~17.0% Zis等(2014)[52]
    公式计算 克拉克森航运数据库 未提及 41.0%~52.4% 未提及 未提及 Chang等(2014)[83]
    公式计算 船队 未提及 54.4% 未提及 未提及 Smith等(2012)[84]
    数据分析 波士顿港等 未提及 19.4% 未提及 未提及 Fagerholt等(2010)[85]
    仿真 美国港口 未提及 30.0%~70.0% 未提及 未提及 Corbett等(2009)[82]
    优化 天津港 8~14 kg·艘-1 未提及 未提及 未提及 Du等(2011)[17]
    公式计算 高雄港 未提及 41.0% 未提及 未提及 Chang等(2016)[18]
    仿真 阿尔及利亚港 未提及 48.4% 未提及 未提及 Peng等(2018)[6]
    减少船舶在港时间 仿真 阿尔及利亚港 未提及 6.0% 未提及 未提及 Peng等(2018)[24]
    公式计算 北欧港口 2.0%~8.0% 未提及 未提及 未提及 Johnson等(2015)[87]
    下载: 导出CSV

    表  4  场桥节能减排策略汇总

    Table  4.   Research summary on strategies of energy saving and emission reduction for yard cranes

    研究内容 研究方法 研究对象 减排效果 参考文献
    减排策略 具体措施 燃料/能源 CO2
    设备改造 油改电 统计分析 高雄港 86.6% 67.8% Yang等(2013)[19]
    碳足迹分析 鹿特丹港 未提及 20.0% Geerlings等(2010)[20]
    储能设备 实测数据分析 费利克斯托港 33 m3 0.8×104 t Papaioannou等(2017)[106]
    仿真 混合动力式RTG 30.0%~35.0% 未提及 Flynn等(2008)[104],Tan等(2017)[105]
    仿真 场桥(含储能设备) 20.0%~60.0% 未提及 Antonelli等(2017)[102]
    照明系统改造 试验 上海港 8 935.2 kWh 未提及 严俊等(2014)[107]
    优化调度 设备配置与调度 仿真优化 华东某集装箱码头 25.6% 未提及 He等(2015)[22]
    仿真 阿尔及利亚港 未提及 21.3% Peng等(2018)[24]
    下载: 导出CSV

    表  5  集卡节能减排策略汇总

    Table  5.   Research summary on strategies of energy saving and emission reduction for container trucks

    研究内容 研究方法 研究对象 减排效果 参考文献
    减排策略 具体措施 燃料/能源 CO2 NOx
    设备改造 油改电 仿真 阿尔及利亚港 未提及 13.6% 未提及 Peng等(2018)[24]
    仿真 高雄港 未提及 27.5% 未提及 Yang(2017)[117]
    油改气 实测数据分析 宁波港 未提及 25.0 t 未提及 陶学宗等(2018)[112]
    优化调度 到港规律优化 双目标优化 纽约和新泽西港 未提及 58.8~63.9 t 1.2~13.1 t Chen等(2013)[115]
    优化配置 仿真 阿尔及利亚港 未提及 22.8% 未提及 Peng等(2018)[24]
    下载: 导出CSV
  • [1] CHEN Ji-hong, ZHENG Tian-xiao, GARG A, et al. Alternative maritime power application as a green port strategy: barriers in China[J]. Journal of Cleaner Production, 2019, 213: 825-837. doi: 10.1016/j.jclepro.2018.12.177
    [2] 王昊宇. 大连港绿色港口评价体系研究[D]. 大连: 大连理工大学, 2016.

    WANG Hao-yu. Construction of assessment framework for green port taken Dalian as a case study[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
    [3] 陈晓峰, 徐金环. 二十一世纪的港口——绿色之港[J]. 港工技术, 2002(2): 6-8. doi: 10.3969/j.issn.1004-9592.2002.02.003

    CHEN Xiao-feng, XU Jin-huan. A green port: port of the 21st century[J]. Port Engineering Technology, 2002(2): 6-8. (in Chinese) doi: 10.3969/j.issn.1004-9592.2002.02.003
    [4] TROZZI C, VACCARO R. Environmental impact of port activities[C]//BREBBIA C A, OLIVELLA J. Maritime Engineering and Ports Ⅱ. Southampton: WIT Press, 2000: 151-161.
    [5] 常祎妹, 朱晓宁, 王力. 集装箱码头集成调度研究综述[J]. 交通运输工程学报, 2019, 19(1): 136-146. doi: 10.3969/j.issn.1671-1637.2019.01.014

    CHANG Yi-mei, ZHU Xiao-ning, WANG Li. Review on integrated scheduling of container terminals[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 136-146. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.01.014
    [6] PENG Yun, LI Xiang-da, WANG Wen-yuan, et al. A simulation- based research on carbon emission mitigation strategies for green container terminals[J]. Ocean Engineering, 2018, 163: 288-298. doi: 10.1016/j.oceaneng.2018.05.054
    [7] HE Ying, JI Yi-jun. Discussion on green port construction of Tianjin Port[C]//IACSIT Press. 2010 International Conference on Biology, Environment and Chemistry. Singapore: IACSIT Press, 2011: 467-469.
    [8] CHANG C C, WANG C M. Evaluating the effects of green port policy: case study of Kaohsiung Harbor in Taiwan[J]. Transportation Research Part D: Transport and Environment, 2012, 17(3): 185-189. doi: 10.1016/j.trd.2011.11.006
    [9] 卢勇. 绿色港口评价体系研究[D]. 上海: 上海交通大学, 2009.

    LU Yong. Study on the assessment framework for green port[D]. Shanghai: Shanghai Jiao Tong University, 2009. (in Chinese)
    [10] 陈姝灵. 上海港绿色港口评价研究[D]. 南昌: 南昌大学, 2016.

    CHEN Shu-ling. The research onevaluation of green port in Shanghai Port[D]. Nanchang: Nanchang University, 2016. (in Chinese)
    [11] 耿东耀, 文豪, 张德文, 等. 集装箱绿色装卸工艺综合评价指标体系的研究[J]. 起重运输机械, 2014(4): 64-67. doi: 10.3969/j.issn.1001-0785.2014.04.023

    GENG Dong-yao, WEN Hao, ZHANG De-wen, et al. Study on comprehensive evaluation index system of container green handling technology[J]. Hoisting and Conveying Machinery, 2014(4): 64-67. (in Chinese) doi: 10.3969/j.issn.1001-0785.2014.04.023
    [12] GILBERT P, BOWS-LARKIN A, MANDER S, et al. Technologies for the high seas: meeting the climate challenge[J]. Carbon Management, 2014, 5(4): 447-461. doi: 10.1080/17583004.2015.1013676
    [13] STYHRE L, WINNES H, BLACK J, et al. Greenhouse gas emissions from ships in ports—case studies in four continents[J]. Transportation Research Part D: Transport and Environment, 2017, 54: 212-224. doi: 10.1016/j.trd.2017.04.033
    [14] PAUL D, PETERSON K, CHAVDARIAN P R. Designing cold ironing power systems: electrical safety during ship berthing[J]. IEEE Industry Applications Magazine, 2014, 20(3): 24-32. doi: 10.1109/MIAS.2013.2288393
    [15] PENG Yun, LI Xiang-da, WANG Wen-yuan, et al. A method for determining the allocation strategy of on-shore power supply from a green container terminal perspective[J]. Ocean and Coastal Management, 2019, 167: 158-175. doi: 10.1016/j.ocecoaman.2018.10.007
    [16] PENG Yun, LI Xiang-da, WANG Wen-yuan, et al. A method for determining the required power capacity of an on-shore power system considering uncertainties of arriving ships[J]. Sustainability, 2018, 10(12): 4524. doi: 10.3390/su10124524
    [17] DU Yu-quan, CHEN Qiu-shuang, QUAN Xiong-wen, et al. Berth allocation considering fuel consumption and vessel emissions[J]. Transportation Research Part E: Logistics and Transportation Review, 2011, 47(6): 1021-1037. doi: 10.1016/j.tre.2011.05.011
    [18] CHANG C C, JHANG C W. Reducing speed and fuel transfer of the green flag incentive program in Kaohsiung Port Taiwan[J]. Transportation Research Part D: Transport and Environment, 2016, 46: 1-10. doi: 10.1016/j.trd.2016.03.007
    [19] YANG Y C, CHANG W M. Impacts of electric rubber-tired gantries on green port performance[J]. Research in Transportation Business and Management, 2013, 8: 67-76. doi: 10.1016/j.rtbm.2013.04.002
    [20] GEERLINGS H, VAN DUIN R. A new method for assessing CO2-emissions from container terminals: a promising approach applied in Rotterdam[J]. Journal of Cleaner Production, 2011, 19(6/7): 657-666.
    [21] SCHMIDT J, MEYER-BARLAG C, EISEL M, et al. Using battery-electric AGVs in container terminals—assessing the potential and optimizing the economic viability[J]. Research in Transportation Business and Management, 2015, 17: 99-111. doi: 10.1016/j.rtbm.2015.09.002
    [22] HE Jun-liang, HUANG You-fang, YAN Wei. Yard crane scheduling in a container terminal for the trade-off between efficiency and energy consumption[J]. Advanced Engineering Informatics, 2015, 29(1): 59-75. doi: 10.1016/j.aei.2014.09.003
    [23] SHA Mei, ZHANG Tao, LAN Ying, et al. Scheduling optimization of yard cranes with minimal energy consumption at container terminals[J]. Computers and Industrial Engineering, 2017, 113: 704-713. doi: 10.1016/j.cie.2016.03.022
    [24] PENG Yun, WANG Wen-yuan, LIU Ke, et al. The impact of the allocation of facilities on reducing carbon emissions from a green container terminal perspective[J]. Sustainability, 2018, 10(6): 1813. doi: 10.3390/su10061813
    [25] ASTRÖM S, YARAMENKA K, WINNES H, et al. The costs and benefits of a nitrogen emission control area in the Baltic and North Seas[J]. Transportation Research Part D: Transport and Environment, 2018, 59: 223-236. doi: 10.1016/j.trd.2017.12.014
    [26] CHEN Lin-ying, YIP T L, MOU J M. Provision of emission control area and the impact on shipping route choice and ship emissions[J]. Transportation Research Part D: Transport and Environment, 2018, 58: 280-291. doi: 10.1016/j.trd.2017.07.003
    [27] NIKOPOULOU Z. Incremental costs for reduction of air pollution from ships: a case study on North European emission control area[J]. Maritime Policy and Management, 2017, 44(8): 1056-1077. doi: 10.1080/03088839.2017.1342878
    [28] MARTÍNEZ-MOYA J, VAZQUEZ-PAJA B, GIMENEZ MALDONADO J A, et al. Energy efficiency and CO2 emissions of port container terminal equipment: evidence from the port of Valencia[J]. Energy Policy, 2019, 131: 312-319. doi: 10.1016/j.enpol.2019.04.044
    [29] LI Xiang-da, PENG Yun, WANG Wen-yuan, et al. A method for optimizing installation capacity and operation strategy of a hybrid renewable energy system with offshore wind energy for a green container terminal[J]. Ocean Engineering, 2019, 186: 106125. doi: 10.1016/j.oceaneng.2019.106125
    [30] LI Li, ZHU Jia-dong, YE Guan-qiong, et al. Development of green ports with the consideration of coastal wave energy[J]. Sustainability, 2018, 10(11): 4270. doi: 10.3390/su10114270
    [31] HULSKOTTE J H J, VAN DER GON H A C D. Fuel consumption and associated emissions from seagoing ships at berth derived from an on-board survey[J]. Atmospheric Environment, 2010, 44(9): 1229-1236. doi: 10.1016/j.atmosenv.2009.10.018
    [32] International Maritime Organization. Third IMO GHG study 2014—executive summary and final report[R]. London: International Maritime Organization (IMO), 2014.
    [33] 罗明汉, 莫斌珍, 黄钦文. LNG燃料动力船舶发展前景[J]. 中国船检, 2019(1): 58-62. doi: 10.3969/j.issn.1009-2005.2019.01.014

    LUO Ming-han, MO Bin-zhen, HUANG Qin-wen. Prospects for LNG ships[J]. China Ship Survey, 2019(1): 58-62. (in Chinese) doi: 10.3969/j.issn.1009-2005.2019.01.014
    [34] 罗婷婷. LNG动力船舶发展现状与趋势[J]. 中国石油和化工标准与质量, 2018, 38(9): 100-101. doi: 10.3969/j.issn.1673-4076.2018.09.048

    LUO Ting-ting. Development status and trend of LNG-powered ships[J]. China Petroleum and Chemical Standards and Quality, 2018, 38(9): 100-101. (in Chinese) doi: 10.3969/j.issn.1673-4076.2018.09.048
    [35] 李斌. LNG作为船舶代用燃料的应用分析[J]. 世界海运, 2012, 35(1): 14-16. doi: 10.3969/j.issn.1006-7728.2012.01.006

    LI Bin. Application analysis of LNG as ship alternative fuel[J]. World Shipping, 2012, 35(1): 14-16. doi: 10.3969/j.issn.1006-7728.2012.01.006
    [36] BOUMAN E A, LINDSTAD E, RIALLAND A I, et al. State- of-the-art technologies, measures, and potential for reducing GHG emissions from shipping—a review[J]. Transportation Research Part D: Transport and Environment, 2017, 52: 408-421. doi: 10.1016/j.trd.2017.03.022
    [37] WANG Shuai-an, QI Jing-wen, LAPORTE G. Governmental subsidy plan modeling and optimization for liquefied natural gas as fuel for maritime transportation[J]. Transportation Research Part B: Methodological, 2022, 155: 304-321. doi: 10.1016/j.trb.2021.11.003
    [38] ATTAH E E, BUCKNALL R. An analysis of the energy efficiency of LNG ships powering options using the EEDI[J]. Ocean Engineering, 2015, 110: 62-74.
    [39] 王欣, 周庆飞, 李彦军. 船舶新能源供电应用技术分析[J]. 硅谷, 2014(4): 103, 93. https://www.cnki.com.cn/Article/CJFDTOTAL-GGYT201404104.htm

    WANG Xin, ZHOU Qing-fei, LI Yan-jun. Application technology analysis of ship new energy power supply[J]. Silicon Valley, 2014(4): 103, 93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GGYT201404104.htm
    [40] PHILIPP R. Blockchain for LBG maritime energy contracting and value chain management: a green shipping business model for seaports[J]. Environmental and Climate Technologies, 2020, 24(3): 329-349. doi: 10.2478/rtuect-2020-0107
    [41] EIDE M S, CHRYSSAKIS C, ENDRESEN Ø. CO2 abatement potential towards 2050 for shipping, including alternative fuels[J]. Carbon Management, 2013, 4(3): 275-289. doi: 10.4155/cmt.13.27
    [42] VLEUGEL J M, BAL F. Cleaner fuels to reduce emissions of CO2, NOx and PM10 by container ships: a solution or a pandora's box?[J]. WIT Transactions on Ecology and the Environment, 2015: 199: 195-206.
    [43] MANDER S, WALSH C, GILBERT P, et al. Decarbonizing the UK energy system and the implications for UK shipping[J]. Carbon Management, 2012, 3(6): 601-614. doi: 10.4155/cmt.12.67
    [44] 娄喜艳, 丁锦平. 生物质能源发展现状及应用前景[J]. 中国农业文摘-农业工程, 2017, 29(2): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNWG201702006.htm

    LOU Xi-yan, DING Jin-ping. Biomass energy development present situation and application prospect[J]. Agricultural Science and Engineering in China, 2017, 29(2): 12-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNWG201702006.htm
    [45] 谭志文. 新能源在船舶上的应用进展及前景[J]. 海洋科学前沿, 2018, 5(2): 67-71.

    TAN Zhi-wen. Application progress and prospect of new energy on ships[J]. Advances in Marine Sciences, 2018, 5(2): 67-71. (in Chinese)
    [46] 刘强, 史国强. B20生物柴油调合燃料在海洋船舶上的试用研究[J]. 中国酿造, 2013, 32(增1): 74-76, 81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGZ2013S1022.htm

    LIU Qiang, SHI Guo-qiang. Trial of the B20 biodiesel blend fuel on ocean ship[J]. China Brewing, 2013, 32(S1): 74-76, 81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGZ2013S1022.htm
    [47] 李建科, 王金全, 金伟一, 等. 船舶岸电系统研究综述[J]. 船电技术, 2010, 30(10): 12-15. doi: 10.3969/j.issn.1003-4862.2010.10.004

    LI Jian-ke, WANG Jin-quan, JIN Wei-yi, et al. A review of shore power system[J]. Marine Electric and Electronic Engineering, 2010, 30(10): 12-15. (in Chinese) doi: 10.3969/j.issn.1003-4862.2010.10.004
    [48] 闻铭. 港口船舶岸电的研究与应用[D]. 北京: 华北电力大学, 2017.

    WEN Ming. Research andapplication on the port shore-to-ship power supply[D]. Beijing: North China Electric Power University, 2017. (in Chinese)
    [49] 贾石岩. 船舶使用岸电对温室气体排放的控制研究[D]. 大连: 大连海事大学, 2009.

    JIA Shi-yan. Study of reduction of GHG emission from ships by shore power[D]. Dalian: Dalian Maritime University, 2009. (in Chinese)
    [50] CANNON C, GAO Y, WUNDER L. Port of Los Angeles-Shanghai municipal transportation commission ecopartnership on shore power[J]. Journal of Renewable and Sustainable Energy, 2015, 7: 041507. doi: 10.1063/1.4928175
    [51] SCIBERRAS E A, ZAHAWI B, ATKINSON D, et al. Cold ironing and onshore generation for airborne emission reductions in ports[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2016, 230(1): 67-82. doi: 10.1177/1475090214532451
    [52] ZIS T, NORTH R J, ANGELOUDIS P, et al. Evaluation of cold ironing and speed reduction policies to reduce ship emissions near and at ports[J]. Maritime Economics and Logistics, 2014, 16(4): 371-398. doi: 10.1057/mel.2014.6
    [53] PENG Chuan-sheng. Application of shore power for ocean going vessels at berth in China[C]//SEEIE. 2016 International Conference on Sustainable Energy, Environment and Information Engineering. Netherlands: Atlantis Press, 2016: 1-15.
    [54] SIFAKIS N, VICHOS E, SMARAGDAKIS A, et al. Introducing the cold-ironing technique and a hydrogen-based hybrid renewable energy system into ports[J]. International Journal of Energy Research, 2022, DOI: 10.1002/er.8059.
    [55] WU Ling-xiao, WANG Shuai-an. The shore power deployment problem for maritime transportation[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 135: 101883. doi: 10.1016/j.tre.2020.101883
    [56] WANG Yu-bing, DING Wen-yi, DAI Lei, et al. How would government subsidize the port on shore side electricity usage improvement?[J]. Journal of Cleaner Production, 2021, 278: 123893. doi: 10.1016/j.jclepro.2020.123893
    [57] LI Xiao-dong, KUANG Hai-bo, HU Yan. Using system dynamics and game model to estimate optimal subsidy in shore power technology[J]. IEEE Access, 2020, 8: 116310-116320. doi: 10.1109/ACCESS.2020.3004183
    [58] DAI Lei, HU Hao, WANG Zhao-jing, et al. An environmental and techno-economic analysis of shore side electricity[J]. Transportation Research Part D: Transport and Environment, 2019, 75: 223-235. doi: 10.1016/j.trd.2019.09.002
    [59] 周海英, 张文静. 绿色港口建设下港口与船舶减排决策研究[J]. 科技管理研究, 2022, 42(7): 205-214. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGL202207025.htm

    ZHOU Hai-ying, ZHANG Wen-jing. Research on emission reduction decisions of port and ship under the construction of green ports[J]. Science and Technology Management Research, 2022, 42(7): 205-214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJGL202207025.htm
    [60] COPPOLA T, FANTAUZZI M, LAURIA D, et al. A sustainable electrical interface to mitigate emissions due to power supply in ports[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 816-823. doi: 10.1016/j.rser.2015.10.107
    [61] TARNAPOWICS D. Synchronization of national grid network with the electricity ships network in the "shore to ship" system[J]. Management Systems in Production Engineering, 2013, 3(11): 9-13.
    [62] WINKEL R, WEDDIGE U, JOHNSEN D, et al. Shore side electricity in Europe: potential and environmental benefits[J]. Energy Policy, 2016, 88: 584-593. doi: 10.1016/j.enpol.2015.07.013
    [63] PENG Yun, DONG Meng, LI Xiang-da, et al. Cooperative optimization of shore power allocation and berth allocation: a balance between cost and environmental benefit[J]. Journal of Cleaner Production, 2021, 279: 123816. doi: 10.1016/j.jclepro.2020.123816
    [64] DAI Lei, HU Hao, WANG Zhao-jing. Is shore side electricity greener? An environmental analysis and policy implications[J]. Energy Policy, 2020, 137: 111144. doi: 10.1016/j.enpol.2019.111144
    [65] ACCIARO M, GHIARA H, CUSANO M I. Energy management in seaports: a new role for port authorities[J]. Energy Policy, 2014, 71(3): 4-12.
    [66] LAN Hai, WEN Shu-li, HONG Ying-yi, et al. Optimal sizing of hybrid PV/diesel/battery in ship power system[J]. Applied Energy, 2015, 158: 26-34. doi: 10.1016/j.apenergy.2015.08.031
    [67] TANG Ruo-li, LI Xin, LAI Jin-gang. A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization[J]. Applied Energy, 2018, 228: 254-264. doi: 10.1016/j.apenergy.2018.06.092
    [68] YUAN Yu-peng, WANG Ji-xiang, YAN Xin-ping, et al. A design and experimental investigation of a large-scale solar energy/diesel generator powered hybrid ship[J]. Energy, 2018, 165: 965-978. doi: 10.1016/j.energy.2018.09.085
    [69] TANG Ruo-li, WU Zhou, LI Xin. Optimal operation of photovoltaic/battery/diesel/cold-ironing hybrid energy system for maritime application[J]. Energy, 2018, 162: 697-714. doi: 10.1016/j.energy.2018.08.048
    [70] KUMAR J, KUMPULAINEN L, KAUHANIEMI K. Technical design aspects of harbour area grid for shore to ship power: state of the art and future solutions[J]. International Journal of Electrical Power and Energy Systems, 2019, 104: 840-852. doi: 10.1016/j.ijepes.2018.07.051
    [71] KALIKATZARAKIS M, GEERTSMA R D, BOONEN E J, et al. Ship energy management for hybrid propulsion and power supply with shore charging[J]. Control Engineering Practice, 2018, 76: 133-154. doi: 10.1016/j.conengprac.2018.04.009
    [72] YIGIT K, ACARKAN B. A new electrical energy management approach for ships using mixed energy sources to ensure sustainable port cities[J]. Sustainable Cities and Society, 2018, 40: 126-135. doi: 10.1016/j.scs.2018.04.004
    [73] RAILEANU A B, ONEA F, RUSU E. Implementation of offshore wind turbines to reduce air pollution in coastal areas—case study constanta harbour in the black sea[J]. Journal of Marine Science and Engineering, 2020, 8(8): 550. doi: 10.3390/jmse8080550
    [74] SEDDIEK I S. Application of renewable energy technologies for eco-friendly sea ports[J]. Ships and Offshore Structures, 2020, 15(9): 953-962. doi: 10.1080/17445302.2019.1696535
    [75] GUTIERREZ-ROMERO J E, ESTEVE-PÉREZ J, ZAMORA B. Implementing onshore power supply from renewable energy sources for requirements of ships at berth[J]. Applied Energy, 2019, 255: 113883. doi: 10.1016/j.apenergy.2019.113883
    [76] SADEK I, ELGOHARY M. Assessment of renewable energy supply for green ports with a case study[J]. Environmental Science and Pollution Research, 2020, 27(5): 5547-5558. doi: 10.1007/s11356-019-07150-2
    [77] AHAMAD N B, OTHMAN M, VASQUEZ J C, et al. Optimal sizing and performance evaluation of a renewable energy based microgrid in future seaports[C]//IEEE. 2018 IEEE International Conference on Industrial Technology (ICIT). New York: IEEE, 2018: 1043-1048.
    [78] WANG Wen-yuan, PENG Yun, LI Xiang-da, et al. A two-stage framework for the optimal design of a hybrid renewable energy system for port application[J]. Ocean Engineering, 2019, 191: 106555. doi: 10.1016/j.oceaneng.2019.106555
    [79] MISRA A, VENKATARAMANI G, GOWRISHANKAR S, et al. Renewable energy based smart microgrids—a pathway to green port development[J]. Strategic Planning for Energy and the Environment, 2017, 37(2): 17-32. doi: 10.1080/10485236.2017.11907880
    [80] 黄逸文, 黄文焘, 卫卫, 等. 大型海港综合能源系统物流-能量协同优化调度方法[J]. 中国电机工程学报, 2021, DOI: 10.13334/j.0258-8013.pcsee.211093.

    HUANG Yi-wen, HUANG Wen-tao, WEI Wei, et al. Logistics-energy collaborative optimization scheduling method for large seaport integrated energy system[J]. Proceedings of the CSEE, 2021, DOI: 10.13334/j.0258-8013.pcsee.211093.(inChinese)
    [81] FANG Si-dun, WANG Chen-xu, LIAO Rui-jin, et al. Optimal power scheduling of seaport microgrids with flexible logistic loads[J]. IET Renewable Power Generation, 2022, DOI: 10.1049/rpg2.1240.
    [82] CORBETT J J, WANG Hai-feng, WINEBRAKE J J. The effectiveness and costs of speed reductions on emissions from international shipping[J]. Transportation Research Part D: Transport and Environment, 2009, 14(8): 593-598. doi: 10.1016/j.trd.2009.08.005
    [83] CHANG C C, WANG C M. Evaluating the effects of speed reduce for shipping costs and CO2 emission[J]. Transportation Research Part D: Transport and Environment, 2014, 31: 110-115. doi: 10.1016/j.trd.2014.05.020
    [84] SMITH T W P. Technical energy efficiency, its interaction with optimal operating speeds and the implications for the management of shipping's carbon emissions[J]. Carbon Management, 2012, 3(6): 589-600. doi: 10.4155/cmt.12.58
    [85] FAGERHOLT K, LAPORTE G, NORSTAD I. Reducing fuel emissions by optimizing speed on shipping routes[J]. Journal of the Operational Research Society, 2010, 61(3): 523-529. doi: 10.1057/jors.2009.77
    [86] KAO Sheng-long, LIN Jia-lin, TU Meng-ru. Utilizing the fuzzy loT to reduce Green Harbor emissions[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, DOI: https://doi.org/10.1007/s12652-020-01844-z
    [87] JOHNSON H, STYHRE L. Increased energy efficiency in short sea shipping through decreased time in port[J]. Transportation Research Part A: Policy and Practice, 2015, 71: 167-178. doi: 10.1016/j.tra.2014.11.008
    [88] OKADA A. Benefit, cost, and size of an emission control area: a simulation approach for spatial relationships[J]. Maritime Policy and Management, 2019, 46(5): 565-584. doi: 10.1080/03088839.2019.1579931
    [89] CULLINANE K, BERGQVIST R. Emission control areas and their impact on maritime transport[J]. Transportation Research Part D: Transport and Environment, 2014, 28: 1-5. doi: 10.1016/j.trd.2013.12.004
    [90] LACK D A, CAPPA C D, LANGRIDGE J, et al. Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality[J]. Environmental Science and Technology, 2011, 45(20): 9052-9060. doi: 10.1021/es2013424
    [91] 王坚, 黄厔, 陈森阳, 等. 厦门船舶控制区(绿色港口)大气污染物减排成效评估[J]. 海峡科学, 2021(1): 22-28. doi: 10.3969/j.issn.1673-8683.2021.01.006

    WANG Jian, HUANG Zhi, CHEN Sen-yang, et al. Evaluation on the effectiveness of air pollutant emission reduction in ship control area (green port) in Xiamen[J]. Straits Science, 2021(1): 22-28. (in Chinese) doi: 10.3969/j.issn.1673-8683.2021.01.006
    [92] YE G, ZHOU J, YIN W, et al. Are shore power and emission control area policies always effective together for pollutant emission reduction? —An analysis of their joint impacts at the post-pandemic era[J]. Ocean and Coastal Management, 2022, 224: 106182. doi: 10.1016/j.ocecoaman.2022.106182
    [93] WAN Zheng, ZHANG Qiang, XU Zhi-ping, et al. Impact of emission control areas on atmospheric pollutant emissions from major ocean-going ships entering the Shanghai Port, China[J]. Marine Pollution Bulletin, 2019, 142: 525-532. doi: 10.1016/j.marpolbul.2019.03.053
    [94] QIN Ze-ru, YIN Jing-bo, CAO Zhi-qiang. Evaluation of effects of ship emissions control areas case study of Shanghai Port in China[J]. Journal of the Transportation Research Board, 2017, 2611(1): 50-55. doi: 10.3141/2611-06
    [95] 闫伟. 船舶"排放控制区"的划定及应对分析[J]. 广东交通职业技术学院学报, 2016, 15(4): 44-46, 64. doi: 10.3969/j.issn.1671-8496.2016.04.010

    YAN Wei. Delineation of ECA and corresponding measures[J]. Journal of Guangdong Communication Polytechnic, 2016, 15(4): 44-46, 64. (in Chinese) doi: 10.3969/j.issn.1671-8496.2016.04.010
    [96] 刘新亮. 船舶排放控制区(ECA)与船舶进入ECA区域的措施[J]. 珠江水运, 2017(5): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSI201710026.htm

    LIU Xin-liang. Vessel emission control zone (ECA) and measures for vessels entering ECA zone[J]. Pearl River Water Transport, 2017(5): 57-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSI201710026.htm
    [97] CHANG Y T, PARK H, LEE S, et al. Have emission control areas (ECAs) harmed port efficiency in Europe?[J]. Transportation Research Part D: Transport and Environment, 2018, 58: 39-53. doi: 10.1016/j.trd.2017.10.018
    [98] 纪天平. 龙门吊油改电项目电力电气设计[J]. 设备管理与维修, 2020(11): 83-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SBGX202011040.htm

    JI Tian-ping. Electric power design of gantry crane oil-to- electricity project[J]. Plant Maintenance Engineering, 2020(11): 83-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SBGX202011040.htm
    [99] DING Yi, YANG Yang, HEILIG L, et al. Deployment and retrofit strategy for rubber-tyred gantry cranes considering carbon emissions[J]. Computers and Industrial Engineering, 2021, 161: 107645. doi: 10.1016/j.cie.2021.107645
    [100] IRIS Ç, LAM J S L. A review of energy efficiency in ports: operational strategies, technologies and energy management systems[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 170-182. doi: 10.1016/j.rser.2019.04.069
    [101] KIM S M, SUL S K. Control of rubber tyred gantry crane with energy storage based on supercapacitor bank[J]. IEEE Transactions on Power Electronics, 2006, 21(5): 1420-1427. doi: 10.1109/TPEL.2006.880260
    [102] ANTONELLI M, CERAOLO M, DESIDERI U, et al. Hybridization of rubber tired gantry (RTG) cranes[J]. Journal of Energy Storage, 2017, 12: 186-195. doi: 10.1016/j.est.2017.05.004
    [103] NIU Wang-qiang, HUANG Xi-xia, YUAN Feng, et al. Sizing of energy system of a hybrid lithium battery RTG crane[J]. IEEE Transactions on Power Electronics, 2017, 32(10): 7837-7844. doi: 10.1109/TPEL.2016.2632202
    [104] FLYNN M M, MCMULLEN P, SOLIS O. Saving energy using flywheels[J]. IEEE Industry Applications Magazine, 2008, 14(6): 69-76. doi: 10.1109/MIAS.2008.929351
    [105] TAN K H, YAP F F. Reducing fuel consumption using flywheel battery technology for rubber tyred gantry cranes in container terminals[J]. Journal of Power and Energy Engineering, 2017, 5(7): 15-33. doi: 10.4236/jpee.2017.57002
    [106] PAPAIOANNOU V, PIETROSANTI S, HOLDERBAUM W, et al. Analysis of energy usage for RTG cranes[J]. Energy, 2017, 125: 337-344. doi: 10.1016/j.energy.2017.02.122
    [107] 严俊, 陈振宇. 自动化无人空箱堆场轨道式龙门起重机节能照明系统改造[J]. 集装箱化, 2014(9): 11-13. doi: 10.3969/j.issn.1005-5339.2014.09.006

    YAN Jun, CHEN Zhen-yu. Renovation of energy-saving lighting system for track gantry crane in automatic unmanned empty box stacking yard[J]. Containerization, 2014(9): 11-13. (in Chinese) doi: 10.3969/j.issn.1005-5339.2014.09.006
    [108] CHANG Dao-fang, FANG Ting, HE Jun-liang, et al. Defining scheduling problems for key resources in energy-efficient port service systems[J]. Scientific Programming, 2016, 2016: 7053962.
    [109] 崔维伟, 镇璐. 峰值电量约束下的场桥能耗最小化问题研究[J]. 系统工程理论与实践, 2021, 41(2): 358-369. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL202102009.htm

    CUI Wei-wei, ZHEN Lu. Minimizing the total energy consumption of yard crane under the peak demand constraint[J]. Systems Engineering—Theory and Practice, 2021, 41(2): 358-369. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL202102009.htm
    [110] CHEN Su-min, ZENG Qing-cheng. Carbon-efficient scheduling problem of electric rubber-tyred gantry cranes in a container terminal[J]. Engineering Optimization, 2021, DOI: 10.1080/0305215X.2021.1972293.
    [111] ZHANG Qian, WANG Shuai-an, ZHEN Lu. Yard truck retrofitting and deployment for hazardous material transportation in green ports[J]. Annals of Operations Research, 2022, DOI: 10.1007/s10479-021-04507-0.
    [112] 陶学宗, 张秀芝. 宁波港域内集卡"油改气"减排节支效果评价[J]. 集装箱化, 2018(11): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-JZXH201811002.htm

    TAO Xue-zong, ZHANG Xiu-zhi. Effectiveness evaluation of reducing emission and saving expenditure of "oil to gas" in Ningbo Port area[J]. Containerization, 2018(11): 1-3. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZXH201811002.htm
    [113] ESMER S, CETI I B, TUNA O. A simulation for optimum terminal truck number in a Turkish port based on lean and green concept[J]. The Asian Journal of Shipping and Logistics, 2010, 26(2): 277-296.
    [114] LI Na, CHEN Gang, GOVINDAR K, et al. Disruption management for truck appointment system at a container terminal: a green initiative[J]. Transportation Research Part D: Transport and Environment, 2018, 61: 261-273.
    [115] CHEN Gang, GOVINDAN K, GOLIAS M M, et al. Reducing truck emissions at container terminals in a low carbon economy: proposal of a queueing-based bi-objective model for optimizing truck arrival pattern[J]. Transportation Research Part E: Logistics and Transportation Review, 2013, 55: 3-22.
    [116] SCHULTE F, LALLA-RUIZ E, GONZÁLEZ-RAMÍRES R G, et al. Reducing port-related empty truck emissions: a mathematical approach for truck appointments with collaboration[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 105: 195-212.
    [117] YANG Y C. Operating strategies of CO2 reduction for a container terminal based on carbon footprint perspective[J]. Journal of Cleaner Production, 2017, 141: 472-480.
    [118] 彭云. 不确定条件下低碳型港口资源优化配置研究[D]. 大连: 大连理工大学, 2016.

    PENG Yun. The research on the optimal allocation of low-carbon seaport resources under uncertainties[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
    [119] 谷长华, 丛悦磊. 岸桥节能降耗技术改造[J]. 集装箱化, 2014, 25(6): 26-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JZXH201406011.htm

    GU Chang-hua, CONG Yue-lei. Technical reform of energy saving and consumption reduction of quayside bridge[J]. Containerization, 2014, 25(6): 26-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZXH201406011.htm
    [120] TRAN T K. Study of electrical usage and demand at the container terminal[D]. Melbourne: Deakin University, 2012.
    [121] XIAO Xin-yi, LU Shi-qing. Study on measurement of energy consumption for cranes and designing of energy saving device[J]. Applied Mechanics and Materials, 2012, 159: 326-330.
    [122] CHANG Dao-fang, JIANG Zu-hua, YAN Wei, et al. Integrating berth allocation and quay crane assignments[J]. Transportation Research Part E: Logistics and Transportation Review, 2010, 46(6): 975-990.
    [123] WANG Ting-song, DU Yu-quan, FANG De-bin, et al. Berth allocation and quay crane assignment for the trade-off between service efficiency and operating cost considering carbon emission taxation[J]. Transportation Science, 2020, 54(5): 1307-1331.
    [124] ZHEN Lu, SUN Qian, ZHANG Wei, et al. Column generation for low carbon berth allocation under uncertainty[J]. Journal of the Operational Research Society, 2021, 72(10): 2225-2240.
    [125] WANG Wen-yuan, PENG Yun, TANG Guo-lei, et al. Influence of carbon emission constraint on container quay crane allocation[J]. Advanced Materials Research, 2013, 807-809: 936-940.
    [126] LIU Ding, GE Ying-en. Modeling assignment of quay cranes using queueing theory for minimizing CO2 emission at a container terminal[J]. Transportation Research Part D: Transport and Environment, 2018, 61: 140-151.
    [127] 张煜, 唐可心, 徐亚军, 等. 考虑能耗节约的集装箱码头装卸设备集成调度[J]. 计算机集成制造系统, 2022, https://kns.cnki.net/kcms/detail/11.5946.tp.20220328.1708.015.html. https://kns.cnki.net/kcms/detail/11.5946.tp.20220328.1708.015.html

    ZHANG Yu, TANG Ke-xin, XU Ya-jun, et al. Integrated scheduling of handling operations in container terminal with considering energy saving[J]. Computer Integrated Manufacturing Systems, 2022, https://kns.cnki.net/kcms/detail/11.5946.tp.20220328.1708.015.html. (in Chinese) https://kns.cnki.net/kcms/detail/11.5946.tp.20220328.1708.015.html
    [128] YU Jing-jing, VOß S, SONG Xiang-qun. Multi-objective optimization of daily use of shore side electricity integrated with quayside operation[J]. Journal of Cleaner Production, 2022, 351: 131406.
    [129] KENAN N, JEBALI A, DIABAT A. The integrated quay crane assignment and scheduling problems with carbon emissions considerations[J]. Computersand Industrial Engineering, 2022, 165: 107734.
    [130] GEERLINGS H, HEIJ R, VAN DUIN R. Opportunities for peak shaving the energy demand of ship-to-shore quay cranes at container terminals[J]. Journal of Shipping and Trade, 2018, 3: 3.
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  1749
  • HTML全文浏览量:  526
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回