留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上下臂杆直径对高速受电弓气动抬升力的影响

戴志远 李田 周宁 张继业 张卫华

戴志远, 李田, 周宁, 张继业, 张卫华. 上下臂杆直径对高速受电弓气动抬升力的影响[J]. 交通运输工程学报, 2022, 22(4): 210-222. doi: 10.19818/j.cnki.1671-1637.2022.04.016
引用本文: 戴志远, 李田, 周宁, 张继业, 张卫华. 上下臂杆直径对高速受电弓气动抬升力的影响[J]. 交通运输工程学报, 2022, 22(4): 210-222. doi: 10.19818/j.cnki.1671-1637.2022.04.016
DAI Zhi-yuan, LI Tian, ZHOU Ning, ZHANG Ji-ye, ZHANG Wei-hua. Effect of upper and lower arms diameters on aerodynamic uplift force of high-speed pantograph[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 210-222. doi: 10.19818/j.cnki.1671-1637.2022.04.016
Citation: DAI Zhi-yuan, LI Tian, ZHOU Ning, ZHANG Ji-ye, ZHANG Wei-hua. Effect of upper and lower arms diameters on aerodynamic uplift force of high-speed pantograph[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 210-222. doi: 10.19818/j.cnki.1671-1637.2022.04.016

上下臂杆直径对高速受电弓气动抬升力的影响

doi: 10.19818/j.cnki.1671-1637.2022.04.016
基金项目: 

国家重点研发计划 2020YFA0710902

国家自然科学基金项目 52072319

中国国家铁路集团有限公司科技研究开发计划 P2020J025

中国国家铁路集团有限公司科技研究开发计划 K2021J004-B

详细信息
    作者简介:

    戴志远(1996-),男,山东济宁人,西南交通大学工学博士研究生,从事列车空气动力学研究

    李田(1984-),男,湖南醴陵人,西南交通大学副研究员,工学博士

  • 中图分类号: U225

Effect of upper and lower arms diameters on aerodynamic uplift force of high-speed pantograph

Funds: 

National Key Research and Development Program of China 2020YFA0710902

National Natural Science Foundation of China 52072319

Science and Technology Research and Development Program of China Railway P2020J025

Science and Technology Research and Development Program of China Railway K2021J004-B

More Information
  • 摘要: 建立了7种不同直径上臂杆和7种不同直径下臂杆的受电弓模型,对受电弓进行空气动力学数值模拟计算,采用多体动力学方法计算了受电弓的气动抬升力,从气动力及流场特性的角度研究了受电弓上下臂杆直径对受电弓气动性能、气动抬升力的影响规律。研究结果表明:开口运行工况上臂杆气动升力和受电弓气动抬升力都随着上臂杆直径增加而增大,随着下臂杆直径增大而减小,但下臂杆直径对受电弓气动抬升力的影响较小;闭口运行工况上臂杆气动升力和受电弓气动抬升力都随着上臂杆直径增大而减小,随着下臂杆直径增加而增大;开闭口运行工况上臂杆主体杆件气动阻力仅为上臂杆气动阻力的3%~10%,气动升力为上臂杆气动升力的26%~55%,下臂杆主体杆件气动阻力为下臂杆气动阻力的10%~25%,气动升力为下臂杆气动升力的43%~68%,直径的改变对上下臂杆气动升力的影响较大,对气动阻力的影响较小;闭口运行工况上下臂杆气动阻力的绝对值都大于开口运行工况。

     

  • 图  1  上下臂杆及受电弓模型

    Figure  1.  Models of upper arm, lower arm and pantograph

    图  2  计算区域

    Figure  2.  Computational domain

    图  3  两种运行工况上臂杆气动力与直径的关系

    Figure  3.  Relationship between aerodynamic force and diameter of upper arm under two operating conditions

    图  4  两种运行工况上臂杆整体及其主体杆件气动力

    Figure  4.  Aerodynamic forces of total upper arm and bar under two operating conditions

    图  5  受电弓多体动力学模型

    Figure  5.  Multibody dynamics model of pantograph

    图  6  两种运行工况不同上臂杆受电弓气动抬升力

    Figure  6.  Aerodynamic uplift forces of pantographs with different upper arms under two operating conditions

    图  7  开口运行工况上臂杆表面压力分布

    Figure  7.  Surface pressure distributions of upper arms under knuckle-downstream operating condition

    图  8  开口运行工况上臂杆中截面表面压力

    Figure  8.  Surface pressures of middle section of upper arms under knuckle-downstream operating condition

    图  9  闭口运行工况上臂杆表面压力分布

    Figure  9.  Surface distributions of upper arms under knuckle-upstream operating condition

    图  10  两种运行工况上臂杆周围流场压力分布

    Figure  10.  Pressure distributions of flow fields around upper arms under two operating conditions

    图  11  闭口运行工况上臂杆中截面表面压力

    Figure  11.  Surface pressures of middle section of upper arms under knuckle-upstream operating condition

    图  12  两种运行工况下臂杆气动力与直径的关系

    Figure  12.  Relationship between aerodynamic force and diameter of lower arm under two operating conditions

    图  13  两种运行工况下臂杆整体及其主体杆件的气动力

    Figure  13.  Aerodynamic forces of total lower arm and bar under two operating conditions

    图  14  两种运行工况不同下臂杆受电弓气动抬升力

    Figure  14.  Aerodynamic uplift forces of pantographs with different lower arms under two operating conditions

    图  15  开口运行工况下臂杆中截面表面压力

    Figure  15.  Surface pressures of middle sections of lower arms under knuckle-downstream operating condition

    图  16  开口运行工况下臂杆周围流场速度分布

    Figure  16.  Velocity distributions of flow fields around lower arms under knuckle-downstream condition

  • [1] GAO Guo-qiang, HAO Jing, WEI Wen-fu, et al. Dynamics of pantograph-catenary arc during the pantograph lowering process[J]. IEEE Transactions on Plasma Science, 2016, 44(99): 2715-2723. http://ieeexplore.ieee.org/iel7/27/7736515/07555344.pdf
    [2] 周宁, 张卫华. 基于直接积分法的弓网耦合系统动态性能仿真分析[J]. 中国铁道科学, 2008, 29(6): 71-76. doi: 10.3321/j.issn:1001-4632.2008.06.014

    ZHOU Ning, ZHANG Wei-hua. Dynamical performance simulation of the pantograph-catenary coupled system based on direct integration method[J]. China Railway Science, 2008, 29(6): 71-76. (in Chinese) doi: 10.3321/j.issn:1001-4632.2008.06.014
    [3] 梅桂明, 张卫华. 受电弓/接触网系统动力学模型及特性[J]. 交通运输工程学报, 2002, 2(1): 20-25. doi: 10.3321/j.issn:1671-1637.2002.01.004

    MEI Gui-ming, ZHANG Wei-hua. Dynamics model and behavior of pantograph/catenary system[J]. Journal of Traffic and Transportation Engineering, 2002, 2(1): 20-25. (in Chinese) doi: 10.3321/j.issn:1671-1637.2002.01.004
    [4] 李瑞平, 周宁, 吕青松, 等. 横风环境中弓网动力学性能分析[J]. 振动与冲击, 2014, 33(24): 39-44, 53. doi: 10.13465/j.cnki.jvs.2014.24.007

    LI Rui-ping, ZHOU Ning, LYU Qing-song, et al. Pantograph- catenary dynamic behavior under cross wind[J]. Journal of Vibration and Shock, 2014, 33(24): 39-44, 53. (in Chinese) doi: 10.13465/j.cnki.jvs.2014.24.007
    [5] TOSHIAKI, MAKINO K, YOUSHIDA S, et al. Running test on current collector with contact force controller for high-speed railways[J]. JSME International Journal Series C. 1997, 40(4): 671-680. doi: 10.1299/jsmec.40.671
    [6] COLLINA A, FCCHINETTI A, FOSSATI F, et al. Hardware in the loop test-rig for identification and control application on high speed pantographs[J]. Shock and Vibration, 2004, 11(3): 2171-2176.
    [7] 谢建, 刘志刚, 韩志伟, 等. 弓网耦合动力学模型仿真及接触网不平顺分析[J]. 电气化铁道, 2009, 20(6): 23-26, 29. doi: 10.3969/j.issn.1007-936X.2009.06.008

    XIE Jian, LIU Zhi-gang, HAN Zhi-wei, et al. Pantograph and overhead contact line coupling dynamic model simulation and analysis of imbalance of overhead contact line[J]. Electric Railway, 2009, 20(6): 23-26, 29. (in Chinese) doi: 10.3969/j.issn.1007-936X.2009.06.008
    [8] 吴燕, 吴俊勇, 郑积浩. 基于有限元和空气动力学模型的高速受电弓动态性能仿真[J]. 西南交通大学学报, 2009, 44(6): 855-859. doi: 10.3969/j.issn.0258-2724.2009.06.010

    WU Yan, WU Jun-yong, ZHENG Ji-hao. Simulation of high-speed pantograph dynamic performance based on finite element model and aerodynamic pantograph model[J]. Journal of Southwest Jiaotong University, 2009, 44(6): 855-859. (in Chinese) doi: 10.3969/j.issn.0258-2724.2009.06.010
    [9] ZHOU Ning, ZHANG Wei-hua, LI Rui-ping. Dynamic performance of a pantograph catenary system with the consideration of the appearance characteristics of contact surfaces[J]. Journal of Zhejiang University—Science A: Applied Physics and Engineering, 2011, 12(12): 913-920.
    [10] LEE J H, KIM Y G, PAIK J S, et al. Performance evaluation and design optimization using differential evolutionary algorithm of the pantograph for the high-speed train[J]. Journal of Mechanical Scienceand Technology, 2012, 26(10): 3253-3260. doi: 10.1007/s12206-012-0833-5
    [11] ZHANG Wei-hua, MEI Gui-ming, WU Xue-jie, et al. Hybrid simulation of dynamics for the pantograph-catenary system[J]. Vehicle System Dynamics, 2002, 38(6): 393-414. doi: 10.1076/vesd.38.6.393.8347
    [12] COLLINA A, BRUNI S. Numerical simulation of pantograph-overhead equipment interaction[J]. Vehicle System Dynamics, 2002, 38(4): 261-291. doi: 10.1076/vesd.38.4.261.8286
    [13] 田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6(1): 1-9. doi: 10.3321/j.issn:1671-1637.2006.01.001

    TIAN Hong-qi. Study evolvement of train aerodynamics in china[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 1-9. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.01.001
    [14] 李田, 戴志远, 刘加利, 等. 中国高速列车气动减阻优化综述[J]. 交通运输工程学报, 2021, 21(1): 59-80. doi: 10.19818/j.cnki.1671-1637.2021.01.003

    LI Tian, DAI Zhi-yuan, LIU Jia-li, et al. Review on aerodynamic drag reduction optimization of high-speed trains in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 59-80. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.003
    [15] TIAN Hong-qi. Review of research on high-speed railway aerodynamics in China[J]. Transportation Safety and Environment, 2019, 1(1): 1-21. doi: 10.1093/tse/tdz014
    [16] 姚拴宝, 郭迪龙, 杨国伟, 等. 高速列车气动阻力分布特性研究[J]. 铁道学报, 2012, 34(7): 18-23. doi: 10.3969/j.issn.1001-8360.2012.07.003

    YAO Shuan-bao, GUO Di-long, YANG Guo-wei, et al. Distribution of high-speed train aerodynamic drag[J]. Journal of the China Railway Society, 2012, 34(7): 18-23. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.07.003
    [17] 郭迪龙, 姚拴宝, 刘晨辉, 等. 高速列车受电弓非定常气动特性研究[J]. 铁道学报, 2012, 34(11): 16-21. doi: 10.3969/j.issn.1001-8360.2012.11.003

    GUO Di-long, YAO Shuan-bao, LIU Chen-hui, et al. Unsteady aerodynamic characteristics of high-speed pantograph[J]. Journal of the China Railway Society, 2012, 34(11): 16-21. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.11.003
    [18] YAO Shuan-bao, GUO Di-long, YANG Guo-wei. The influence of pantograph aerodynamic characteristics caused by its shroud[J]. Lecture Notes in Electrical Engineering, 2012, 148(1): 41-52.
    [19] 刘星, 邓见, 郑耀, 等. 高速列车受电弓空气动力学对弓网受流的影响[J]. 浙江大学学报(工学版), 2013, 47(3): 558-564. doi: 10.3785/j.issn.1008-973X.2013.03.024

    LIU Xing, DENG Jian, ZHENG Yao, et al. Impact of aerodynamics of pantograph of a high-speed train on pantograph-catenary current collection[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(3): 558-564. (in Chinese) doi: 10.3785/j.issn.1008-973X.2013.03.024
    [20] BOCCIOLONE M, RESTA F, ROCCHI D, et al. Pantograph aerodynamic effects on the pantograph-catenary interaction[J]. Vehicle System Dynamics, 2006, 44(S1): 560-570.
    [21] POMBO J, AMBRÓSIO J, PEREIRA M, et al. Influence of the aerodynamic forces on the pantograph-catenary system for high-speed trains[J]. Vehicle System Dynamics, 2009, 47(11): 1327-1347. doi: 10.1080/00423110802613402
    [22] 付善强, 陈大伟, 梁建英, 等. 高速受电弓气动特性风洞试验研究[J]. 铁道机车车辆, 2013, 33(3): 123-126. doi: 10.3969/j.issn.1008-7842.2013.03.27

    FU Shan-qiang, CHEN Da-wei, LIANG Jian-ying, et al. Investigation on wind tunnel tests of the aerodynamic characteristics of high-speed pantograph[J]. Railway Locomotive and Car, 2013, 33(3): 123-126. (in Chinese) doi: 10.3969/j.issn.1008-7842.2013.03.27
    [23] 李瑞平, 周宁, 张卫华, 等. 高速列车过隧道对弓网动力学影响分析[J]. 振动与冲击, 2013, 32(6): 33-37. doi: 10.3969/j.issn.1000-3835.2013.06.007

    LI Rui-ping, ZHOU Ning, ZHANG Wei-hua, et al. Influence of high-speed trains passing through tunnel on pantograph-catenary dynamic behaviors[J]. Journal of Vibration and Shock, 2013, 32(6): 33-37. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.06.007
    [24] CARNEVALE M, FACCHINETTI A, MAGGIORI L, et al. Computational fluid dynamics as a means of assessing the influence of aerodynamic forces on the mean contact force acting on a pantograph[J]. Journal of Rail and Rapid Transit, 2016, 230(7): 733-738.
    [25] 宋洪磊, 吴俊勇, 吴燕, 等. 空气动力作用对高速受电弓受流特性影响研究[J]. 电气化铁道, 2010, 21(1): 28-32. doi: 10.3969/j.issn.1007-936X.2010.01.009

    SONG Hong-lei, WU Jun-yong, WU Yan, et al. Influence of aerodynamic to high speed pantograph current collection characteristics[J]. Electric Railway, 2010, 21(1): 28-32. (in Chinese) doi: 10.3969/j.issn.1007-936X.2010.01.009
    [26] 杨桢. 基于空气动力学的受电弓高速受流研究[J]. 电气化铁道, 2009, 20(3): 17-20. doi: 10.3969/j.issn.1007-936X.2009.03.006

    YANG Zhen. Aerodynamics based study of pantograph high-speed current collection[J]. Electric Railway, 2009, 20(3): 17-20. (in Chinese) doi: 10.3969/j.issn.1007-936X.2009.03.006
    [27] 李瑞平, 周宁, 张卫华, 等. 受电弓气动抬升力计算方法与分析[J]. 铁道学报, 2012, 34(8): 26-32. doi: 10.3969/j.issn.1001-8360.2012.08.005

    LI Rui-ping, ZHOU Ning, ZHANG Wei-hua, et al. Calculation and analysis of pantograph aerodynamic uplift force[J]. Journal of the China Railway Society, 2012, 34(8): 26-32. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.08.005
    [28] HEMIDA H, KRAJNOVI AC'G S. Exploring flow structures around a simplified ICE2 train subjected to a 30° side wind using LES[J]. Engineering Applications of Computational Fluid Mechanics, 2009, 3(1): 28-41. doi: 10.1080/19942060.2009.11015252
    [29] LI Tian, DAI Zhi-yuan, YU Meng-ge, et al. Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 549-560. doi: 10.1080/19942060.2021.1895321
    [30] LI Tian, HEMIDA H, ZHANG Ji-ye. Comparisons of shear stress transport and detached eddy simulations of the flow around trains[J]. Journal of Fluids Engineering, 2018, 140(11): 1108-1112.
    [31] DAI Zhi-yuan, LI Tian, ZHANG Wei-hua, et al. Numerical study on aerodynamic performance of high-speed pantograph with double strips[J]. Fluid Dynamics and Materials Processing, 2020, 16(1): 31-40. doi: 10.32604/fdmp.2020.07661
  • 加载中
图(16)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  117
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-18
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回