留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强震作用下近断层桥梁桩基动力响应

冯忠居 张聪 何静斌 关云辉 袁枫斌

冯忠居, 张聪, 何静斌, 关云辉, 袁枫斌. 强震作用下近断层桥梁桩基动力响应[J]. 交通运输工程学报, 2022, 22(4): 159-169. doi: 10.19818/j.cnki.1671-1637.2022.04.012
引用本文: 冯忠居, 张聪, 何静斌, 关云辉, 袁枫斌. 强震作用下近断层桥梁桩基动力响应[J]. 交通运输工程学报, 2022, 22(4): 159-169. doi: 10.19818/j.cnki.1671-1637.2022.04.012
FENG Zhong-ju, ZHANG Cong, HE Jing-bin, GUAN Yun-hui, YUAN Feng-bin. Dynamic response of bridge pile foundation near fault under strong earthquake[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 159-169. doi: 10.19818/j.cnki.1671-1637.2022.04.012
Citation: FENG Zhong-ju, ZHANG Cong, HE Jing-bin, GUAN Yun-hui, YUAN Feng-bin. Dynamic response of bridge pile foundation near fault under strong earthquake[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 159-169. doi: 10.19818/j.cnki.1671-1637.2022.04.012

强震作用下近断层桥梁桩基动力响应

doi: 10.19818/j.cnki.1671-1637.2022.04.012
基金项目: 

国家自然科学基金项目 51708040

海南省交通科技项目 HNZXY2015-045R

详细信息
    作者简介:

    冯忠居(1965-),男,山西万荣人,长安大学教授,工学博士,从事桥梁桩基与岩土工程研究

    通讯作者:

    张聪(1994-),男,河南焦作人,长安大学工学博士研究生

  • 中图分类号: U443.1

Dynamic response of bridge pile foundation near fault under strong earthquake

Funds: 

National Natural Science Foundation of China 51708040

Hainan Transportation Technology Project HNZXY2015-045R

More Information
  • 摘要: 为探明强震作用下断层上、下盘桥梁桩基动力响应差异,依托海南省海文大桥工程,通过振动台模型试验,研究了0.15g~0.60g地震动强度作用下断层上、下盘桩基的桩身加速度、桩顶相对位移、桩身弯矩响应规律差异与桩基损伤特征。研究结果表明:在不同地震动强度作用下,断层上、下盘桩基的桩顶加速度峰值相差0.291~0.488 m·s-2,桩顶加速度放大系数相差0.067~0.195,原因为断层对两侧岩土体影响范围存在差异与桩周岩土体“非线性”差异;随着地震动强度的增大,断层上、下盘桩基的桩顶相对位移差值逐渐增大,最大差值为0.77 mm;断层上、下盘桩基的弯矩最大值相差5.294~82.932 kN·m,且弯矩最大值均出现在覆盖层软硬土交界面与基岩面附近,原因在于下盘作为稳定盘,受上盘土体挤压作用,对下盘岩土体的振动剪切有一定抑制作用;地震动强度为0.35g时,断层上、下盘桩的最大弯矩均未超过抗弯承载力,满足海文大桥抗震设防烈度Ⅷ度(0.35g)的要求;地震动强度为0.35g~0.45g时,断层上盘桩的基频变化幅度较小,地震动强度为0.50g~0.60g时,断层上盘桩的基频显著降低,在桩顶与承台连接处、软硬土层界面与基岩面附近出现裂缝,说明此时桩基已发生损伤。可见,断层上盘桩基的桩身加速度峰值、桩顶相对位移与桩身弯矩动力响应指标均大于下盘桩基,断层上、下盘桩基动力响应变化规律差异显著,体现出显著的“断层上盘效应”,因此,强震作用下近断层桥梁桩基础抗震设计时,应着重考虑断层上盘桩基础的抗震承载能力。

     

  • 图  1  桩基础与断层相对位置

    Figure  1.  Relative position of pile foundation and fault

    图  2  叠层剪切式模型箱

    Figure  2.  Laminated shear model box

    图  3  土体剪切波速测试

    Figure  3.  Shear wave velocity test of soil

    图  4  模型桩

    Figure  4.  Model pile

    图  5  模型桩布置

    Figure  5.  Layout of model piles

    图  6  0.35g-5010波

    Figure  6.  0.35g-5010 wave

    图  7  不同强度地震动作用下桩身加速度峰值

    Figure  7.  Peak accelerations of piles under ground motions with different intensities

    图  8  桩顶加速度峰值与放大系数

    Figure  8.  Peak acceleration and amplification factors of pile tops

    图  9  桩顶相对位移变化规律

    Figure  9.  Variation laws of relative displacements at pile tops

    图  10  桩身弯矩峰值变化规律

    Figure  10.  Variation laws of peak bending moments of piles

    图  11  桩身弯矩最大值

    Figure  11.  Maximum bending moments of piles

    图  12  抗弯承载能力安全度

    Figure  12.  Safety degrees of flexural bearing capacity

    图  13  断层上盘桩(38-1#)傅里叶谱

    Figure  13.  Fourier spectrums of 38-1# pile on hanging wall of fault

    图  14  断层上盘38-1#桩基频变化规律

    Figure  14.  Variation law of foundation frequency of 38-1# pile on hanging wall of fault

    图  15  桩基损伤

    Figure  15.  Damage of pile foundation

    表  1  振动台技术指标

    Table  1.   Technical specifications of vibrating table

    性能 台面尺寸/mm 振动模式 频率范围/Hz 模型载重/t 抗倾覆力矩/(kN·m) 最大加速度幅值(满载)/g 最大速度幅值/(cm·s-1) 最大位移幅值/mm
    参数 5 000×5 000 正弦、随机地震动 0.5~50 0~30 300 水平向 1.0 水平向 50 水平向 80
    纵向 0.7 纵向 40 纵向 50
    下载: 导出CSV

    表  2  试验物理量相似常数

    Table  2.   Similarity constants of test physical quantities

    分类 物理量 相似常数
    荷载 速度 0.18
    时间 0.18
    加速度 1
    人工质量 100 kg
    重力加速度 1
    几何形状 频率 5.48
    线位移 1/30
    线尺寸 1/30
    材料特征 应力 1
    应变 1
    泊松比 1
    弹性模量 1
    下载: 导出CSV

    表  3  模型土参数

    Table  3.   Model soil parameters

    模型土 密度/(g·cm-3) 含水率/% 压缩模量/MPa 孔隙比 黏聚力/kPa 内摩擦角/(°)
    淤泥质黏土 1.67 49.8 3.78 1.32 10.2 4
    砂砾 1.94 23.2 4.68 0.91 13.3 25
    卵石土 2.03 31.5 24.00 0.73 8.0 39
    下载: 导出CSV

    表  4  土体剪切波速

    Table  4.   Shear wave velocities of soils m·s-1

    土体 淤泥质黏土 砂砾 卵石土 微风化花岗岩/混凝土 破碎带/碎石
    剪切波速 原型 136 263 526 899
    模型 138 276 539 917 120
    下载: 导出CSV

    表  5  模型桩参数

    Table  5.   Model pile parameters

    桩身材料 桩长/cm 桩径/cm 桩身钢筋直径/mm 配筋率/%
    C35混凝土 180 8 4 2.4
    下载: 导出CSV
  • [1] FENG Zhong-ju, HUO Jian-wei, HU Hai-bo, et al. Research on corrosion damage and bearing characteristics of bridge pile foundation concrete under a dry-wet-freeze-thaw cycle[J]. Advances in Civil Engineering, 2021, 2021(6): 1-13.
    [2] JIANG Guan, FENG Zhong-ju, ZHAO Rui-xin, et al. Case study on safety assessment of rockfall and splash stone protective structures for secondary excavation of highway slope[J]. Advances in Civil Engineering, 2021, 2021(2): 1-9.
    [3] 冯忠居, 陈慧芸, 袁枫斌, 等. 桩-土-断层耦合作用下桥梁桩基竖向承载特性[J]. 交通运输工程学报, 2019, 19(2): 36-48. doi: 10.3969/j.issn.1671-1637.2019.02.004

    FENG Zhong-ju, CHEN Hui-yun, YUAN Feng-bin, et al. Vertical bearing characteristics of bridge pile foundation under pile-soil-fault coupling action[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 36-48. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.02.004
    [4] FENG Zhong-ju, HU Hai-bo, DONG Yun-xiu, et al. Effect of steel casing on vertical bearing characteristics of steel tube-reinforced concrete piles in loess area[J]. Applied Sciences, 2019, 9(14): 2874. doi: 10.3390/app9142874
    [5] DONG Yun-xiu, FENG Zhong-ju, HU Hai-bo, et al. The horizontal bearing capacity of composite concrete-filled steel tube piles[J]. Advances in Civil Engineering, 2020, 2020(1): 1-15.
    [6] 何静斌, 冯忠居, 董芸秀, 等. 强震区桩-土-断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007026.htm

    FENG Zhong-ju, HE Jing-bin, DONG Yun-xiu, et al. Dynamic response of pile foundation under pile-soil-fault coupling effect in meizoseismal area[J]. Rock and Soil Mechanics, 2020, 41(7): 2389-2400. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007026.htm
    [7] SOMERVILLE P G, SMITH N F, GRAVES R W, et al. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]. Seismological Research Letters, 1997, 68(1): 199-222 doi: 10.1785/gssrl.68.1.199
    [8] WANG G Q, ZHOU X Y, ZHANG P Z, et al. Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan Earthquake[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(1): 73-96 doi: 10.1016/S0267-7261(01)00047-1
    [9] LU Chih-hung, LIU Kuang-yen, CHANG Kuo-chun. Seismic performance of bridges with rubber bearings: lessons learnt from the 1999 Chi-Chi Taiwan Earthquake[J]. Journal of the Chinese Institute of Engineers, 2011, 34(7): 889-904. doi: 10.1080/02533839.2011.591920
    [10] FENG Zhong-ju, HU Hai-bo, ZHAO Rui-xin, et al. Experiments on reducing negative skin friction of piles[J]. Advances in Civil Engineering, 2019, 2019(4): 1-10.
    [11] 张永亮, 冯鹏飞, 陈兴冲, 等. 基于静-动力分析相结合方法的桥梁桩基础地震反应分析及抗震性能评价[J]. 工程力学, 2018, 35(S1): 325-329, 343. doi: 10.6052/j.issn.1000-4750.2017.05.S062

    ZHANG Yong-liang, FENG Peng-fei, CHEN Xing-chong, et al. Seismic response analysis and seismic performance evaluation on bridge pile foundations based on the method combined static with dynamic analysis[J]. Engineering Mechanics, 2018, 35(S1): 325-329, 343. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.05.S062
    [12] 栾茂田, 孔德森, 杨庆, 等. 层状土中单桩竖向简谐动力响应的简化解析方法[J]. 岩土力学, 2005, 26(3): 375-380. doi: 10.3969/j.issn.1000-7598.2005.03.008

    LUAN Mao-tian, KONG De-sen, YANG Qing, et al. Simplified analytic method of vertical harmonic response of single pile embedded in layered soils[J]. Rock and Soil Mechanics, 2005, 26(3): 375-380. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.03.008
    [13] 刘林超, 杨骁. 地震作用下饱和土-桩-上部结构动力相互作用研究[J]. 岩土力学, 2012, 33(1): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201201020.htm

    LIU Lin-chao, YANG Xiao. Dynamic interaction of saturated soil-pile-structure system under seismic loading[J]. Rock and Soil Mechanics, 2012, 33 (1): 120-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201201020.htm
    [14] 许成顺, 豆鹏飞, 杜修力, 等. 液化场地-结构动力相互作用振动台试验发展与回顾[J]. 北京工业大学学报, 2019, 45(5): 502-514. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201905012.htm

    XU Cheng-shun, DOU Peng-fei, DU Xiu-li, et al. Review on shaking table test of dynamic interaction of liquefiable site-structures system: retrospect and prospect[J]. Journal of Beijing University of Technology, 2019, 45(5): 502-514. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201905012.htm
    [15] 冯忠居, 董芸秀, 何静斌, 等. 强震作用下饱和粉细砂液化振动台试验[J]. 哈尔滨工业大学学报, 2019, 51(9): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201909028.htm

    FENG Zhong-ju, DONG Yun-xiu, HE Jing-bin, et al. Shaking table test of saturated fine sand liquefaction under strong earthquake[J]. Journal of Harbin Institute of Technology, 2019, 51(9): 186-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201909028.htm
    [16] 刘闯, 冯忠居, 张福强, 等. 地震作用下特大型桥梁嵌岩桩基础动力响应[J]. 交通运输工程学报, 2018, 18(4): 53-62. doi: 10.19818/j.cnki.1671-1637.2018.04.006

    LIU Chuang, FENG Zhong-ju, ZHANG Fu-qiang, et al. Dynamic response of rock-socketed pile foundation for extra-large bridge under earthquake action[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 53-62. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2018.04.006
    [17] 冯忠居, 王溪清, 李孝雄, 等. 强震作用下的砂土液化对桩基力学特性影响[J]. 交通运输工程学报, 2019, 19(1): 71-84. doi: 10.19818/j.cnki.1671-1637.2019.01.008

    FENG Zhong-ju, WANG Xi-qing, LI Xiao-xiong, et al. Effect of sand liquefaction on mechanical properties of pile foundation under strong earthquake[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 71-84. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.01.008
    [18] DONG Yun-xiu, FENG Zhong-ju, HU Hai-bo, et al. Seismic response of a bridge pile foundation during a shaking table test[J]. Shock and Vibration, 2019, 2019(2): 1-16.
    [19] 蔡奇鹏, 吴宏伟, 胡平, 等. 跨越走滑断层黏土地层动力响应离心机试验研究[J]. 岩土力学, 2018, 39(7): 2424-2432. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807014.htm

    CAI Qi-peng, WU Hong-wei, HU Ping, et al. Centrifuge experimental study of dynamic responses of clay stratum overlying a strike-slip fault[J]. Rock and Soil Mechanics, 2018, 39(7): 2424-2432. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807014.htm
    [20] MAKRIS N, TAZOH T, YUN X, et al. Prediction of the measured response of a scaled soil-pile-superstructure system[J]. Soil Dynamics and Earthquake Engineering, 1997, 16(2): 113-124.
    [21] 闫孔明, 刘飞成, 张建经, 等. 地震作用下含倾斜软弱夹层边坡内群桩的弯曲变形研究[J]. 岩石力学与工程学报, 2017, 36(8): 1966-1976. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708016.htm

    YAN Kong-ming, LIU Fei-cheng, ZHANG Jian-jing, et al. Bending deformation of pile group in the slope with intercalated weak layer under seismic excitations[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 1966-1976. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708016.htm
    [22] 宋波, 谢明雷, 李吉人. 不同桩基形式高桩码头地震动力损伤振动台试验研究[J]. 土木工程学报, 2018, 51(S2): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2018S2005.htm

    SONG Bo, XIE Ming-lei, LI Ji-ren. Study of seismic dynamic damage on pile-supported wharf with different types of piles by shaking table test[J]. China Civil Engineering Journal, 2018, 51(Sup 2): 28-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2018S2005.htm
    [23] 谢文, 孙利民, 楼梦麟. 多点激励下桩-土-斜拉桥全模型振动台试验研究[J]. 土木工程学报, 2019, 52(5): 79-89. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201905007.htm

    XIE Wen, SUN Li-min, LOU Meng-lin. Shaking table test on a pile-soil-cable-stayed bridge full model under multi-support excitations[J]. China Civil Engineering Journal, 2019, 52(5): 79-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201905007.htm
    [24] 江辉, 王志, 白晓宇, 等. 近、远场强震下深水桥梁-群桩基础的非线性响应及损伤特性[J]. 振动与冲击, 2017, 36(24): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201724003.htm

    JIANG Hui, WANG Zhi, BAI Xiao-yu, et al. Nonlinear responses and damage characteristics for group-piles foundation of a deep-water bridge under strong near-fault and far-field earthquakes[J]. Journal of Vibration and Shock, 2017, 36(24): 13-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201724003.htm
    [25] 贾鹏, 王兰民, 万征, 等. 某桥梁桩基础的抗震计算研究[J]. 地震工程学报, 2018, 40(2): 258-264. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201802011.htm

    JIA Peng, WANG Lan-min, WAN Zheng, et al. Seismic calculation and analysis of the pile foundation of a certain bridge[J]. China Earthquake Engineering Journal, 2018, 40(2): 258-264. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201802011.htm
    [26] 李雨润, 闫志晓, 张健, 等. 饱和砂土中直群桩动力响应离心机振动台试验与简化数值模型研究[J]. 岩石力学与工程学报, 2020, 39(6): 1252-1264. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006015.htm

    LI Yu-run, YAN Zhi-xiao, ZHANG Jian, et al. Centrifugal shaking table test and numerical simulation of dynamic responses of straight pile group in saturated sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1252-1264. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006015.htm
    [27] ZHANG Cong, FENG Zhong-ju, GUAN Yun-hui, et al. Study on liquefaction resistance of pile group by shaking table test[J]. Advances in Civil Engineering, 2022, 2022(12): 1-12.
    [28] 陈国兴, 王志华, 左熹, 等. 振动台试验叠层剪切型土箱的研制[J]. 岩土工程学报, 2010, 32(1): 89-97. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001017.htm

    CHEN Guo-xing, WANG Zhi-hua, ZUO Xi, et al. Development of laminar shear soil container for shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 89-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001017.htm
    [29] 伍小平, 孙利民, 胡世德, 等. 振动台试验用层状剪切变形土箱的研制[J]. 同济大学学报, 2002, 30(7): 781-785. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200207000.htm

    WU Xiao-ping, SUN Li-min, HU Shi-de, et al. Development of laminar shear box used in shaking table test[J]. Journal of Tongji University, 2002, 30(7): 781-785. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200207000.htm
    [30] 袁林娟, 刘小生, 汪小刚, 等. 振动台土-箱结构模型动力特性及反应的解析分析[J]. 岩土工程学报, 2012, 34(6): 1038-1042. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206013.htm

    YUAN Lin-juan, LIU Xiao-sheng, WANG Xiao-gang, et al. Analytic solution of dynamic characteristics and responses of soil-box model for shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1038-1042. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206013.htm
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  338
  • HTML全文浏览量:  78
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回