留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

砂质板岩单轴抗压强度与点荷载强度换算关系

陈建勋 陈丽俊 罗彦斌 谢江涛 武云飞 刘伟伟

陈建勋, 陈丽俊, 罗彦斌, 谢江涛, 武云飞, 刘伟伟. 砂质板岩单轴抗压强度与点荷载强度换算关系[J]. 交通运输工程学报, 2022, 22(4): 148-158. doi: 10.19818/j.cnki.1671-1637.2022.04.011
引用本文: 陈建勋, 陈丽俊, 罗彦斌, 谢江涛, 武云飞, 刘伟伟. 砂质板岩单轴抗压强度与点荷载强度换算关系[J]. 交通运输工程学报, 2022, 22(4): 148-158. doi: 10.19818/j.cnki.1671-1637.2022.04.011
CHEN Jian-xun, CHEN Li-jun, LUO Yan-bin, XIE Jiang-tao, WU Yun-fei, LIU Wei-wei. Conversion relationship between uniaxial compressive strength and point load strength of sandy slate[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 148-158. doi: 10.19818/j.cnki.1671-1637.2022.04.011
Citation: CHEN Jian-xun, CHEN Li-jun, LUO Yan-bin, XIE Jiang-tao, WU Yun-fei, LIU Wei-wei. Conversion relationship between uniaxial compressive strength and point load strength of sandy slate[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 148-158. doi: 10.19818/j.cnki.1671-1637.2022.04.011

砂质板岩单轴抗压强度与点荷载强度换算关系

doi: 10.19818/j.cnki.1671-1637.2022.04.011
基金项目: 

国家自然科学基金项目 41831286

详细信息
    作者简介:

    陈建勋(1969-),男,陕西韩城人,长安大学教授,工学博士,从事复杂环境公路隧道工程理论与应用研究

    通讯作者:

    陈丽俊(1986-),男,山西运城人,长安大学副教授,工学博士

  • 中图分类号: U452.12

Conversion relationship between uniaxial compressive strength and point load strength of sandy slate

Funds: 

National Natural Science Foundation of China 41831286

More Information
  • 摘要: 以甘肃渭源—武都高速公路木寨岭隧道开挖揭露的砂质板岩为对象,开展了砂质板岩单轴抗压强度试验和点荷载强度试验;通过对试验数据进行正态分布检验、高度异常数据剔除和置信区间强度统计,获得了砂质板岩单轴抗压强度、点荷载强度以及两者之间的换算关系,并与岩石试验相关规范和国际岩石力学学会(ISRM)推荐换算公式进行了对比。研究结果表明:饱和砂质板岩单轴抗压强度服从正态分布,平均值为56.3 MPa,95%置信度下的置信区间为49.20~63.50 MPa;饱和砂质板岩点荷载强度与正态分布不完全一致,平均值为7.36 MPa,95%置信度下的置信区间为6.50~8.22 MPa;饱和砂质板岩点荷载强度与单轴抗压强度之间具有显著的线性正相关性;岩石强度受各试件内部节理裂隙的方向、填充物、宽度和长度等的影响,强度数据总体离散性较大;饱和、烘干状态下砂质板岩单轴抗压强度与点荷载强度的换算系数分别为7.72和8.72,均明显小于大多数研究中15~30的换算系数,原因在于砂质板岩内部赋存有层理或不同角度的节理裂隙等缺陷,单轴抗压强度受试件内部节理裂隙的影响较大,导致其强度平均值偏低,而点荷载强度受试件内部节理裂隙的影响较小;采用规范和ISRM推荐公式所得砂质板岩单轴抗压强度为实测值的2~4倍,用于隧道设计难免会产生较大偏差;相比规范和ISRM推荐公式,研究所得砂质板岩单轴抗压强度与点荷载强度换算关系的相对误差未超过15%,可作为规范中公式的有益补充。

     

  • 图  1  木寨岭隧道开挖揭露的砂质板岩

    Figure  1.  Sandy slate exposed in excavation of Muzhailing Tunnel

    图  2  WE-600B/100B型万能材料试验机

    Figure  2.  Universal material testing machine (WE-600B/100B)

    图  3  SD-1型点荷载仪

    Figure  3.  Point load cell (SD-1)

    图  4  加工的砂质板岩试件

    Figure  4.  Processed sandy slate specimens

    图  5  饱和砂质板岩Rc正态分布Q-Q图

    Figure  5.  Q-Q diagram of normal distribution of Rc for saturated sandy slate

    图  6  饱和砂质板岩Is(50)正态分布Q-Q图

    Figure  6.  Q-Q diagram of normal distribution of Is(50)for saturated sandy slate

    图  7  饱和砂质板岩Rc频数分布

    Figure  7.  Frequency distribution of Rc for saturated sandy slate

    图  8  饱和砂质板岩Is(50)频数分布

    Figure  8.  Frequency distribution of Is(50)for saturated sandy slate

    图  9  饱和砂质板岩RcIs(50)的关系

    Figure  9.  Relationship between Rc and Is(50)of saturated sandy slate

    图  10  烘干砂质板岩RdIs(50)的关系

    Figure  10.  Relationship between Rd and Is(50) for dried sandy slate

    图  11  砂质板岩R换算值与实测值比较

    Figure  11.  Comparison between conversion values and measured values of R for sandy slate

    图  12  砂质板岩试件破坏面

    Figure  12.  Failure surfaces of sandy slate specimens

    图  13  不同换算公式计算结果对比

    Figure  13.  Comparison of calculation results among different conversion formulas

    表  1  饱和砂质板岩RcIs(50)统计

    Table  1.   Statistics of Rc and Is(50) for saturated sandy slate

    编号 Is(50)/MPa Rc/MPa 编号 Is(50)/MPa Rc/MPa
    1 1.85 11.4 30 7.28 51.8
    2 2.17 17.5 31 7.42 54.1
    3 2.47 19.5 32 7.91 55.2
    4 2.60 23.0 33 8.01 56.9
    5 2.68 23.8 34 8.10 57.5
    6 2.74 23.9 35 8.27 60.8
    7 2.91 25.1 36 8.34 61.9
    8 3.42 28.0 37 8.90 62.6
    9 3.44 28.3 38 8.99 67.2
    10 3.70 30.8 39 9.29 67.6
    11 3.73 32.1 40 9.31 70.4
    12 3.81 32.5 41 9.32 72.1
    13 3.89 32.7 42 9.39 73.4
    14 4.31 33.1 43 10.01 78.8
    15 4.79 35.0 44 10.61 79.0
    16 4.89 35.6 45 10.77 79.0
    17 5.18 36.1 46 11.12 80.2
    18 5.21 36.2 47 11.47 84.6
    19 5.77 36.7 48 11.49 86.3
    20 5.97 41.8 49 11.53 86.8
    21 6.22 41.9 50 11.66 87.5
    22 6.34 44.3 51 11.71 89.0
    23 6.54 45.2 52 11.72 90.2
    24 6.56 46.5 53 11.73 92.8
    25 6.61 48.4 54 11.90 94.1
    26 6.69 49.1 55 11.94 118.7
    27 6.90 50.0 56 12.41 118.7
    28 7.02 50.1 57 13.60 124.2
    29 7.06 50.1
    下载: 导出CSV

    表  2  烘干砂质板岩RdIs(50)统计

    Table  2.   Statistics of Rd and Is(50) for dried sandy slate

    编号 Is(50)/MPa Rd/MPa
    1 3.97 42.63
    2 6.36 57.04
    3 7.15 67.60
    4 7.88 68.33
    5 8.59 71.17
    6 9.47 78.04
    下载: 导出CSV

    表  3  饱和砂质板岩Rc单样本K-S检验

    Table  3.   One-sample K-S test of Rc for saturated sandy slate

    个案数 57
    正态参数 平均值/MPa 56.318
    标准偏差/MPa 27.003
    渐近显著性(双尾) 0.200
    下载: 导出CSV

    表  4  饱和砂质板岩Is(50)单样本K-S正态性检验

    Table  4.   One-sample K-S test of Is(50)of saturated sandy slate

    个案数 57
    正态参数 平均值/MPa 7.364
    标准偏差/MPa 3.253
    渐近显著性(双尾) 0.200
    下载: 导出CSV

    表  5  砂质板岩强度离群值检验结果

    Table  5.   Outlier test results of sandy slate strength

    样本数 强度/MPa 均值/MPa 标准差/MPa 统计量G57 统计量G57 临界值G0.975(57) 临界值G0.995(57)
    57 Rc 56.30 27.00 2.514 1.664 3.180 3.539
    Is(50) 7.36 3.25 2.570 1.783 3.205 3.566
    下载: 导出CSV

    表  6  砂质板岩强度统计

    Table  6.   Strength statistics of sandy slate

    强度 含水状态 均值/MPa 置信区间/MPa 变异系数/% 置信度/%
    Rc 饱和 56.30 49.20~63.50 47.90 95
    烘干 64.10 51.00~77.30 19.50
    Is(50) 饱和 7.36 6.50~8.22 44.20
    烘干 7.24 5.21~9.27 26.70
    下载: 导出CSV

    表  7  饱和砂质板岩Is(50)Rc离散程度

    Table  7.   Dispersion degrees of Is(50)and Rc for saturated sandy slate

    强度 极差系数/% 平均差系数/% 标准差系数/%
    Is(50) 213.2 40.7 49.0
    Rc 200.4 39.4 47.9
    下载: 导出CSV

    表  8  不同换算公式的相对误差统计

    Table  8.   Relative error statistics of different conversion formulas

    状态 数量/个 规范中换算公式 ISRM建议公式/% 本文换算公式
    均值/% 95%置信区间/% 均值/% 95%置信区间/%
    饱和 57 89.67 81.83~97.50 101.18~305.70 7.74 6.28~9.20
    烘干 6 55.70 50.03~61.36 86.26~203.39 6.83 0.14~13.52
    下载: 导出CSV
  • [1] 戴永浩, 陈卫忠, 田洪铭, 等. 大梁隧道软岩大变形及其支护方案研究[J]. 岩石力学与工程学报, 2015, 34(增2): 4149-4156. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2063.htm

    DAI Yong-hao, CHEN Wei-zhong, TIAN Hong-ming, et al. Study of large deformation and support measures of Daliang Tunnel with soft surrounding rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 4149-4156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2063.htm
    [2] 李宁, 李国良. 兰渝铁路特殊复杂地质隧道修建技术[J]. 隧道建设(中英文), 2018, 38(3): 481-490. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201803020.htm

    LI Ning, LI Guo-liang. Construction technologies for tunnels in special and complicated geology of Lanzhou-Chongqing Railway[J]. Tunnel Construction, 2018, 38(3): 481-490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201803020.htm
    [3] 刘志强, 吴剑, 师亚龙, 等. 挤压性大变形隧道研究现状与展望[J]. 现代隧道技术, 2019, 56(增1): 41-50. doi: 10.13807/j.cnki.mtt.2019.S1.006

    LIU Zhi-qiang, WU Jian, SHI Ya-long, et al. A summary of support and construction methods of tunnels with high stress and large deformation[J]. Modern Tunnelling Technology, 2019, 56(S1): 41-50. (in Chinese) doi: 10.13807/j.cnki.mtt.2019.S1.006
    [4] 李志军, 郭新新, 马振旺, 等. 挤压大变形隧道研究现状及高强预应力一次(型)支护体系[J]. 隧道建设(中英文), 2020, 40(6): 755-782. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202006001.htm

    LI Zhi-jun, GUO Xin-xin, MA Zhen-wang, et al. Research status and high-strength pre-stressed primary (type) support system for tunnels with large deformation under squeezing conditions[J]. Tunnel Construction, 2020, 40(6): 755-782. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202006001.htm
    [5] 谭忠盛, 杨旸, 陈伟, 等. 中老铁路高地应力软岩隧道大变形控制技术研究[J]. 铁道学报, 2020, 42(12): 171-178. doi: 10.3969/j.issn.1001-8360.2020.12.022

    TAN Zhong-sheng, YANG Yang, CHEN Wei, et al. Large deformation control technology of high geostress soft rock tunnel of China-Laos Railway[J]. Journal of the China Railway Society, 2020, 42(12): 171-178. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.12.022
    [6] 吴永胜, 谭忠盛, 李少孟. 挤压性大变形隧道围岩基本特性的试验研究[J]. 土木工程学报, 2015, 48(增1): 398-402. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1071.htm

    WU Yong-sheng, TAN Zhong-sheng, LI Shao-meng. Experimental study on the basic characteristics of tunnel in squeezing surrounding rock with large deformation[J]. China Civil Engineering Journal, 2015, 48(S1): 398-402. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1071.htm
    [7] 刘宁, 张传庆, 褚卫江, 等. 深埋绿泥石片岩变形特征及稳定性分析[J]. 岩石力学与工程学报, 2013, 32(10): 2045-2052. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310014.htm

    LIU Ning, ZHANG Chuan-qing, CHU Wei-jiang, et al. Deformation behavior and stability analysis of deep chlorite schist[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10): 2045-2052. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310014.htm
    [8] 陈建勋, 陈丽俊, 罗彦斌, 等. 大跨度绿泥石片岩隧道大变形机理与控制方法[J]. 交通运输工程学报, 2021, 21(2): 93-106. doi: 10.19818/j.cnki.1671-1637.2021.02.008

    CHEN Jian-xun, CHEN Li-jun, LUO Yan-bin, et al. Mechanism and control method of large deformation for large-span chlorite schist tunnel[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 93-106. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.02.008
    [9] 郭小龙, 谭忠盛, 李磊, 等. 高地应力陡倾层状软岩隧道变形破坏机理分析[J]. 土木工程学报, 2017, 50(增2): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2007.htm

    GUO Xiao-long, TAN Zhong-sheng, LI Lei, et al. Deformation and failure mechanism of layered soft rock tunnel under high stress[J]. China Civil Engineering Journal, 2017, 50(S2): 38-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2007.htm
    [10] 王乐华, 牛草原, 张冰祎, 等. 不同应力路径下深埋软岩力学特性试验研究[J]. 岩石力学与工程学报, 2019, 38(5): 973-981. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201905012.htm

    WANG Le-hua, NIU Cao-yuan, ZHANG Bing-yi, et al. Experimental study on mechanical properties of deep-buried soft rock under different stress paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(5): 973-981. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201905012.htm
    [11] 姚强岭, 李学华, 朱柳, 等. 煤岩体地质力学参数原位测试系统开发与应用[J]. 中国矿业大学学报, 2019, 48(6): 1169-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201906001.htm

    YAO Qiang-ling, LI Xue-hua, ZHU Liu, et al. Development and application of in-situ testing system for geomechanical parameters of coal and rock mass[J]. Journal of China University of Mining and Technology, 2019, 48(6): 1169-1176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201906001.htm
    [12] MOMENI E, JAHED ARMAGHANI D, HAJIHASSANI M, et al. Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks[J]. Measurement, 2015, 60: 50-63.
    [13] 李文, 谭卓英. 基于P波模量的岩石单轴抗压强度预测[J]. 岩土力学, 2016, 37(增2): 381-387. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2049.htm

    LI Wen, TAN Zhuo-ying. Prediction of uniaxial compressive strength of rock based on P-wave modulus[J]. Rock and Soil Mechanics, 2016, 37(S2): 381-387. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2049.htm
    [14] 孟召平, 张吉昌, TIEDEMANN J. 煤系岩石物理力学参数与声波速度之间的关系[J]. 地球物理学报, 2006, 49(5): 1505-1510. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200605030.htm

    MENG Zhao-ping, ZHANG Ji-chang, TIEDEMANN J. Relationship between physical and mechanical parameters and acoustic wave velocity of coal measures rocks[J]. Chinese Journal of Geophysics, 2006, 49(5): 1505-1510. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200605030.htm
    [15] 王敏生, 李祖奎. 测井声波预测岩石力学特性的研究与应用[J]. 采矿与安全工程学报, 2007, 24(1): 74-78, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200701016.htm

    WANG Min-sheng, LI Zu-kui. Research and application on prediction of rock mechanics parameters based on acoustic log data[J]. Journal of Mining and Safety Engineering, 2007, 24(1): 74-78, 83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200701016.htm
    [16] 钟雨田, 徐凡献, 马留闯, 等. 岩石点荷载试验在隧道动态围岩分级中的应用——以郑万高铁向家湾隧道为例[J]. 科学技术与工程, 2020, 20(24): 10052-10059. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202024053.htm

    ZHONG Yu-tian, XU Fan-xian, MA Liu-chuang, et al. Application of rock point load tests in dynamic surrounding rock classification of tunnels: take Xiangjiawan Tunnel along Zhengzhu-Wanzhou High-Speed Railway as example[J]. Science Technology and Engineering, 2020, 20(24): 10052-10059. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202024053.htm
    [17] 董平, 曹健, 姜永基. 点荷载试验评价孔底岩基强度和承载力的方法[J]. 岩土力学, 2001, 22(1): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200101024.htm

    DONG Ping, CAO Jian, JIANG Yong-ji. The point load method for the evaluation of strength and bearing capacity of rock foundation in the artificially excavated holes for piles[J]. Rock and Soil Mechanics, 2001, 22(1): 92-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200101024.htm
    [18] 付志亮, 王亮. 煤层顶底板岩石点荷载强度与拉压强度对比试验研究[J]. 岩石力学与工程学报, 2013, 32(1): 88-96. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201301013.htm

    FU Zhi-liang WANG Liang. Comparative experimental research on point load strength, uniaxial compressive strength and tensile strength for rocks in roof and floor of coal seam[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 88-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201301013.htm
    [19] 周哲, 陈善雄, 戴张俊, 等. 基于点荷载试验的新生代红砂岩强度软化规律研究[J]. 岩土力学, 2021, 42(11): 2997-3007. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111010.htm

    ZHOU Zhe, CHEN Shan-xiong, DAI Zhang-jun, et al. Study on strength softening law of Cenozoic red sandstone based on point load test[J]. Rock and Soil Mechanics, 2021, 42(11): 2997-3007. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111010.htm
    [20] D'ANDREA D V, FISHER R L, ELSON D E. Prediction of compression strength from other rock properties[R]. Washington DC: United States Department of the Interior Bureau of Mines, 1965.
    [21] BROCH E, FRANKLIN J A. The point-load strength test[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1972, 9(6): 669-676.
    [22] BIENIAWSKI Z T. The point-load test in geotechnical practice[J]. Engineering Geology, 1975, 9(1): 1-11.
    [23] 谭国焕, 李启光, 徐钺, 等. 香港岩石的硬度与点荷载指标和强度的关系[J]. 岩土力学, 1999, 20(2): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199902011.htm

    TAN Guo-huan, LI Qi-guang, XU Yue, et al. Hardness and point load indices, strength of Hong Kong rocks[J]. Rock and Soil Mechanics, 1999, 20(2): 52-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199902011.htm
    [24] 曾伟雄, 林国赞. 岩石单轴饱和抗压强度的点荷载试验方法设计与探讨[J]. 岩石力学与工程学报, 2003, 22(4): 566-568. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200304013.htm

    ZENG Wei-xiong, LIN Guo-zan. Design of rock point load test methods for research of saturated uniaxial compressive rock strength[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(4): 566-568. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200304013.htm
    [25] SINGH T N, KAINTHOLA A, VENKATESH A. Correlation between point load index and uniaxial compressive strength for different rock types[J]. Rock Mechanics and Rock Engineering, 2012, 45(2): 259-264.
    [26] KAYA A, KARAMAN K. Utilizing the strength conversion factor in the estimation of uniaxial compressive strength from the point load index[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(1): 341-357.
    [27] ENDAIT M, JUNEJA A. New correlations between uniaxial compressive strength and point load strength of basalt[J]. International Journal of Geotechnical Engineering, 2015, 9(4): 348-53.
    [28] KAHRAMAN S. The determination of uniaxial compressive strength from point load strength for pyroclastic rocks[J]. Engineering Geology, 2014, 170: 33-42.
    [29] FRANKLIN J A. Suggested method for determining point load strength[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1985, 22(2): 51-60.
    [30] 向贵府, 刘洋, 许模, 等. 某水电站厂房洞室群围岩点荷载强度试验成果分析及利用研究[J]. 水利水电技术, 2017, 48(12): 82-87, 105. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201712014.htm

    XIANG Gui-fu, LIU Yang, XU Mo, et al. Study on analysis and utilization of result from point-load strength experiment on surrounding rock of cavern group for powerhouse of a hydropower plant[J]. Water Resources and Hydropower Engineering, 2017, 48(12): 82-87, 105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201712014.htm
    [31] 张元胤, 李克钢. 几种岩石点荷载强度与单轴抗压强度的相关性[J]. 金属矿山, 2017(2): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201702005.htm

    ZHANG Yuan-yin, LI Ke-gang. The correlation between the point load strength and uniaxial compression strength of several kinds of rocks[J]. Metal Mine, 2017(2): 19-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201702005.htm
  • 加载中
图(13) / 表(8)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  67
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回