留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料带孔板孔形与铺层优化设计

秦国锋 秦锐坚 糜沛纹 李铭

秦国锋, 秦锐坚, 糜沛纹, 李铭. 复合材料带孔板孔形与铺层优化设计[J]. 交通运输工程学报, 2022, 22(4): 223-231. doi: 10.19818/j.cnki.1671-1637.2022.04.017
引用本文: 秦国锋, 秦锐坚, 糜沛纹, 李铭. 复合材料带孔板孔形与铺层优化设计[J]. 交通运输工程学报, 2022, 22(4): 223-231. doi: 10.19818/j.cnki.1671-1637.2022.04.017
QIN Guo-feng, QIN Rui-jian, MI Pei-wen, LI Ming. Optimal designs of hole shape and ply of composite plates with holes[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 223-231. doi: 10.19818/j.cnki.1671-1637.2022.04.017
Citation: QIN Guo-feng, QIN Rui-jian, MI Pei-wen, LI Ming. Optimal designs of hole shape and ply of composite plates with holes[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 223-231. doi: 10.19818/j.cnki.1671-1637.2022.04.017

复合材料带孔板孔形与铺层优化设计

doi: 10.19818/j.cnki.1671-1637.2022.04.017
基金项目: 

国家自然科学基金项目 52102473

广西科技计划项目 GuikeAD20159010

详细信息
    作者简介:

    秦国锋(1990-),男,四川广安人,广西师范大学副教授,工学博士,从事汽车结构设计理论与轻量化技术研究

    通讯作者:

    糜沛纹(1991-),女,广西桂林人,广西师范大学讲师

  • 中图分类号: U465.6

Optimal designs of hole shape and ply of composite plates with holes

Funds: 

National Natural Science Foundation of China 52102473

Guangxi Science and Technology Project GuikeAD20159010

More Information
  • 摘要: 为提高复合材料带孔板的承载能力,对其孔形和铺层进行优化; 基于损伤力学模型建立了复合材料带孔板的仿真分析模型,并验证了其仿真精度; 选用圆孔、三角孔、方孔3种孔形的复合材料板,分别进行了仅孔形优化、仅铺层优化、先孔形优化后铺层优化、先铺层优化后孔形优化4种优化方案,对不同方案优化后的复合材料带孔板进行失效分析。分析结果表明:仅铺层优化对不同孔形复合材料板的失效载荷提升效果(7.6%~13.4%)明显大于仅孔形优化(2.0%~2.9%),仅孔形优化对三角孔带孔板失效载荷提升幅度最大,仅铺层优化对圆孔带孔板失效载荷提升幅度最大; 同时采用孔形优化和铺层优化对失效载荷的提升效果明显优于单一优化方法,其中先孔形优化后铺层优化方法对不同孔形复合材料板的失效载荷提升幅度最大(11.6%~15.6%); 铺层优化和孔形优化的先后顺序对圆孔带孔板影响最大(相差3.5%),对三角孔和方孔带孔板影响相对较小; 3种孔形的带孔板中,圆孔带孔板优化后失效载荷提升幅度最大(15.6%),在实际应用中圆孔带孔板的性能相对较好,且稳定。

     

  • 图  1  复合材料带孔板

    Figure  1.  Composite plate with hole

    图  2  复合材料带孔板有限元模型

    Figure  2.  Finite element model of composite plate with hole

    图  3  载荷-位移曲线

    Figure  3.  Load-displacement curves

    图  4  不同孔形的复合材料带孔板尺寸

    Figure  4.  Dimensions of composite plates with different hole shapes

    图  5  复合材料圆孔板的优化模型

    Figure  5.  Optimization model of composite plate with circular hole

    图  6  优化模型的超级铺层

    Figure  6.  Super layer of optimization model

    图  7  自由形状优化控制区域

    Figure  7.  Control area of free shape optimization

    图  8  三种孔形自由形状优化结果

    Figure  8.  Results of free shape optimization for three types of holes

    图  9  自由尺寸优化后的铺层厚度变化

    Figure  9.  Variation of layer thickness after free size optimization

    图  10  尺寸优化结果

    Figure  10.  Results of size optimization

    图  11  当未优化圆孔带孔板出现纤维拉伸失效时不同优化方法的纤维拉伸失效状态

    Figure  11.  Fiber tensile failure states of different optimization methods when fiber tensile failure occurs in unoptimized composite plates with circular hole

    图  12  当仅铺层优化圆孔带孔板出现纤维拉伸失效时不同优化方法的纤维拉伸失效状态

    Figure  12.  Fiber tensile failure states of different optimization methods when fiber tensile failure occurs in composite plates with circular hole by ply optimization only

    表  1  AS4/PEEK CFRP材料力学性能

    Table  1.   Mechanical properties of AS4/PEEK CFRP materials

    纵向模量E11/GPa 127.6
    横向模量E22/GPa 10.3
    泊松比μ12 0.32
    面内剪切模量G12/MPa 6 000
    纵向拉伸强度XT/MPa 2 023
    纵向压缩强度XC/MPa 1 234
    横向拉伸强度YT/MPa 92.7
    横向压缩强度YC/MPa 176.0
    面内剪切强度/MPa 82.6
    下载: 导出CSV

    表  2  AS4/PEEK材料断裂韧性

    Table  2.   Fracture toughness of AS4/PEEK material  (N·mm-1)

    纵向拉伸断裂韧性 128
    纵向压缩断裂韧性 128
    横向拉伸断裂韧性 5.6
    横向压缩断裂韧性 9.31
    下载: 导出CSV

    表  3  复合材料带孔板厚度分布

    Table  3.   Thickness distribution of composite plates with holes

    铺层角度/(°) 铺层厚度/mm
    0 0.75
    45 0.50
    -45 0.50
    90 0.25
    下载: 导出CSV

    表  4  铺层优化结果

    Table  4.   Results of ply optimization

    孔形 层数 厚度/mm 最优铺层 原铺层
    圆孔 16 0.125 [45/-45/0/45/-45/0/0/90]S [0/45/90/-45]2S
    三角孔 16 0.125 [45/-45/0/45/-45/0/0/90]S [0/45/90/-45]2S
    方孔 16 0.125 [45/-45/0/45/0/0/-45/90]S [0/45/90/-45]2S
    下载: 导出CSV

    表  5  圆孔、三角孔、方孔带孔板优化后失效载荷提升幅度

    Table  5.   Improvement rates of failure load of composite plates with circular, triangle and square holes after optimization  %

    优化类别 圆孔失效载荷提升率 三角孔失效载荷提升率 方孔失效载荷提升率
    仅孔形 2.0 2.9 2.2
    仅铺层 13.4 7.6 10.2
    先孔形后铺层 15.6 13.5 11.6
    先铺层后孔形 12.1 12.6 10.7
    下载: 导出CSV
  • [1] 邢丽英, 冯志海, 包建文, 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37(11): 2700-2706. doi: 10.13801/j.cnki.fhclxb.20200824.005

    XING Li-ying, FENG Zhi-hai, BAO Jian-wen, et al. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2700-2706. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20200824.005
    [2] 宁莉, 杨绍昌, 冷悦, 等. 先进复合材料在飞机上的应用及其制造技术发展概述[J]. 复合材料科学与工程, 2020(5): 123-128. doi: 10.3969/j.issn.1003-0999.2020.05.020

    NING Li, YANG Shao-chang, LENG Yue, et al. Overview of the application of advanced composite materials on aircraft and the development of its manufacturing technology[J]. Composites Science and Engineering, 2020(5): 123-128. (in Chinese) doi: 10.3969/j.issn.1003-0999.2020.05.020
    [3] 李光霁, 刘新玲. 汽车轻量化技术的研究现状综述[J]. 材料科学与工艺, 2020, 28(5): 47-61. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG202005006.htm

    LI Guang-ji, LIU Xin-ling. Literature review on research and development of automotive lightweight technology[J]. Materials Science and Technology, 2020, 28(5): 47-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG202005006.htm
    [4] MUFLIKHUN M A, YOKOZEKI T, AOKI T. The strain performance of thin CFRP-SPCC hybrid laminates for automobile structures[J]. Composite Structures, 2019, 220: 11-18. doi: 10.1016/j.compstruct.2019.03.094
    [5] ZANG M, HU Y, ZHANG J, et al. Crashworthiness of CFRP/aluminum alloy hybrid tubes under quasi-static axial crushing[J]. Journal of Materials Research and Technology, 2020, 9(4): 7740-7753. doi: 10.1016/j.jmrt.2020.05.046
    [6] 叶辉, 刘畅, 闫康康. 纤维增强复合材料在汽车覆盖件中的应用[J]. 吉林大学学报(工学版), 2020, 50(2): 417-425. doi: 10.13229/j.cnki.jdxbgxb20190202

    YE Hui, LIU Chang, YAN Kang-kang. Application of fiber reinforced composite in auto-body panel[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(2): 417-425. (in Chinese) doi: 10.13229/j.cnki.jdxbgxb20190202
    [7] 孙泽玉, 高洪平, 余许多, 等. 连接件对碳纤维复合材料汽车传动轴振动性能的影响[J]. 复合材料科学与工程, 2020(3): 80-83. doi: 10.3969/j.issn.1003-0999.2020.03.013

    SUN Ze-yu, GAO Hong-ping, YU Xu-duo, et al. Effect of connectors on natural frequency in carbon fiber composite drive shaft of automobile[J]. Composites Science and Engineering, 2020(3): 80-83. (in Chinese) doi: 10.3969/j.issn.1003-0999.2020.03.013
    [8] 肖守讷, 江兰馨, 蒋维, 等. 复合材料在轨道交通车辆中的应用与展望[J]. 交通运输工程学报, 2021, 21(1): 154-176. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101010.htm

    XIAO Shou-ne, JIANG Lan-xin, JIANG Wei, et al. Application and prospect of composite materials in rail transit vehicles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 154-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101010.htm
    [9] 黎盛寓. 环氧树脂/碳纤维复合材料在汽车悬架结构中的强化设计应用[J]. 塑料科技, 2020, 48(9): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SLKJ202009022.htm

    LI Sheng-yu. Application and enhanced design of epoxy resin/carbon fiber composite in automobile suspension structure[J]. Plastics Science and Technology, 2020, 48(9): 81-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLKJ202009022.htm
    [10] 杨凤祥, 陈静芬, 陈善富, 等. 基于剪切非线性三维损伤本构模型的复合材料层合板失效强度预测[J]. 复合材料学报, 2020, 37(9): 2207-2222. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202009013.htm

    YANG Feng-xiang, CHEN Jing-fen, CHEN Shan-fu, et al. Failure strength prediction of composite laminates using 3D damage constitutive model with nonlinear shear effects[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2207-2222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202009013.htm
    [11] 李军, 刘甲秋, 陈浩然, 等. 复合材料板孔边应力集中研究[J]. 纤维复合材料, 2020, 37(2): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-QWFC202002016.htm

    LI Jun, LIU Jia-qiu, CHEN Hao-ran, et al. Study on stress concentration on the openning edge of composite plate[J]. Fiber Composites, 2020, 37(2): 52-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QWFC202002016.htm
    [12] 倪迎鸽, 邹鹏, 毕雪. 含损伤复合材料壁板承载能力的试验与仿真模拟现状[J]. 复合材料科学与工程, 2020(10): 110-121. https://www.cnki.com.cn/Article/CJFDTOTAL-BLGF202010016.htm

    NI Ying-ge, ZOU Peng, BI Xue. Experimental and simulation status of bearing capacity of composite panels with damage[J]. Composites Science and Engineering, 2020(10): 110-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BLGF202010016.htm
    [13] PANTZ O, TRABELSI K. A post-treatment of the homogenization method for shape optimization[J]. SIAM Journal on Control and Optimization, 2008, 47(3): 1380-1398.
    [14] WITTRICK W H. Stresses around reinforced elliptical holes, with applications to pressure cabin windows[J]. Aeronautical Quarterly, 2016, 10(4): 373-400.
    [15] WANG S J, LU A Z, ZHANG X L, et al. Shape optimization of the hole in an orthotropic plate[J]. Mechanics Based Design of Structures and Machines, 2018, 46(1): 23-37.
    [16] SU Z, XIE C, TANG Y. Stress distribution analysis and optimization for composite laminate containing hole of different shapes[J]. Aerospace Science and Technology, 2018, 76: 466-470.
    [17] JAFARI M, MOUSSAVIAN H, CHALESHTARI M H B. Optimum design of perforated orthotropic and laminated composite plates under in-plane loading by genetic algorithm[J]. Structural and Multidisciplinary Optimization, 2018, 57(1): 341-357.
    [18] 张进, 王丹, 张卫红. 复合材料薄壁曲面开孔孔形优化设计[J]. 科学技术与工程, 2011, 11(8): 1681-1685. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201108008.htm

    ZHANG Jin, WANG Dan, ZHANG Wei-hong. Shape optimization of holes on thin-walled curved composite structures[J]. Science Technology and Engineering, 2011, 11(8): 1681-1685. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201108008.htm
    [19] 张晓莉. 各向异性连续介质孔形结构的应力解析方法[D]. 北京: 华北电力大学, 2018.

    ZHANG Xiao-li. Stress analytical method for stress analysis of the opening anisotropic structures[D]. Beijing: North China Electric Power University, 2018. (in Chinese)
    [20] LE-MANH T, LEE J. Stacking sequence optimization for maximum strengths of laminated composite plates using genetic algorithm and isogeometric analysis[J]. Composite Structures, 2014, 116: 357-363.
    [21] SΦRENSEN S N, LUND E. Topology and thickness optimization of laminated composites including manufacturing constraints[J]. Structural and Multidisciplinary Optimization, 2013, 48(2): 249-265.
    [22] 白国栋, 童小燕, 姚磊江. 基于深度学习的复合材料铺层优化方法[J]. 复合材料科学与工程, 2020(7): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-BLGF202007010.htm

    BAI Guo-dong, TONG Xiao-yan, YAO Lei-jiang. Layup optimization method of composite wing based on deep learning[J]. Composites Science and Engineering, 2020(7): 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BLGF202007010.htm
    [23] 郭琰, 黄斌, 钱征华. 基于遗传算法的开孔复合材料层合板铺层优化[J]. 玻璃钢/复合材料, 2018(12): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-BLGF201812002.htm

    GUO Yan, HUANG Bin, QIAN Zheng-hua. Optimization of layup stacking sequence in composite laminate with central hole based on genetic algorithm[J]. Fiber Reinforced Plastics/Composites, 2018(12): 5-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BLGF201812002.htm
    [24] 段端祥, 赵晓昱. 纯电动汽车碳纤维复合材料电池箱体的铺层设计研究[J]. 玻璃钢/复合材料, 2018(6): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-BLGF201806015.htm

    DUAN Duan-xiang, ZHAO Xiao-yu. Layer design for PEV battery box of carbon fiber composite[J]. Fiber Reinforced Plastics/Composites, 2018(6): 83-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BLGF201806015.htm
    [25] ALLAIRE G, DELGADO G. Stacking sequence and shape optimization of laminated composite plates via a level-set method[J]. Journal of the Mechanics and Physics of Solids, 2016, 97: 168-196.
    [26] CHEN J F, MOROZOV E V, SHANKAR K. Simulating progressive failure of composite laminates including in-ply and delamination damage effects[J]. Composites Part A: Applied Science and Manufacturing, 2014, 61: 185-200.
    [27] LIAN Wei, YAO Wei-xing. Fatigue life prediction of composite laminates by FEA simulation method[J]. International Journal of Fatigue, 2010, 32(1): 123-133.
    [28] 施建伟. 基于ABAQUS复合材料层合板渐进损伤有限元分析[D]. 太原: 中北大学, 2015.

    SHI Jian-wei. The finite element analysis of the progressive damage of composite laminated plates based on ABAQUS[D]. Taiyuan: North University of China, 2015. (in Chinese)
    [29] 张君媛, 姜哲, 李仲玉, 等. 基于抗撞性的汽车B柱碳纤维加强板优化设计[J]. 汽车工程, 2018, 40(10): 1166-1171, 1178. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201810007.htm

    ZHANG Jun-yuan, JIANG Zhe, LI Zhong-yu, et al. Optimization design of vehicle CFRP B-pillar stiffening panel for crashworthiness[J]. Automotive Engineering, 2018, 40(10): 1166-1171, 1178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201810007.htm
    [30] 严君. 基于OptiStruct碳纤维复合材料薄壁结构优化设计研究[D]. 太原: 中北大学, 2012.

    YAN Jun. Optimization design of thin-walled structure of carbon fiber composites based on OptiStruct[D]. Taiyuan: North University of China, 2012. (in Chinese)
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  116
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-26
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回