留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于结构相似深度卷积自编码的异常扣件检测模型

李清勇 王建柱 祝叶舟 黄祺隆 彭文娟 王胜春 戴鹏

李清勇, 王建柱, 祝叶舟, 黄祺隆, 彭文娟, 王胜春, 戴鹏. 基于结构相似深度卷积自编码的异常扣件检测模型[J]. 交通运输工程学报, 2022, 22(4): 186-195. doi: 10.19818/j.cnki.1671-1637.2022.04.014
引用本文: 李清勇, 王建柱, 祝叶舟, 黄祺隆, 彭文娟, 王胜春, 戴鹏. 基于结构相似深度卷积自编码的异常扣件检测模型[J]. 交通运输工程学报, 2022, 22(4): 186-195. doi: 10.19818/j.cnki.1671-1637.2022.04.014
LI Qing-yong, WANG Jian-zhu, ZHU Ye-zhou, HUANG Qi-long, PENG Wen-juan, WANG Sheng-chun, DAI Peng. Abnormal fastener detection model based on deep convolutional autoencoder with structural similarity[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 186-195. doi: 10.19818/j.cnki.1671-1637.2022.04.014
Citation: LI Qing-yong, WANG Jian-zhu, ZHU Ye-zhou, HUANG Qi-long, PENG Wen-juan, WANG Sheng-chun, DAI Peng. Abnormal fastener detection model based on deep convolutional autoencoder with structural similarity[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 186-195. doi: 10.19818/j.cnki.1671-1637.2022.04.014

基于结构相似深度卷积自编码的异常扣件检测模型

doi: 10.19818/j.cnki.1671-1637.2022.04.014
基金项目: 

国家自然科学基金项目 U2034211

中央高校基本科研业务费专项资金项目 2022JBQY007

详细信息
    作者简介:

    李清勇(1979-),男,湖南涟源人,北京交通大学教授,工学博士,从事人工智能研究

  • 中图分类号: U213.5

Abnormal fastener detection model based on deep convolutional autoencoder with structural similarity

Funds: 

National Natural Science Foundation of China U2034211

Fundamental Research Funds for the Central Universities 2022JBQY007

More Information
  • 摘要: 介绍了轨道扣件系统的基本功能,概述了已有的轨道异常扣件检测技术,归纳了基于机器视觉的传统检测方法和深度学习方法所关注的问题及存在的不足; 介绍了自编码的基本思想与形式化过程,提出了一种基于编解码架构的异常扣件检测模型; 分析了传统像素级图像相似度评价指标的缺陷,实现了基于结构相似的损失函数和图像异常判定; 构建了轨道扣件图像数据集,验证了模型的性能; 将代表性的误报与漏报图像可视化,描述了这些图像的表观特征,分析了发生漏报与误报可能的原因。研究结果表明:结构化相似指标显著提升了模型的检测性能,与具有相同网络架构但使用平均绝对误差和均方误差作为相似度评价指标的检测模型相比,模型的F值分别提升了14.5%和16.2%;与其他对比模型相比,提出的模型取得了最高的检测精确率和F值,分别达到了98.6%和98.1%,与次优的RotNet模型相比分别提升了6.0%和9.8%;召回率为97.1%,略低于深度支持向量数据描述(DSVDD)模型的98.4%;整体上看,F值比所有对比模型均高出超过9%,提出的模型表现出了明显的性能优势。

     

  • 图  1  WJ-7型扣件系统

    Figure  1.  WJ-7 fastener system

    图  2  结构相似深度卷积自编码模型

    Figure  2.  DCAE model with structural similarity

    图  3  扣件正常样例

    Figure  3.  Samples of normal fasteners

    图  4  扣件断裂样例

    Figure  4.  Samples of fractured fasteners

    图  5  扣件移位样例

    Figure  5.  Samples of dislocated fasteners

    图  6  扣件丢失样例

    Figure  6.  Samples of missing fasteners

    图  7  典型误报扣件图像

    Figure  7.  Representative false positive fastener images

    图  8  典型漏报扣件图像

    Figure  8.  Representative false negative fastener images

    表  1  网络参数设置

    Table  1.   Parameter setting of network

    卷积核 激活函数 输出尺寸
    尺寸 步长 填充
    输入层 3×32×32
    编码层1 64×4×4 2 1 f1(·) 64×16×16
    编码层2 128×4×4 2 1 f2(·) 128×8×8
    编码层3 256×4×4 2 1 f3(·) 256×4×4
    编码层4 512×4×4 2 1 f4(·) 512×2×2
    编码层5 64×4×4 2 1 64×1×1
    解码层1 512×4×4 2 1 g1(·) 512×2×2
    解码层2 256×4×4 2 1 g2(·) 256×4×4
    解码层3 128×4×4 2 1 g3(·) 128×8×8
    解码层4 64×4×4 2 1 g4(·) 64×16×16
    解码层5 3×4×4 2 1 g5(·) 3×32×32
    下载: 导出CSV

    表  2  KNN模型在不同阈值下的性能

    Table  2.   Performances of KNN model under different thresholds

    阈值 精确率/% 召回率/% F值/%
    μ 71.7 99.8 83.5
    μ+σ 88.5 86.0 87.2
    μ+2σ 94.0 49.8 65.1
    μ+3σ 96.3 23.7 38.1
    下载: 导出CSV

    表  3  DSVDD模型在不同阈值下的性能

    Table  3.   Performances of DSVDD model under different thresholds

    阈值 精确率/% 召回率/% F值/%
    μ 73.9 98.4 84.4
    μ+σ 95.7 73.4 83.1
    μ+2σ 99.4 43.9 60.9
    μ+3σ 99.8 24.3 39.1
    下载: 导出CSV

    表  4  RotNet模型在不同阈值下的性能

    Table  4.   Performances of RotNet model under different thresholds

    阈值 精确率/% 召回率/% F值/%
    μ 92.6 84.2 88.3
    μ+σ 96.5 68.3 80.0
    μ+2σ 97.5 60.9 74.9
    μ+3σ 98.0 54.9 70.4
    下载: 导出CSV

    表  5  DCAE(MAE)模型在不同阈值下的性能

    Table  5.   Performances of DCAE(MAE) model under different thresholds

    阈值 精确率/% 召回率/% F值/%
    μ 73.5 96.9 83.6
    μ+σ 86.7 71.3 78.2
    μ+2σ 91.0 40.5 56.1
    μ+3σ 93.9 20.6 33.8
    下载: 导出CSV

    表  6  DCAE(MSE)模型在不同阈值下的性能

    Table  6.   Performances of DCAE(MSE) model under different thresholds

    阈值 精确率/% 召回率/% F值/%
    μ 75.4 89.7 81.9
    μ+σ 86.3 54.7 67.0
    μ+2σ 90.0 32.1 47.3
    μ+3σ 92.3 18.8 31.3
    下载: 导出CSV

    表  7  DCAE(SSIM)模型在不同阈值下的性能

    Table  7.   Performances of DCAE(SSIM) model under different thresholds

    阈值 精确率/% 召回率/% F值/%
    μ 75.5 100.0 86.1
    μ+σ 91.1 100.0 95.3
    μ+2σ 96.4 99.6 98.0
    μ+3σ 98.6 97.7 98.1
    下载: 导出CSV

    表  8  不同模型的检测结果对比

    Table  8.   Comparison of test results of different models

    模型 精确率/% 召回率/% F值/%
    KNN 88.5 86.0 87.2
    DSVDD 73.9 98.4 84.4
    RotNet 92.6 84.2 88.3
    DCAE(MAE) 73.5 96.9 83.6
    DCAE(MSE) 75.4 89.7 81.9
    DCAE(SSIM) 98.6 97.7 98.1
    下载: 导出CSV
  • [1] ZHAN Zhi-kun, SUN Hao, YU Xiao-dong, et al. Wireless rail fastener looseness detection based on MEMS accelerometer and vibration entropy[J]. IEEE Sensors Journal, 2020, 20(6): 3226-3234. doi: 10.1109/JSEN.2019.2955378
    [2] YUAN Zhan-dong, ZHU Sheng-yang, YUAN Xuan-cheng, et al. Vibration-based damage detection of rail fastener clip using convolutional neural network: experiment and simulation[J]. Engineering Failure Analysis, 2021, 119: 104906. doi: 10.1016/j.engfailanal.2020.104906
    [3] CHANDRAN P, RANTATALO M, ODELIUS J, et al. Train-based differential eddy current sensor system for rail fastener detection[J]. Measurement Science and Technology, 2019, 30(12): 125105. doi: 10.1088/1361-6501/ab2b24
    [4] WEI Xiu-kun, YANG Zi-ming, LIU Yu-xin, et al. Railway track fastener defect detection based on image processing and deep learning techniques: a comparative study[J]. Engineering Applications of Artificial Intelligence, 2019, 80: 66-81. doi: 10.1016/j.engappai.2019.01.008
    [5] JING Guo-qing, QIN Xuan-yang, WANG Hao-yu, et al. Developments, challenges, and perspectives of railway inspection robots[J]. Automation in Construction, 2022, 138: 104242. doi: 10.1016/j.autcon.2022.104242
    [6] 张辉, 宋雅男, 王耀南, 等. 钢轨缺陷无损检测与评估技术综述[J]. 仪器仪表学报, 2019, 40(2): 11-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201902002.htm

    ZHANG Hui, SONG Ya-nan, WANG Yao-nan, et al. Review of rail defect non-destructive testing and evaluation[J]. Chinese Journal of Scientific Instrument, 2019, 40(2): 11-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201902002.htm
    [7] 王平, 盛宏威, 冀凯伦, 等. 高速载运设施的无损检测技术应用和发展趋势[J]. 数据采集与处理, 2020, 35(2): 195-209. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ202002002.htm

    WANG Ping, SHENG Hong-wei, JI Kai-lun, et al. Application and development trend of non-destructive testing technology for high-speed transportation facilities[J]. Journal of Data Acquisition and Processing, 2020, 35(2): 195-209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ202002002.htm
    [8] 刘甲甲, 熊鹰, 李柏林, 等. 基于计算机视觉的轨道扣件缺陷自动检测算法研究[J]. 铁道学报, 2016, 38(8): 73-80. doi: 10.3969/j.issn.1001-8360.2016.08.011

    LIU Jia-jia, XIONG Ying, LI Bai-lin, et al. Research on automatic inspection algorithm for railway fastener defects based on computer vision[J]. Journal of the China Railway Society, 2016, 38(8): 73-80. (in Chinese) doi: 10.3969/j.issn.1001-8360.2016.08.011
    [9] FAN Hong, COSMAN P C, HOU Yun, et al. High-speed railway fastener detection based on a line local binary pattern[J]. IEEE Signal Processing Letters, 2018, 25(6): 788-792. doi: 10.1109/LSP.2018.2825947
    [10] GIBERT X, PATEL V M, CHELLAPPA R. Robust fastener detection for autonomous visual railway track inspection[C]// IEEE. 2015 IEEE Winter Conference on Applications of Computer Vision. New York: IEEE, 2015: 694-701.
    [11] 代先星, 丁世海, 阳恩慧, 等. 铁路扣件弹条伤损自动检测系统研发与验证[J]. 铁道科学与工程学报, 2018, 15(10): 2478-2486. doi: 10.19713/j.cnki.43-1423/u.2018.10.004

    DAI Xian-xing, DING Shi-hai, YANG En-hui, et al. Development and verification of automatic inspection system for high-speed railway fastener[J]. Journal of Railway Science and Engineering, 2018, 15(10): 2478-2486. (in Chinese) doi: 10.19713/j.cnki.43-1423/u.2018.10.004
    [12] FENG Hao, JIANG Zhi-guo, XIE Feng-ying, et al. Automatic f astener classification and defect detection in vision-based railway inspection systems[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(4): 877-888. doi: 10.1109/TIM.2013.2283741
    [13] 戴鹏, 王胜春, 杜馨瑜, 等. 基于半监督深度学习的无砟轨道扣件缺陷图像识别方法[J]. 中国铁道科学, 2018, 39(4): 43-49. doi: 10.3969/j.issn.1001-4632.2018.04.07

    DAI Peng, WANG Sheng-chun, DU Xin-yu, et al. Image recognition method for the fastener defect of ballastless track based on semi-supervised deep learning[J]. China Railway Science, 2018, 39(4): 43-49. (in Chinese) doi: 10.3969/j.issn.1001-4632.2018.04.07
    [14] DONG Bang-yi, LI Qing-yong, WANG Jian-zhu, et al. An end-to-end abnormal fastener detection method based on data synthesis[C]//IEEE. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence. New York: IEEE, 2019: 149-156.
    [15] MA Ning-ning, ZHANG Xiang-yu, ZHENG Hai-tao, et al. ShuffleNet v2: Practical guidelines for efficient CNN architecture design[C]//Springer. 15th European Conference on Computer Vision. Berlin: Springer, 2018: 116-131.
    [16] LIU Jun-bo, HUANG Ya-ping, ZOU Qi, et al. Learning visual similarity for inspecting defective railway fasteners[J]. IEEE Sensors Journal, 2019, 19(16): 6844-6857. doi: 10.1109/JSEN.2019.2911015
    [17] 韦若禹, 李舒婷, 吴松荣, 等. 基于改进YOLO V3算法的轨道扣件缺陷检测[J]. 铁道标准设计, 2020, 64(12): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202012008.htm

    WEI Ruo-yu, LI Shu-ting, WU Song-rong, et al. Defect detection of track fastener based on improved YOLO V3 algorithm[J]. Railway Standard Design, 2020, 64(12): 30-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202012008.htm
    [18] REDMON J, FARHADI A. YOLO v3: an incremental improvement[J]. arXiv, 2018, https://doi.org/10.48550/arXiv.1804.02767
    [19] HSIEH C C, LIN Y W, TSAI L H, et al. Offline deep-learning-based defective track fastener detection and inspection system[J]. Sensors and Materials, 2020, 32(10): 3429-3442. doi: 10.18494/SAM.2020.2921
    [20] ZHAN You, DAI Xian-xing, YANG En-hui, et al. Convolutional neural network for detecting railway fastener defects using a developed 3D laser system[J]. International Journal of Rail Transportation, 2021, 9(5): 424-444. doi: 10.1080/23248378.2020.1825128
    [21] CUI Hao, LI Jian, HU Qing-wu, et al. Real-time inspection system for ballast railway fasteners based on point cloud deep learning[J]. IEEE Access, 2020, 8: 61604-61614. doi: 10.1109/ACCESS.2019.2961686
    [22] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
    [23] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//ICML. 2013 International Conference on Machine Learning Workshop on Deep Learning for Audio, Speech and Language Processing. New York: ICML, 2013: 1-6.
    [24] KALMAN B L, KWASNY S C. Why tanh: choosing a sigmoidal function[C]//IEEE. 1992 International Joint Conference on Neural Networks. New York: IEEE, 1992: 578-581.
    [25] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
    [26] BERGMANN P, LOWE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[C]//Springer. 2019 International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. Berlin: Springer, 2019: 372-380.
    [27] KINGMA D P, BA J L. Adam: a method for stochastic optimization[C]//ICLR. 2015 International Conference on Learning Representations. La Jolla: ICLR, 2015: 1-15.
    [28] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// ICML. 2015 International Conference on Machine Learning. New York: ICML, 2015: 448-456.
    [29] COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.
    [30] RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification[C]//ICML. 2018 International Conference on Machine Learning. New York: ICML, 2018: 4393-4402.
    [31] KOMODAKIS N, GIDARIS S. Unsupervised representation learning by predicting image rotations[C]//ICLR. 2018 International Conference on Learning Representations. La Jolla: ICLR, 2018: 1-16.
    [32] HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Deep residual learning for image recognition[C]//IEEE. 2016 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778.
    [33] PUKELSHEIM F. The three sigma rule[J]. The American Statistician, 1994, 48(2): 88-91.
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  383
  • HTML全文浏览量:  152
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-02
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回