留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预裂型水泥稳定碎石强度与温缩特性机理仿真

苏沛丰 刘玉 李苗苗 贺振振 尤占平

苏沛丰, 刘玉, 李苗苗, 贺振振, 尤占平. 预裂型水泥稳定碎石强度与温缩特性机理仿真[J]. 交通运输工程学报, 2022, 22(4): 128-139. doi: 10.19818/j.cnki.1671-1637.2022.04.009
引用本文: 苏沛丰, 刘玉, 李苗苗, 贺振振, 尤占平. 预裂型水泥稳定碎石强度与温缩特性机理仿真[J]. 交通运输工程学报, 2022, 22(4): 128-139. doi: 10.19818/j.cnki.1671-1637.2022.04.009
SU Pei-feng, LIU Yu, LI Miao-miao, HE Zhen-zhen, YOU Zhan-ping. Simulation on strength and thermal shrinkage property mechanisms of pre-cracked cement stabilized crushed stone[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 128-139. doi: 10.19818/j.cnki.1671-1637.2022.04.009
Citation: SU Pei-feng, LIU Yu, LI Miao-miao, HE Zhen-zhen, YOU Zhan-ping. Simulation on strength and thermal shrinkage property mechanisms of pre-cracked cement stabilized crushed stone[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 128-139. doi: 10.19818/j.cnki.1671-1637.2022.04.009

预裂型水泥稳定碎石强度与温缩特性机理仿真

doi: 10.19818/j.cnki.1671-1637.2022.04.009
基金项目: 

国家自然科学基金项目 51978074

详细信息
    作者简介:

    苏沛丰(1994-),男,山西太原人,密歇根理工大学工学博士研究生,从事道路材料力学性能与数值仿真研究

    尤占平(1971-),男,陕西商洛人,长安大学教授,工学博士

  • 中图分类号: U414

Simulation on strength and thermal shrinkage property mechanisms of pre-cracked cement stabilized crushed stone

Funds: 

National Natural Science Foundation of China 51978074

More Information
  • 摘要: 针对水泥稳定碎石材料易产生裂缝,从而降低路面使用寿命这一问题,基于粗集料预处治技术提出了一种预裂型水泥稳定碎石材料改良思路;通过对水泥稳定碎石中一定比例的粗集料进行预处治,使其表面裹附一层新的物质,从而形成新的界面,分散了收缩过程中降低开裂对材料整体均一性的影响,继而仿真分析了这种新型材料的强度特征和温度收缩裂缝发展的内部机理;基于离散单元法建立了预裂型水泥稳定碎石仿真模型,并分别开展了虚拟无侧限压缩试验和有限制梁温度收缩开裂试验。研究结果表明:在假设预处治粗集料仅影响粗集料界面强度的前提下,试件的无侧限抗压强度与界面强度比和预处治粗集料替换比这2个关键参数之间呈现出良好的线性相关性,可通过回归公式进行计算与预测;当界面强度比大于40%时,预处治粗集料替换比的增加仅会降低材料的强度而不能避免局部贯穿裂缝的产生;当界面强度比小于40%时,随着预处治粗集料占比的增加,试件在收缩过程中产生的裂缝由局部贯穿宽裂缝转变为均匀分布的微裂缝,从而保证了材料在收缩开裂后的整体均一性;当界面强度衰减至未处治材料的30%以下,且预处治粗集料替换比大于30%时,可有效减少试件内部贯穿裂缝的产生,从而缓解了水泥稳定碎石的温缩开裂。

     

  • 图  1  预处治粗集料水泥稳定碎石结构

    Figure  1.  Structure of cement stabilized crushed stone with pre-treated coarse aggregates

    图  2  圆柱型水泥稳定碎石试件生成步骤

    Figure  2.  Generation steps of cylinder cement stabilized crushed stone specimen

    图  3  不同预处治粗集料替换比的试件示意

    Figure  3.  Schematic of specimens with different pretreated coarse aggregate replacement ratios

    图  4  不同预处治粗集料替换比的试件应力-应变曲线

    Figure  4.  Stress-strain curves of specimens with different pretreated coarse aggregate replacement ratios

    图  5  不同界面强度比下强度衰减速率线性回归结果

    Figure  5.  Linear regression results of strength reduction rates with different interface strength ratios

    图  6  水泥稳定碎石强度衰减速率与界面强度比的关系

    Figure  6.  Relationship between strength reduction rate of cement stabilized crushed stone and interface strength ratio

    图  7  2D水泥稳定碎石梁仿真试件

    Figure  7.  Simulation specimen of 2D cement stabilized crushed stone beam

    图  8  不同预处治粗集料替换比试件示意

    Figure  8.  Schematic of specimens with different pretreated coarse aggregate replacement ratios

    图  9  虚拟温度收缩试验模型

    Figure  9.  Model of virtual thermal shrinkage test

    图  10  不同计算步数下梁试件温度传导

    Figure  10.  Beam specimens' temperature transformation with different calculation spets

    图  11  界面强度比为10%的梁试件收缩裂缝

    Figure  11.  Shrinkage cracks in beam specimens when interface strength ratio is 10%

    图  12  界面强度比为10%的试件颗粒位移

    Figure  12.  Particle displacements of specimens when interface strength ratio is 10%

    图  13  预处治粗集料替换比为50%时试件的裂缝分布

    Figure  13.  Crack distributions in specimens when pretreated coarse aggregate replacement ratio is 50%

    图  14  预处治粗集料替换比为50%时试件的颗粒位移

    Figure  14.  Particle displacements of specimens when pretreated coarse aggregate replacement ratio is 50%

    图  15  不同梁试件接触断裂数目

    Figure  15.  Numbers of contact cracks for different beam specimens

    表  1  水泥稳定碎石试件级配

    Table  1.   Gradation of cement stabilized crushed stone specimen

    级配类型 通过不同直径(mm)筛孔的质量百分率/%
    31.5 19.0 9.5 4.75 2.36 0.6 0.075
    悬浮密实型 100.0 93.5 67.0 39.0 26.0 15.0 3.5
    下载: 导出CSV

    表  2  接触模型力学参数

    Table  2.   Mechanical parameters of contact model

    参数 取值
    颗粒摩擦因数 0.40
    颗粒密度/(kg·m-3) 2 650
    容器-颗粒法向接触模量/GPa 40
    容器-颗粒切向接触模量/GPa 26.67
    颗粒-颗粒法向接触模量/GPa 30
    颗粒-颗粒切向接触模量/GPa 20
    拉伸强度/MPa 1
    剪切强度/MPa 20
    下载: 导出CSV

    表  3  不同试件无侧限抗压强度

    Table  3.   Uniaxial compressive strength of different specimens

    界面强度比/% 不同预处治粗集料替换比(%)下试件的无侧限抗压强度/MPa
    对照组 10 20 30 40 50
    0 13.26 10.36 7.64 5.61 3.24 1.28
    10 10.92 9.12 8.04 6.27 4.74
    15 11.59 10.23 9.10 7.46 5.98
    20 11.96 10.79 9.74 8.31 6.81
    30 12.12 11.47 10.58 9.50 8.29
    40 12.47 11.97 11.21 10.30 9.32
    50 12.73 12.29 11.75 10.97 10.13
    70 12.80 12.46 12.43 11.92 11.44
    下载: 导出CSV

    表  4  不同界面强度比下试件强度衰减速率公式

    Table  4.   Strength reducttion rates formulas of specimens with different interface strength ratios

    界面强度比/% 回归公式 决定系数R2
    0 y=1.880 2x+1 0.991 6
    10 y=1.328 2x+1 0.982 9
    15 y=-1.095 4x+1 0.997 1
    20 y=-0.945 0x+1 0.996 6
    30 y=-0.722 7x+1 0.992 3
    40 y=-0.564 1x+1 0.988 9
    50 y=-0.436 9x+1 0.978 5
    70 y=-0.264 1x+1 0.963 0
    下载: 导出CSV

    表  5  PFC2D热接触模型参数取值

    Table  5.   Parameter values of thermal contact model in PFC2D

    参数 取值
    颗粒比热容(J·(kg·℃)-1) 800
    水泥砂浆线性热膨胀系数 15.0×10-6
    粗集料线性热膨胀系数 10.0×10-6
    热导率 0.285
    下载: 导出CSV

    表  6  界面强度比为10%时试件裂缝类型统计

    Table  6.   Statistics of crack types of specimens when interface strength ratio is 10%

    裂缝类型 不同预处治粗集料替换比(%)下裂缝数目
    0 10 20 30 40 50 60
    Ⅰ类裂缝 156 44 42 31 26 11 1
    Ⅱ类裂缝 0 211 465 648 873 1 011 1 043
    总数 156 255 507 679 899 1 022 1 044
    下载: 导出CSV

    表  7  预处治粗集料替换比为50%时试件的裂缝类型统计

    Table  7.   Statistics of crack types of specimens when pretreated coarse aggregate replacement ratio is 50%

    接触类型 不同界面强度比(%)下接缝类型数据
    10 20 30 40 50 100
    未经预处治的粗集料表面 11 23 35 62 51 156
    经预处治的粗集料表面 1 011 639 463 323 179 0
    总数 1 022 662 498 385 230 156
    下载: 导出CSV
  • [1] 张登良, 郑南翔. 半刚性基层材料收缩抗裂性能研究[J]. 中国公路学报, 1991, 4(1): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL199101003.htm

    ZHANG Deng-liang, ZHENG Nan-xiang. On the anti-shrinkage cracking performance of semi-rigid base course materials[J]. China Journal of Highway and Transport, 1991, 4(1): 16-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL199101003.htm
    [2] 高俊启, 耿任山, 盛余祥, 等. 基于BOTDA的机场道面半刚性基层裂缝扩展规律[J]. 交通运输工程学报, 2017, 17(1): 28-35. doi: 10.3969/j.issn.1671-1637.2017.01.004

    GAO Jun-qi, GENG Ren-shan, SHENG Yu-xiang, et al. Crack propagation rule of semi-rigid base of airport pavement based on BOTDA[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 28-35. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.01.004
    [3] 周正峰, 蒲卓桁, 刘超. 黏聚区模型在沥青路面反射裂缝模拟中的应用[J]. 交通运输工程学报, 2018, 18(3): 1-10. doi: 10.3969/j.issn.1671-1637.2018.03.002

    ZHOU Zheng-feng, PU Zhuo-heng, LIU Chao. Application of cohesive zone model to simulate reflective crack of asphalt pavement[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 1-10. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.03.002
    [4] HALSTED G E. Minimizing reflective cracking in cement- stabilized pavement bases[C]//Transportation Association of Canada. The Pavement Maintenance and Preservation Session of the 2010 Annual Conference of the Transportation Association of Canada. Halifax: Transportation Association of Canada, 2010: 1-10.
    [5] 周泽昶, 黄宝涛, 周亭林. 面层厚度减缓半刚性基层温缩开裂的分析[J]. 西部交通科技, 2008(3): 44-46, 77. doi: 10.3969/j.issn.1673-4874.2008.03.012

    ZHOU Ze-chang, HUANG Bao-tao, ZHOU Ting-lin. On how to minimize the temperature shrinkage cracks of semi-rigid base course by adjusting base thickness[J]. Western China Communications Science and Technology, 2008(3): 44-46, 77. (in Chinese) doi: 10.3969/j.issn.1673-4874.2008.03.012
    [6] 秦禄生, 许志鸿. 一种高弹沥青面层抗反射裂缝能力试验研究[J]. 同济大学学报(自然科学版), 2008, 36(12): 1647-1651. doi: 10.3321/j.issn:0253-374X.2008.12.010

    QIN Lu-sheng, XU Zhi-hong. Ability of high elasticity asphalt mixture in resisting semi-rigid pavement reflective cracking[J]. Journal of Tongji University (Natural Science), 2008, 36(12): 1647-1651. (in Chinese) doi: 10.3321/j.issn:0253-374X.2008.12.010
    [7] MORENO-NAVARRO F, SOL-SÁNCHEZ M, RUBIO-GÁMEZ M C. Reuse of deconstructed tires as anti-reflective cracking mat systems in asphalt pavements[J]. Construction and Building Materials, 2014, 53: 182-189. doi: 10.1016/j.conbuildmat.2013.11.101
    [8] ROWLETT R D, UFFNER W E. The use of an asphalt polymer/glass fiber reinforcement system for minimizing reflection cracks in ovelays and reducing excavation before overlaying[M]//KALLAS B F. Pavement Maintenance and Rehabilitation. West Conshohocken: ASTM International, 1985: 65-73.
    [9] JIANG Yi, MCDANIEL R S. Application of cracking and seating and use of fibers to control reflective cracking[J]. Transportation Research Record, 1993(1388): 150-159.
    [10] 颜可珍, 王绍全, 田珊, 等. 基于Overlay Test评价应力吸收层抗反射裂缝性能[J]. 湖南大学学报(自然科学版), 2020, 47(1): 108-115. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202001013.htm

    YAN Ke-zhen, WANG Shao-quan, TIAN Shan, et al. Research on anti-reflective cracking performance of stress-absorption interlayer based on overlay test[J]. Journal of Hunan University (Natural Sciences), 2020, 47(1): 108-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202001013.htm
    [11] 布穷. 半刚性基层沥青路面抗裂土工布应力吸收层施工[J]. 筑路机械与施工机械化, 2019, 36(10): 72-76. doi: 10.3969/j.issn.1000-033X.2019.10.012

    BU Qiong. Construction of stress-absorbing layer of crack-resistant geotextile for semi-rigid pavement[J]. Road Machinery and Construction Mechanization, 2019, 36(10): 72-76. (in Chinese) doi: 10.3969/j.issn.1000-033X.2019.10.012
    [12] 李伟雄. 骨架密实结构水泥稳定碎石级配稳定性研究[D]. 广州: 华南理工大学, 2011.

    LI Wei-xiong. Research on graded stability of cement stabilized crushed stone of framework dense structure[D]. Guangzhou: South China University of Technology, 2011. (in Chinese)
    [13] 靳志宇. 骨架密实结构低剂量水泥稳定碎石抗裂基层技术研究[J]. 筑路机械与施工机械化, 2014, 31(5): 53-56. doi: 10.3969/j.issn.1000-033X.2014.05.027

    JIN Zhi-yu. Research on anti-cracking of dense skeleton type macadam base course stabilized with low dosage of cement[J]. Road Machinery and Construction Mechanization, 2014, 31(5): 53-56. (in Chinese) doi: 10.3969/j.issn.1000-033X.2014.05.027
    [14] ZHAO Yi, YANG Xuan, ZHANG Qing-yu, et al. Crack resistance and mechanical properties of polyvinyl alcohol fiber-reinforced cement-stabilized macadam base[J]. Advances in Civil Engineering, 2020, 2020: 6564076.
    [15] ZHAO Chun-hua, LIANG Nai-xing, ZHU Xiao-long, et al. Fiber-reinforced cement-stabilized macadam with various polyvinyl alcohol fiber contents and lengths[J]. Journal of Materials in Civil Engineering, 2020, 32(11): 04020312. doi: 10.1061/(ASCE)MT.1943-5533.0003383
    [16] 张鹏, 李清富, 黄承逵. 聚丙烯纤维水泥稳定碎石收缩性能[J]. 交通运输工程学报, 2008, 8(4): 30-34. doi: 10.3321/j.issn:1671-1637.2008.04.007

    ZHANG Peng, LI Qing-fu, HUANG Cheng-kui. Shrinkage properties of cement stabilized macadam reinforced with polypropylene fiber[J]. Journal of Traffic and Transportation Engineering, 2008, 8(4): 30-34. (in Chinese) doi: 10.3321/j.issn:1671-1637.2008.04.007
    [17] 黄芳. 半柔性复合路面结构设计理论与方法研究[D]. 重庆: 重庆交通大学, 2008.

    HUANG Fang. Study on design theory and methods of semi-flexible compound pavement structure[D]. Chongiqng: Chongqing Jiaotong University, 2008. (in Chinese)
    [18] 王振军, 沙爱民, 杜少文, 等. 水泥乳化沥青混凝土浆体-集料界面区结构形成机理[J]. 公路, 2008(11): 186-189. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200811041.htm

    WANG Zhen-jun, SHA Ai-min, DU Shao-wen, et al. Formation mechanism of mortar-to-aggregate interface zone structure in cement emulsified asphalt concrete[J]. Highway, 2008(11): 186-189. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200811041.htm
    [19] 邵锋. 市政工程中半刚性基层预裂缝技术分析[J]. 中外建筑, 2019(4): 215-217. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJC201904068.htm

    SHAO Feng. Technical analysis of pre-cracking of semi-rigid base in municipal engineering[J]. Chinese and Overseas Architecture, 2019(4): 215-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJC201904068.htm
    [20] SEBESTA S. Use of microcracking to reduce shrinkage cracking in cement-treated bases[J]. Transportation Research Record, 2005, 1936(1): 2-11. doi: 10.1177/0361198105193600101
    [21] LI Peng-fei, LIU Jing-hui, HUANG Hao-peng, et al. Application of pre-cracking in semi-rigid base to mitigate reflective cracking[J]. Advanced Materials Research, 2014, 1030-1032, 709-713. doi: 10.4028/www.scientific.net/AMR.1030-1032.709
    [22] CARRET J C, LAMOTHE S, HOUNKPONOU S E, et al. Effects of pre-cracking on the early-age mechanical properties of a cement-treated base material mixed and tested in laboratory[J]. Construction and Building Materials, 2021, 303: 124488. doi: 10.1016/j.conbuildmat.2021.124488
    [23] 马士宾, 张晓云, 魏连雨, 等. 微裂技术对水泥粉煤灰稳定碎石收缩性能影响研究[J]. 硅酸盐通报, 2019, 38(3): 640-648. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201903009.htm

    MA Shi-bin, ZHANG Xiao-yun, WEI Lian-yu, et al. Influence of micro-cracking technology on shrinkage performance of cement fly ash stabilized macadam[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 640-648. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201903009.htm
    [24] 魏海涛. 预施微裂缝技术减少半刚性基层沥青路面开裂的研究[D]. 昆明: 昆明理工大学, 2017.

    WEI Hai-tao. Study on reducing cracks of semi-rigid base asphalt pavement by pretreatment of microcracking technology[D]. Kunming: Kunming University of Science and Technology, 2017. (in Chinese)
    [25] CHEN Xue-qin, YUAN Jia-wei, DONG Qiao, et al. Meso-scale cracking behavior of cement treated base material[J]. Construction and Building Materials, 2020, 239: 117823. doi: 10.1016/j.conbuildmat.2019.117823
    [26] DUAN Kai-rui, GAO Ying-li, YAO Hui, et al. Comparison of performances of early aged pre-vibrated cement-stabilized macadam formed by different compactions[J]. Construction and Building Materials, 2020, 239: 117682. doi: 10.1016/j.conbuildmat.2019.117682
    [27] LI Xue-lian, LYU Xin-chao, WANG Wen-qiang, et al. Crack resistance of waste cooking oil modified cement stabilized macadam[J]. Journal of Cleaner Production, 2020, 243: 118525. doi: 10.1016/j.jclepro.2019.118525
    [28] ZHOU Xiao-dong, LIU Yu, YOU Zhan-ping. Discrete element modeling for sieve analysis with image-based realistic aggregate[C]//ICTIM. The 1st International Conference on Transportation Infrastructure and Materials. Xi'an: ICTIM, 2016: 916-923.
    [29] LIU Yu, ZHOU Xiao-dong, YOU Zhan-ping, et al. Discrete element modeling of realistic particle shapes in stone-based mixtures through MATLAB-based imaging process[J]. Construction and Building Materials, 2017, 143: 169-178. doi: 10.1016/j.conbuildmat.2017.03.037
    [30] 李明, 李昶, 刘继华, 等. 粗集料及界面特性对水泥稳定碎石温缩抗裂性能影响性分析[J]. 公路, 2019(10): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201910001.htm

    LI Ming, LI Chang, LIU Ji-hua, et al. Effect of coarse aggregate and interfacial characteristics on crack resistance in temperature shrinkage of cement-stabilized macadam[J]. Highway, 2019(10): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201910001.htm
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  337
  • HTML全文浏览量:  123
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-01
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回