留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

汽车交流发电机端盖栅格对其气动噪声和温度特性的综合影响

黄燕 王世余 蒋孝文 董大伟

黄燕, 王世余, 蒋孝文, 董大伟. 汽车交流发电机端盖栅格对其气动噪声和温度特性的综合影响[J]. 交通运输工程学报, 2022, 22(4): 244-258. doi: 10.19818/j.cnki.1671-1637.2022.04.019
引用本文: 黄燕, 王世余, 蒋孝文, 董大伟. 汽车交流发电机端盖栅格对其气动噪声和温度特性的综合影响[J]. 交通运输工程学报, 2022, 22(4): 244-258. doi: 10.19818/j.cnki.1671-1637.2022.04.019
HUANG Yan, WANG Shi-yu, JIANG Xiao-wen, DONG Da-wei. Comprehensive influences of end cover grid on aerodynamic noise and temperature characteristics of an automobile alternator[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 244-258. doi: 10.19818/j.cnki.1671-1637.2022.04.019
Citation: HUANG Yan, WANG Shi-yu, JIANG Xiao-wen, DONG Da-wei. Comprehensive influences of end cover grid on aerodynamic noise and temperature characteristics of an automobile alternator[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 244-258. doi: 10.19818/j.cnki.1671-1637.2022.04.019

汽车交流发电机端盖栅格对其气动噪声和温度特性的综合影响

doi: 10.19818/j.cnki.1671-1637.2022.04.019
基金项目: 

国家自然科学基金项目 5187050179

详细信息
    作者简介:

    黄燕(1987-),女,河南南阳人,西南交通大学讲师,工学博士,从事新能源汽车气动噪声研究

  • 中图分类号: U463

Comprehensive influences of end cover grid on aerodynamic noise and temperature characteristics of an automobile alternator

Funds: 

National Natural Science Foundation of China 5187050179

More Information
  • 摘要: 为了同步提高目前新能源汽车发电机的气动噪声性能和散热效果,满足更严苛的噪声、振动与声振粗糙度需求,以某型汽车交流发电机为研究对象,基于台架试验和数值仿真方法探究端盖栅格对气动噪声和温度场分布的综合影响规律;基于五点法获得了噪声声压级分布,基于多热电偶测点获得了关键部件的温度分布,基于计算流体动力学仿真软件和电磁场Maxwell仿真软件获得了发电机内部的流场、声场和温度场分布,采用试验结果验证数值计算模型的正确性;在分析原始发电机气动噪声特性和温度场特性的基础上,设计了具有不同倾角的端盖栅格侧壁以降低冷却气流冲击的动能损失,探讨了端盖栅格倾角和扇叶气流出口角的合理匹配,并基于牛顿冷却理论研究了波状端盖栅格对增加换热表面面积和降低气动噪声的影响。研究结果表明:端盖栅格结构对气动噪声有较大贡献,同时也对冷却效果产生显著影响;端盖栅格侧壁倾斜40°时能够和扇叶气流出口角更合理地匹配,有效减少冷却气流冲击的能量损失,三相定子绕组最高温度降低9.63 K,12阶次气动噪声降低3 dB(A)以上;波纹状端盖栅格增加对流换热面积和气流速度的同时降低了气动冲击作用,使得端盖散热量增加7.72 W,定子铁芯、端盖和三相定子绕组温度分别降低了5.12、4.94和5.29 K,栅格对涡流的改善以及气流对栅格的冲击削弱使12和24阶次气动噪声降低3 dB(A)以上。

     

  • 图  1  汽车交流发电机组成

    Figure  1.  Composition of automobile alternator

    图  2  麦克风安装位置

    Figure  2.  Installation locations of microphones

    图  3  热电偶安装位置

    Figure  3.  Installation locations of thermocouples

    图  4  数值计算域

    Figure  4.  Numerical calculation domain

    图  5  计算网格

    Figure  5.  Calculating meshes

    图  6  10 000 r·min-1下噪声测点1~5处的噪声A计权声压级频谱

    Figure  6.  Noise spectra of A weighted sound pressure level at 1-5 noise monitoring points at 10 000 r·min-1

    图  7  发电机声功率级分布

    Figure  7.  Distributions of alternator sound power levels

    图  8  不同部件的流线

    Figure  8.  Flow path lines of different components

    图  9  不同部件的温度分布

    Figure  9.  Temperature distributions of different components

    图  10  端盖栅格倾斜

    Figure  10.  End cover grid tilt

    图  11  不同倾角下各部件最高与最低温度

    Figure  11.  Maximum and minimum temperatures of each component at different inclination angles

    图  12  端盖某一栅格处(z=-37 mm平面)速度与壁面夹角

    Figure  12.  Angular separations between velocity and end cover grid wall at plane of z=-37 mm

    图  13  倾斜40°后扇叶某平面(z=35 mm)速度分布

    Figure  13.  Velocity distribution at plane of z=35 mm of rear blade with 40°tilt

    图  14  后扇叶某平面(z=35 mm)速度分布

    Figure  14.  Velocity distribution at plane of z=35 mm of rear fan blade

    图  15  倾角40°各部件最高温度对比及端盖处温度分布

    Figure  15.  Comparison of maximum temperatures of each component with inclination of 40° and temperature distribution at end cover

    图  16  槽外三相定子绕组表面对流换热系数

    Figure  16.  Convective heat transfer coefficients on surface of three-phase stator winding outside slot

    图  17  端盖栅格侧壁倾斜40°与原始结构频谱对比

    Figure  17.  Spectrum comparison between 40° tilt structure of side wall of end cover grid and original structure

    图  18  各噪声测点12阶次气动噪声对比

    Figure  18.  Comparision of sound pressure levels of 12th aerodynamic noise at each noise monitoring point

    图  19  波状端盖栅格

    Figure  19.  Wavy end cover grid

    图  20  后扇叶某平面(z=35 mm)速度分布

    Figure  20.  Velocity distribution at plane of z=35 mm of rear fan blade

    图  21  端盖流线

    Figure  21.  Flow lines of end cover

    图  22  各部件最高温度对比

    Figure  22.  Comparison of maximum temperatures of each component

    图  23  槽外三相定子绕组表面换热系数对比

    Figure  23.  Comparison of surface heat dissipation coefficient of three-phase stator windings outside slots

    图  24  发电机波状栅格与原始结构频谱对比

    Figure  24.  Spectrum comparison between alternator wavy grid structure and original structure

    图  25  各噪声测点12阶气动噪声声压级比较

    Figure  25.  Comparision of sound pressure levels of 12th aerodynamic noise at each noise monitoring point

    表  1  测试设备参数

    Table  1.   Test equipment parameters

    名称 型号 参数 数量
    朗德数据采集前端 DATaRee-4 采样频率为48 kHz 1台
    1/2英寸麦克风 GRAS-46AE 灵敏度为50Mv/Pa测试频率范围为0~10 kHz 5个
    数据采集电源模块 PWAC 输入电压为90~132 V,交流;最大功率为150 W 1个
    热电偶 K型 测试温度为223.16~573.15 K 12个
    多路温度巡检仪 SH-X 16通道,采集温度为173.15~1273.15 K 1台
    测试用笔记本电脑 1台
    下载: 导出CSV

    表  2  试验与仿真温度

    Table  2.   Experiment and simulation temperatures

    温度测点 试验值/K 仿真值/K 误差/% 温度测点 试验值/K 仿真值/K 误差/%
    1# 407.15 404.69 -0.60 7# 382.35 376.97 -1.41
    2# 376.05 370.40 -1.50 8# 396.25 406.15 2.50
    3# 370.35 375.51 1.39 9# 350.35 360.92 3.02
    4# 370.35 376.97 1.79 10# 398.45 406.15 1.93
    5# 366.65 377.70 3.01 11# 401.05 405.42 1.09
    6# 373.25 377.70 1.19 12# 409.25 405.42 -0.94
    下载: 导出CSV

    表  3  监测点噪声总声压级对比

    Table  3.   Comparison of total sound pressure level of noise at monitoring points dB(A)

    噪声测点 测点1 测点2 测点3 测点4 测点5
    倾斜40° 82.50 86.32 83.98 87.09 85.90
    原始结构 82.54 85.48 83.22 85.89 85.18
    变化量 -0.04 0.84 0.76 1.20 0.72
    下载: 导出CSV

    表  4  噪声测点噪声总声压级对比

    Table  4.   Comparison of total sound pressure levels of noise at monitoring points dB(A)

    噪声测点 测点1 测点2 测点3 测点4 测点5
    波纹栅格 81.24 85.03 82.01 85.01 83.66
    原始结构 82.54 85.48 83.22 85.89 85.18
    变化量 -1.30 -0.45 -1.21 -0.88 -1.52
    下载: 导出CSV
  • [1] 倪有源. 汽车用爪极发电机的分析与研究[D]. 合肥: 合肥工业大学, 2006.

    NI You-yuan. Analysis and research of claw-pole alternators for automotive applications[D]. Hefei: Hefei University of Technology, 2006. (in Chinese)
    [2] 施骞. 汽车交流发电机噪声的分析与优化[J]. 上海汽车, 2015, 297(5): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SHQC201505009.htm

    SHI Qian. Analysis and optimization of noise of automotive alternator[J]. Shanghai Auto, 2015, 297(5): 31-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHQC201505009.htm
    [3] 杨平. 车载交流电机噪声振动分析与试验研究[J]. 汽车实用技术, 2020, 45(16): 140-142. doi: 10.16638/j.cnki.1671-7988.2020.16.046

    YANG Ping. Analysis and experimental study on noise vibration of vehicle AC motor[J]. Automobile Applied Technology, 2020, 45(16): 140-142. (in Chinese) doi: 10.16638/j.cnki.1671-7988.2020.16.046
    [4] 杜毅. 定子混合叠压再制造永磁同步电机性能分析[D]. 合肥: 合肥工业大学, 2019.

    DU Yi. Performance analysis of stator hybrid laminated remanufacturing permanent magnet synchronous motor[D]. Hefei: Hefei University of Technology, 2019. (in Chinese)
    [5] 朱巍. 电动车用高功率密度永磁同步电机热管理系统的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    ZHU Wei. Research on the thermal management of high power density permanent magnet synchronous motor in HEV[D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese)
    [6] 刘敏, 董大伟, 闫兵, 等. 车用交流发电机噪声特性及噪声源测试分析[J]. 重庆理工大学学报(自然科学版), 2010, 24(6): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201006006.htm

    LIU Min, DONG Da-wei, YAN Bing, et al. Test and analysis of noise characteristics and noise source of vehicle alternator[J]. Journal of Chongqing University of Technology (Natural Science), 2010, 24(6): 13-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201006006.htm
    [7] SUH S J, CHUNG J T, LIM B D, et al. Case history: noise source identification of an automobile alternator by RPM dependent noise and vibration spectrum analysis[J]. Noise Control Engineering Journal, 1991, 37(1): 31-36. doi: 10.3397/1.2827792
    [8] JEON W H, REW H S, KIM C J. Aeroacoustic characteristics and noise reduction of a centrifugal fan for a vacuum cleaner[J]. KSME International Journal, 2004, 18(2): 185-192. doi: 10.1007/BF03184727
    [9] FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1969, 264(1151): 321-342. doi: 10.1098/rsta.1969.0031
    [10] 徐俊伟, 吴亚锋, 陈耿. 气动噪声数值计算方法的比较与应用[J]. 噪声与振动控制, 2012, 32(4): 6-10. doi: 10.3969/j.issn.1006-1355.2012.04.002

    XU Jun-wei, WU Ya-feng, CHEN Geng. Comparison and application on the aero-acoustics numerical computing methods[J]. Noise and Vibration Control, 2012, 32(4): 6-10. (in Chinese) doi: 10.3969/j.issn.1006-1355.2012.04.002
    [11] GOLDSTEIN M. Unified approach to aerodynamic sound generation in the presence of solid boundaries[J]. The Journal of the Acoustical Society of America, 1974, 56(2): 497-509. doi: 10.1121/1.1903283
    [12] ZHU Mao-tao, WANG Kun, ZHANG Peng-fei, et al. Numerical and experimental investigation of aerodynamic noise from automotive cooling fan module[J]. Journal of Vibroengineering, 2015, 17(2): 967-977.
    [13] ZHANG Zhong-wei. Numerical research on aerodynamic radiation noises of alternators in vehicles[J]. Journal of Vibroengineering, 2017, 19(4): 3084-3098. doi: 10.21595/jve.2017.18290
    [14] 黄泰明, 李伟平, 纪念洲, 等. 车用爪极发电机的不同部件对气动噪声的影响[J]. 重庆大学学报, 2021, 44(9): 1-14

    HUANG Tai-ming, LI Wei-ping, JI Nian-zhou, et al. The influence of the different part of the claw alternator to the aerodynamic noise[J]. Journal of Chongqing University, 2021, 44(9): 1-14. (in Chinese)
    [15] 柳琦, 闫兵, 张胜杰, 等. 考虑影响声传播因素的车用交流发电机气动噪声预测[J]. 声学技术, 2017, 36(4): 363-370. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201704012.htm

    LIU Qi, YAN Bing, ZHANG Sheng-jie, et al. Aerodynamic noise prediction of vehicle alternator considering the factors affecting acoustic propagation[J]. Technical Acoustics, 2017, 36(4): 363-370. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201704012.htm
    [16] 张凡, 黄燕, 柳琦, 等. 近场项对车用交流发电机气动噪声影响分析[J]. 振动与冲击, 2020, 39(7): 232-237, 267. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202007033.htm

    ZHANG Fan, HUANG Yan, LIU Qi, et al. Effects of near field terms on aerodynamic noise of the vehicle alternator[J]. Journal of Vibration and Shock, 2020, 39(7): 232-237, 267. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202007033.htm
    [17] 左曙光, 李悦姣, 吴旭东, 等. 爪极电机气动噪声数值模拟及机理分析[J]. 浙江大学学报(工学版), 2017, 51(3): 612-619. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201703025.htm

    ZUO Shu-guang, LI Yue-jiao, WU Xu-dong, et al. Numerical simulation and mechanism analysis of aerodynamic noise in claw pole alternator[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(3): 612-619. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201703025.htm
    [18] ZUO Shu-guang, XIE Chao-feng, WU Xu-dong, et al. Numerical simulation and optimization of aerodynamic noise for claw pole alternator[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(3): 857-879. doi: 10.1177/0954406218766191
    [19] 张亚东. 车用交流发电机气动噪声特性分析与降噪研究[D]. 成都: 西南交通大学, 2014.

    ZHANG Ya-dong. Study on characteristics analysis and control of aeroacoustics of automotive alternator[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
    [20] 黄旭珍. 短时高过载无槽圆筒型永磁直线电机电磁及温升特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    HUANG Xu-zhen. Research on electromagnetic and temperature rise characteristics of short-time and high over-load slot-less tubular permanent magnet linear motor[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese)
    [21] 张琪, 王伟旭, 黄苏融, 等. 高密度车用永磁电机流固耦合传热仿真分析[J]. 电机与控制应用, 2012, 39(8): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXXD201208000.htm

    ZHANG Qi, WANG Wei-xu, HUANG Su-rong, et al. Heat transfer simulation of high density permanent magnet motor for vehicles based on fluid-solid coupling method[J]. Electric Machines and Control Application, 2012, 39(8): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXXD201208000.htm
    [22] NING Yin-hang, LIU Chuang. Analysis and calculation of electromagnetic and temperature field in a hybrid excitation synchronous generator[J]. International Journal of Applied Electromagnetics and Mechanics, 2016, 50(3): 435-448.
    [23] HUANG Zi-yuan, FANG Jian-cheng, LIU Xi-quan, et al. Loss calculation and thermal analysis of rotors supported by active magnetic bearings for high-speed permanent magnet electrical machines[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2027-2035.
    [24] 吴胜男, 李文杰, 安忠良, 等. 变速恒压混合励磁风力发电机的热分析[J]. 电工技术学报, 2019, 34(9): 1857-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201909009.htm

    WU Sheng-nan, LI Wen-jie, AN Zhong-liang, et al. Thermal analysis of variable-speed constant-voltage hybrid excited wind genertors[J]. Transactions of China Electrotechnical Society, 2019, 34(9): 1857-1864. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201909009.htm
    [25] 丁树业, 申淑锋, 杨智, 等. 高速永磁同步电机流固耦合仿真与性能分析[J]. 电机与控制学报, 2021, 25(10): 112-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202110012.htm

    DING Shu-ye, SHEN Shu-feng, YANG Zhi, et al. Fluid-solid coupling simulation and performance analysis of high-speed permanent magnet synchronous motor[J]. Electric Machines and Control, 2021, 25(10): 112-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202110012.htm
    [26] 黄燕, 李露, 蒋孝文, 等. 基于Kriging和NSGA-Ⅲ算法的汽车交流发电机温度场预测[J]. 电机与控制学报, 2022, 26(1): 86-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202201010.htm

    HUANG Yan, LI Lu, JIANG Xiao-wen, et al. Prediction of temperature field for automotive generator based on Kriging and NSGA-Ⅲ algorithms[J]. Electric Machines and Control, 2022, 26(1): 86-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202201010.htm
    [27] CHONG Y C, SUBIABRE E J P E, MUELLER M A, et al. The ventilation effect on stator convective heat transfer of an axial-flux permanent-magnet machine[J]. IEEE Transactions on Industrial Electronics, 2014, 61(8): 4392-4403.
    [28] FAN Xing-gang, QU Rong-hai, LI Jian, et al. Ventilation and thermal improvement of radial forced air-cooled FSCW permanent magnet synchronous wind generators[J]. IEEE Transactions on I ndustry Applications, 2017, 53(4): 3447-3456.
    [29] 朱杭灵, 汪元凤, 朱振华, 等. 整车噪声实验室消声室及试验台设计[J]. 轮胎工业, 2016, 36(1): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-LTGY201601033.htm

    ZHU Hang-ling, WANG Yuan-feng, ZHU Zhen-hua, et al. Design of anechoic chamber and test bench for vehicle noise laboratory[J]. Tire Industry, 2016, 36(1): 42-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LTGY201601033.htm
    [30] 汪伟, 杨通强, 王红, 等. 非稳态信号计算阶次分析中的重采样率研究[J]. 振动、测试与诊断, 2009, 29(3): 349-351. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS200903026.htm

    WANG Wei, YANG Tong-qiang, WANG Hong, et al. Study on resampling rate in order analysis of unsteady signals calculation[J]. Journal of Vibration, Measurement and Diagnosis, 2009, 29(3): 349-351. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS200903026.htm
    [31] 王天利, 张相坤, 杨亮. 用阶次分析法识别起动机的异常噪声[J]. 噪声与振动控制, 2014, 34(1): 169-172. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201401038.htm

    WANG Tian-li, ZHANG Xiang-kun, YANG Liang. Application of order analysis method to diagnosis of abnormal noise of starters[J]. Noise and Vibration Control, 2014, 34(1): 169-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201401038.htm
  • 加载中
图(25) / 表(4)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  112
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回