留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃料电池船舶舱内氢气泄漏扩散的数值模拟

袁裕鹏 崔伟逸 沈辉 邹智曦 郭卫勇

袁裕鹏, 崔伟逸, 沈辉, 邹智曦, 郭卫勇. 燃料电池船舶舱内氢气泄漏扩散的数值模拟[J]. 交通运输工程学报, 2022, 22(4): 196-209. doi: 10.19818/j.cnki.1671-1637.2022.04.015
引用本文: 袁裕鹏, 崔伟逸, 沈辉, 邹智曦, 郭卫勇. 燃料电池船舶舱内氢气泄漏扩散的数值模拟[J]. 交通运输工程学报, 2022, 22(4): 196-209. doi: 10.19818/j.cnki.1671-1637.2022.04.015
YUAN Yu-peng, CUI Wei-yi, SHEN Hui, ZOU Zhi-xi, GUO Wei-yong. Numerical simulation of leakage and diffusion of hydrogen in cabin of fuel cell ship[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 196-209. doi: 10.19818/j.cnki.1671-1637.2022.04.015
Citation: YUAN Yu-peng, CUI Wei-yi, SHEN Hui, ZOU Zhi-xi, GUO Wei-yong. Numerical simulation of leakage and diffusion of hydrogen in cabin of fuel cell ship[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 196-209. doi: 10.19818/j.cnki.1671-1637.2022.04.015

燃料电池船舶舱内氢气泄漏扩散的数值模拟

doi: 10.19818/j.cnki.1671-1637.2022.04.015
基金项目: 

国家重点研发计划 2021YFB2601603

详细信息
    作者简介:

    袁裕鹏(1980-),男,湖北武汉人,武汉理工大学副教授,工学博士,从事船舶新能源与能效控制研究

    通讯作者:

    郭卫勇(1984-),男,湖北武汉人,武汉船舶职业技术学院讲师

  • 中图分类号: U662

Numerical simulation of leakage and diffusion of hydrogen in cabin of fuel cell ship

Funds: 

National Key Research and Development Program of China 2021YFB2601603

More Information
  • 摘要: 利用FLUENT软件研究了不同条件下氢气在燃料电池船舶舱内的泄漏扩散规律和分布情况; 基于瞬态气体泄漏扩散模型,运用数值模拟方法,建立了船舶舱内氢气泄漏扩散的数值模型,结合影响氢气泄漏扩散的不同因素,对比分析了泄漏位置、泄漏孔径和通风条件等因素对船舶舱内氢气泄漏扩散的影响,得到了不同条件下氢气在船舶舱内的扩散规律和分布情况。分析结果表明:船舶舱内氢气泄漏扩散过程包括初始喷射、浮力上升和湍流扩散; 燃料电池舱的顶部角落和每排燃料电池发电系统之间的上部是氢气探测报警器的最佳安装位置,不同泄漏条件下氢气均在舱室顶部出现较多积聚; 不同位置和不同孔径泄漏孔的危险性在泄漏初期存在差异,但随着泄漏的持续进行,风险演变规律相近,约60 s后泄漏点附近氢气浓度均接近100%;在燃料电池舱设置防爆型排风机,采用强制抽风措施加快氢气的外排,可以显著减少氢气向其他舱室的扩散,当抽风速度为1 m·s-1时,氢气从燃料电池舱室排放到船舶舷外区域,没有氢气进入控制舱和乘客舱,可有效保障控制舱和乘客舱的安全; 强制送风会加速氢气向船艉舱、控制舱和乘客舱的扩散,增大氢气的扩散范围,加剧了氢气泄漏的危险性。

     

  • 图  1  对象船舶外观

    Figure  1.  Appearance of object ship

    图  2  船舶甲板层舱室竖直面

    Figure  2.  Vertical plane of ship deck cabin

    图  3  竖直面网格划分结果

    Figure  3.  Meshing results of vertical plane

    图  4  船舶甲板层舱室水平面

    Figure  4.  Horizontal plane of ship deck cabin

    图  5  水平面网格划分结果

    Figure  5.  Meshing results of horizontal plane

    图  6  船艉舱氢气摩尔分数变化曲线

    Figure  6.  Change curves of hydrogen mole fraction in aft cabin

    图  7  控制舱不同泄漏点氢气摩尔分数变化曲线

    Figure  7.  Variation curves of hydrogen mole fraction at different leakage points in control cabin

    图  8  乘客舱不同泄漏点氢气摩尔分数变化曲线

    Figure  8.  Variation curves of hydrogen mole fraction at different leakage points in passenger cabin

    图  9  t=1 s时竖直面不同孔径的氢气扩散分布

    Figure  9.  Hydrogen diffusion distributions of different apertures in vertical plane at t=1 s

    图  10  t=10 s时竖直面不同孔径的氢气扩散分布

    Figure  10.  Hydrogen diffusion distributions of different apertures in vertical plane at t=10 s

    图  11  船艉舱不同孔径氢气摩尔分数变化曲线

    Figure  11.  Variation curves of hydrogen mole fraction in different apertures of aft cabin

    图  12  控制舱不同孔径氢气摩尔分数变化曲线

    Figure  12.  Variation curves of hydrogen mole fraction in different apertures of control cabin

    图  13  乘客舱不同孔径氢气摩尔分数变化曲线

    Figure  13.  Variation curves of hydrogen mole fraction in different apertures of passenger cabin

    图  14  9号孔氢气泄漏扩散分布

    Figure  14.  Hydrogen leakages and diffusion distributions of hole 9

    图  15  t=15 s时不同泄漏位置的氢气浓度分布

    Figure  15.  Distributions of hydrogen concentration at different leakage positions when t=15 s

    图  16  t=60 s时不同泄漏位置的氢气浓度分布

    Figure  16.  Distributions of hydrogen concentration at different leakage positions when t=60 s

    图  17  监测点位置

    Figure  17.  Locations of monitoring points

    图  18  通风条件1氢气摩尔分数变化曲线

    Figure  18.  Variation curves of hydrogen mole fraction under ventilation condition 1

    图  19  通风条件2氢气摩尔分数变化曲线

    Figure  19.  Variation curves of hydrogen mole fraction under ventilation condition 2

    图  20  通风条件3氢气摩尔分数变化曲线

    Figure  20.  Variation curves of hydrogen mole fraction under ventilation condition 3

    图  21  通风条件4氢气摩尔分数变化曲线

    Figure  21.  Variation curves of hydrogen mole fraction under ventilation condition 4

    图  22  通风条件5和6下舱内氢气浓度分布

    Figure  22.  Hydrogen concentration distributions in cabin under ventilation conditions 5 and 6

    表  1  客船参数

    Table  1.   Parameters of passenger ship

    总长/m 21 型宽/m 8
    最高航速/kn 22 驱动电机功率/kW 300(2台)
    载客/人 84 燃料电池功率/kW 360
    续航时间/d 2 锂离子电池组功率/kW 100
    下载: 导出CSV

    表  2  FLUENT网格质量评价标准

    Table  2.   FLUENT mesh quality evaluation standard

    评价指标 无法接受 可接受 良好 优秀
    正交质量 0~0.001 0.001~0.100 0.100~0.200 0.200~0.700 0.700~0.950 0.950~1.000
    倾斜率 0.970~1.000 0.940~0.970 0.800~0.940 0.500~0.800 0.250~0.500 0~0.250
    下载: 导出CSV

    表  3  船舶全舱室水平面模拟通风条件

    Table  3.   Simulation of ventilation conditions in horizontal plane of whole cabin of ship

    通风条件 船艉舱 燃料电池舱 控制舱 乘客舱
    1 自然通风 关闭 关闭 关闭
    2 自然通风 自然通风 关闭 关闭
    3 自然通风 自然通风 自然通风 关闭
    4 自然通风 自然通风 自然通风 自然通风
    5 自然通风 强制抽风 自然通风 自然通风
    6 自然通风 强制送风 自然通风 自然通风
    下载: 导出CSV
  • [1] UNCTAD. Review of maritime transport 2016[R]. New York: United Nations Publication, 2016.
    [2] DI NATALE F, CAROTENUTO C, CAJORA A, et al. Short-sea shipping contributions to particle concentration in coastal areas: impact and mitigation[J]. Transportation Research Part D: Transport and Environment, 2022, 109: 103342. doi: 10.1016/j.trd.2022.103342
    [3] QUE Si-si, LUO Han-yu, LIANG Wang, et al. Canonical correlation study on the relationship between shipping development and water environment of the Yangtze River[J]. Sustainability, 2020, 12(8): 3279. doi: 10.3390/su12083279
    [4] VAN BIERT L, GODJEVAC M, VISSER K, et al. A review of fuel cell systems for maritime applications[J]. Journal of Power Sources, 2016, 327: 345-364. doi: 10.1016/j.jpowsour.2016.07.007
    [5] 侯明, 衣宝廉. 燃料电池技术发展现状与展望[J]. 电化学, 2012, 18(1): 1-13. doi: 10.13208/j.electrochem.2012.01.003

    HOU Ming, YI Bao-lian. Progress and perspective of fuel cell technology[J]. Journal of Electrochemistry, 2012, 18(1): 1-13. (in Chinese) doi: 10.13208/j.electrochem.2012.01.003
    [6] SVRER M G, ARAT H T. Advancements and current technologies on hydrogen fuel cell applications for marine vehicles[J]. International Journal of Hydrogen Energy, 2022, 47(45): 19865-19875. doi: 10.1016/j.ijhydene.2021.12.251
    [7] TROYA J J, ALVAREZ C, FEMÁANDEZ-GARRIDO C, et al. Analysing the possibilities of using fuel cells in ships[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2853-2866. doi: 10.1016/j.ijhydene.2015.11.145
    [8] RIVAROLO M, RATTAZZI D, LAMBERTI T, et al. Clean energy production by PEM fuel cells on tourist ships: a time-dependent analysis[J]. International Journal of Hydrogen Energy, 2020, 45(47): 25747-25757. doi: 10.1016/j.ijhydene.2019.12.086
    [9] LI Feng, YUAN Yu-peng, YAN Xin-ping, et al. A study on numerical simulation of hydrogen leakage in cabin of fuel cell ship[J]. Journal of Transport Information and Safety, 2018, 97: 177-185.
    [10] OCKO I B, HAMBURG S P. Climate consequences of hydrogen emissions[J]. Atmospheric Chemistry and Physics, 2022, 22(14): 9349-9368. doi: 10.5194/acp-22-9349-2022
    [11] WEI Rui-chao, LAN Jia-mei, LIAN Li-ping, et al. A bibliometric study on research trends in hydrogen safety[J]. Process Safety and Environmental Protection, 2022, 159: 1064-1081. doi: 10.1016/j.psep.2022.01.078
    [12] MIDDHA P, HANSEN O R, STORVIK I E. Validation of CFD-model for hydrogen dispersion[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 1034-1038. doi: 10.1016/j.jlp.2009.07.020
    [13] SCHMIDT D, KRAUSE U, SCHMIDTCHE U. Numerical simulation of hydrogen gas releases between buildings[J]. International Journal of Hydrogen Energy, 1999, 24(5): 479-488. doi: 10.1016/S0360-3199(98)00082-2
    [14] KIM E, PARK J, CHO J H, et al. Simulation of hydrogen leak and explosion for the safety design of hydrogen fueling station in Korea[J]. International Journal of Hydrogen Energy, 2013, 38(3): 1737-1743. doi: 10.1016/j.ijhydene.2012.08.079
    [15] HAJJI Y, BOUTERAA M, ELCAFSI A, et al. Natural ventilation of hydrogen during a leak in a residential garage[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 810-818. doi: 10.1016/j.rser.2015.05.060
    [16] HAJJI Y, BOUTERAA M, CAFSI A E, et al. Dispersion and behavior of hydrogen during a leak in a prismatic cavity[J]. International Journal of Hydrogen Energy, 2014, 39(11): 6111-6119. doi: 10.1016/j.ijhydene.2014.01.159
    [17] RIGAS F, SKLAVOUNOS S. Evaluation of hazards associated with hydrogen storage facilities[J]. International Journal of Hydrogen Energy, 2005, 30(13/14): 1501-1510.
    [18] OLVERA H A, CHOUDHURI A R. Numerical simulation of hydrogen dispersion in the vicinity of a cubical building in stable stratified atmospheres[J]. International Journal of Hydrogen Energy, 2006, 31(15): 2356-2369. doi: 10.1016/j.ijhydene.2006.02.022
    [19] LIU Yuan-liang, LIU Zhan, WEI Jian-jian, et al. Spread characteristics of hydrogen vapor cloud for liquid hydrogen spill under different source conditions[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4606-4613. doi: 10.1016/j.ijhydene.2020.10.165
    [20] BAUWENS C R, DOROFEEV S B. CFD modeling and consequence analysis of an accidental hydrogen release in a large scale facility[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20447-20454. doi: 10.1016/j.ijhydene.2014.04.142
    [21] 余照, 袁杰红. 储氢罐泄漏扩散规律的数值仿真分析[J]. 轻工科技, 2008(8): 19-21. doi: 10.3969/j.issn.1003-2673.2008.08.010

    YU Zhao, YUAN Jie-hong. Simulation and analasis on hydrogen tank leaking[J]. Light Industry Science and Technology, 2008(8): 19-21. (in Chinese) doi: 10.3969/j.issn.1003-2673.2008.08.010
    [22] 刘延雷, 秦永泉, 盛水平, 等. 燃料车内氢气泄漏扩散数值模拟研究[J]. 中国安全生产科学技术, 2009, 5(5): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK200905003.htm

    LIU Yan-lei, QIN Yong-quan, SHENG Shui-ping, et al. Numerical investigation on dispersion of hydrogen in hydrogen powered automobiles[J]. Journal of Safety Science and Technology, 2009, 5(5): 5-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK200905003.htm
    [23] 周理. 高压氢气泄漏自燃现象的模拟[D]. 重庆: 重庆大学, 2014.

    ZHOU Li. Numerical study on spontaneous ignition process of pressurized hydrogen release[D]. Chongqing: Chongqing University, 2014. (in Chinese)
    [24] 李静媛. 加氢站高压氢气充装策略及泄漏爆炸后果预测研究[D]. 杭州: 浙江大学, 2015.

    LI Jing-yuan. Investigation on strategy of fast refueling and consequence of leakage-explosion of high pressure hydrogen in hydrogen station[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
    [25] 李云浩, 喻源, 张庆武. 车库内氢气扩散和分布状态的数值模拟[J]. 安全与环境学报, 2017, 17(5): 1884-1889. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201705052.htm

    LI Yun-hao, YU Yuan, ZHANG Qing-wu. Numerical simulation for the hydrogen dispersion and distribution behaviors in the garage context[J]. Journal of Safety and Environment, 2017, 17(5): 1884-1889. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201705052.htm
    [26] 李雪芳, 何倩, 柯道友. 高压氢气小孔泄漏射流分层流动模型与验证[J]. 清华大学学报(自然科学版), 2018, 58(12): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201812007.htm

    LI Xue-fang, HE Qian, KE Dao-you. Validation of flow partitioning model for high pressure hydrogen jets through small orifices[J]. Tsinghua University (Science and Technology), 2018, 58(12) : 61-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201812007.htm
    [27] 李雪芳, 王俞杰, 罗峰, 等. 欠膨胀氢气射流激波结构数值模拟研究[J]. 工程热物理学报, 2018, 39(4): 880-886. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201804028.htm

    LI Xue-fang, WANG Yu-jie, LUO Feng, et al. Numerical simulation of shock structures of under-expanded hydrogen jets[J]. Journal of Engineering Thermophysic, 2018, 39(4): 880-886. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201804028.htm
    [28] 李峰. 燃料电池船氢气系统设计与氢泄漏数值模拟研究[D]. 武汉: 武汉理工大学, 2018,

    LI Feng. Study on the design of hydrogen system and numerical simulation of hydrogen leakage in fuel cell passenger ship[D]. Wuhan: Wuhan University of Technology, 2018. (in Chinese)
    [29] 黄雪驰, 马贵阳, 杨奇睿, 等. 天然气管道非稳态泄漏扩散的数值模拟[J]. 安全与环境学报, 2017, 17(1): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201701039.htm

    HUANG Xue-chi, MA Gui-yang, YANG Qi-rui, et al. On the tracer of the uranium leakage in the process of stope leaching[J]. Journal of Safety and Environment, 2017, 17(1): 183-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201701039.htm
    [30] CHOI J, HUR N, KANG S, et al. A CFD simulation of hydrogen dispersion for the hydrogen leakage from a fuel cell vehicle in an underground parking garage[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8084-8091.
    [31] MONTIEL H, VÍLCHEZ J A, CASAL J, et al. Mathematical modelling of accidental gas releases[J]. Journal of Hazardous Materials, 1998, 59(2/3): 211-233.
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  510
  • HTML全文浏览量:  191
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-19
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回