留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞机巡航阶段尾涡遭遇安全性多参数评估方法

魏志强 李晓晨

魏志强, 李晓晨. 飞机巡航阶段尾涡遭遇安全性多参数评估方法[J]. 交通运输工程学报, 2022, 22(4): 295-305. doi: 10.19818/j.cnki.1671-1637.2022.04.023
引用本文: 魏志强, 李晓晨. 飞机巡航阶段尾涡遭遇安全性多参数评估方法[J]. 交通运输工程学报, 2022, 22(4): 295-305. doi: 10.19818/j.cnki.1671-1637.2022.04.023
WEI Zhi-qiang, LI Xiao-chen. Multi-parametric evaluation method of aircraft wake vortex encounter safety in cruise phase[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 295-305. doi: 10.19818/j.cnki.1671-1637.2022.04.023
Citation: WEI Zhi-qiang, LI Xiao-chen. Multi-parametric evaluation method of aircraft wake vortex encounter safety in cruise phase[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 295-305. doi: 10.19818/j.cnki.1671-1637.2022.04.023

飞机巡航阶段尾涡遭遇安全性多参数评估方法

doi: 10.19818/j.cnki.1671-1637.2022.04.023
基金项目: 

国家自然科学基金项目 U2133210

中央高校基本科研任务费专项资金项目 3122021066

详细信息
    作者简介:

    魏志强(1979-), 男, 河南渑池人, 中国民航大学教授, 从事飞机尾流间隔与安全研究

    通讯作者:

    李晓晨(1998-), 女, 安徽宿州人, 西北工业大学工学博士研究生

  • 中图分类号: V212.11

Multi-parametric evaluation method of aircraft wake vortex encounter safety in cruise phase

Funds: 

National Natural Science Foundation of China U2133210

Fundamental Research Funds for the Central Universities 3122021066

More Information
  • 摘要: 分析了飞机遭遇尾涡后的响应机理,综合考虑飞机滚转阻尼特性及操纵品质等因素,建立了飞机滚转角加速度计算模型;因飞机遭遇尾涡后飞行轨迹及飞行姿态发生改变,选择了多个扰动参数评估尾涡遭遇安全性,建立了飞机动力学参数计算模型;为确定尾涡遭遇可接受安全水平,基于国内现行尾流间隔标准,统计了中低空典型机型组合的尾流遭遇受扰参数计算数据;分析了高空尾涡流场演化特性,计算了高空巡航状态下的尾流安全间隔,分析了不同因素对飞行安全的影响。研究结果表明:与中低空相比,高空尾涡流场的初始强度大,持续距离长,飞行高度超过9 000 m后,尾涡消散随高度的增大而加快;当前机为超级重型机、重型机,现行尾流间隔无法保证飞行安全,需增加安全间隔1.4~2.1 km,飞行高度分别超过13 800、14 400 m后,尾涡遭遇严重度降低;当前机为一般重型机时,尾流安全间隔可缩减1.5 km以提高空域利用效率;当前机为中型机时,尾涡遭遇安全性较高,但此时受最小雷达间隔限制,无法进一步缩减前后机间距;后机的飞行速度越低,发生尾涡遭遇的严重程度越高;在后机初始滚转坡度角由0增加到10°的过程中,尾涡安全间隔增加1.3 km,增加幅度约为8.61%。可见,采用多个受扰参数能有效评估高空尾涡遭遇严重程度。

     

  • 图  1  尾涡遭遇数据对比

    Figure  1.  Comparison of wake vortex encounter data

    图  2  最大滚转坡度角

    Figure  2.  Maximum roll bank angles

    图  3  最大真空速增加量

    Figure  3.  Maximum true airspeed increments

    图  4  最大下降率

    Figure  4.  Maximum rates of descent

    图  5  最大下降高度

    Figure  5.  Maximum heights of descent

    图  6  最大载荷因子

    Figure  6.  Maximum load factors

    图  7  不同飞行高度处的尾涡消散过程

    Figure  7.  Dissipation processes of wake vortex at different flight altitudes

    图  8  不同飞行高度处尾涡遭遇最大滚转坡度角

    Figure  8.  Maximum roll bank angles of wake vortex encounter at different flight altitudes

    图  9  不同飞行高度处尾涡遭遇最大真空速增加量

    Figure  9.  Maximum true airspeed increments of wake vortex encounter at different flight altitudes

    图  10  不同飞行高度处尾涡遭遇最大下降率

    Figure  10.  Maximum rates of descent of wake vortex encounter at different flight altitudes

    图  11  不同飞行高度处尾涡遭遇最大下降高度

    Figure  11.  Maximum heights of descent of wake vortex encounter at different flight altitudes

    图  12  不同飞行高度处尾涡遭遇最大载荷因子

    Figure  12.  Maximum load factors of wake vortex encounter at different flight altitudes

    图  13  不同前机质量对应的高空尾涡安全间隔

    Figure  13.  High-altitude wake safety separations at different mass of leading aircraft

    图  14  不同后机飞行速度对应的高空尾涡安全间隔

    Figure  14.  High-altitude wake safety separations at different flight speeds of following aircraft

    图  15  不同后机初始滚转坡度角对应的高空尾涡安全间隔

    Figure  15.  High-altitude wake safety separations at different initial roll bank angles of following aircraft

    表  1  RECAT-CN尾流间隔试验运行标准

    Table  1.   RECAT-CN wake separation test operation standard km

    航空器机型 后机
    J B C M L
    前机 J 5.6 9.3 11.1 13.0 14.8
    B 5.0 5.6 7.4 9.3 13.0
    C 5.0 5.0 5.6 6.5 11.1
    M 5.0 5.0 5.0 5.0 9.3
    L 5.0 5.0 5.0 5.0 5.6
    下载: 导出CSV

    表  2  43种常见典型机型相关参数

    Table  2.   Related parameters of 43 typical different aircraft types

    机型 A380 B744 A346 B773 MD11 B772 A343 F50
    最大着陆质量/t 386.00 281.23 256.04 237.68 222.94 201.85 186.03 19.73
    最大起飞质量/t 560.01 385.55 365.06 299.37 285.99 247.21 257.04 20.82
    机翼面积/m2 844.99 541.16 436.99 427.81 338.91 427.81 361.59 70.00
    翼展/m 79.77 64.92 63.42 60.92 51.66 60.92 60.31 29.01
    梢根比 0.224 8 0.277 5 0.200 0 0.148 6 0.245 9 0.148 5 0.219 8 0.450 0
    滚转阻尼力矩系数/rad-1 -0.477 1 -0.505 6 -0.467 7 -0.442 5 -0.491 9 -0.442 4 -0.477 4 -0.641 1
    进近着陆速度/kt 133 145 141 141 151 130 132 101
    巡航平均表速/kt 320 300 290 300 300 300 290 210
    巡航平均马赫数 0.85 0.85 0.82 0.84 0.83 0.84 0.82 0.68
    RECAT-CN类别 J B B B C B B M
    下载: 导出CSV

    表  3  高空尾涡遭遇安全性标准

    Table  3.   High-altitude wake vortex encounters safety standards

    最大滚转坡度角/(°) 最大真空速增加量/(m·s-1) 最大下降率/(m·s-1) 最大下降高度/m 最大载荷因子
    19.3 6.61 -10.28 -49.67 1.29
    下载: 导出CSV

    表  4  不同类别机型组合高空尾流安全间隔对比

    Table  4.   Comparison of wake safety separations for combinations of different aircraft types at high altitude

    前机机型 A380 B744 B764
    现行尾流间隔标准/km 13.0 9.3 6.5
    高空尾流安全间隔/km 15.1 10.7 5.0
    尾流安全间隔变化/km 2.1 1.4 -1.5
    下载: 导出CSV
  • [1] 徐肖豪, 赵鸿盛, 王振宇. 尾流间隔缩减技术综述[J]. 航空学报, 2010, 31(4): 655-662. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201004002.htm

    XU Xiao-hao, ZHAO Hong-sheng, WANG Zhen-yu. Overview of wake vortex separation reduction systems[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 655-662. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201004002.htm
    [2] 魏志强, 徐肖豪. 飞机尾涡流场的建模与仿真计算研究[J]. 交通运输系统工程与信息, 2010, 10(4): 186-191. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201004030.htm

    WEI Zhi-qiang, XU Xiao-hao. Modeling and simulating of flow field for aircraft wake vortex[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(4): 186-191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201004030.htm
    [3] SCHUMANN U, SHARMAN R. Aircraft wake-vortex encounter analysis for upper levels[J]. Journal of Aircraft, 2015, 52(4): 1277-1285. doi: 10.2514/1.C032909
    [4] HOLZÄPFEL F. Probabilistic two-phase wake vortex decay and transport model[J]. Journal of Aircraft, 2003, 40(2): 323-331.
    [5] STEPHAN A, SCHRALL J, HOLZÄPFEL F. Numerical optimization of plate-line design for enhanced wake-vortex decay[J]. Journal of Aircraft, 2017, 54(3): 995-1010. doi: 10.2514/1.C033973
    [6] SARPKAYA T. Decay of wake vortices of large aircraft[J]. AIAA Journal, 1998, 36(9): 1671-1679. doi: 10.2514/2.570
    [7] PROCTOR F H, HAMILTON D W, SWITZER G F. TASS driven algorithms for wake prediction[C]//AIAA. 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 1073.
    [8] CAMPOS L M B C, MARQUES J M G. On an analytical model of wake vortex separation of aircraft[J]. The Aeronautical Journal, 2016, 120(1232): 1534-1565. doi: 10.1017/aer.2016.89
    [9] SPEIJKER L J P, VIDAL A, BARBARESCO F, et al. ATC-wake: integrated wake vortex safety and capacity system[J]. Journal of Air Traffic Control, 2007, 49(1): 17-32.
    [10] DE VISSCHER I, LONFILS T, WINCKELMANS G. Fast-time modeling of ground effects on wake vortex transport and decay[J]. Journal of Aircraft, 2013, 50(5): 1514-1525. doi: 10.2514/1.C032035
    [11] LUCKNER R, HÖHNE G, FUHRMANN M. Hazard criteria for wake vortex encounters during approach[J]. Aerospace Science and Technology, 2004, 8(8): 673-687. doi: 10.1016/j.ast.2004.06.008
    [12] 魏志强, 屈秋林, 刘薇, 等. 飞机尾涡流场参数的仿真计算方法研究综述[J]. 空气动力学学报, 2019, 37(1): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201901003.htm

    WEI Zhi-qiang, QU Qiu-lin, LIU Wei, et al. Review on the artificial calculating methods for aircraft wake vortex flow field parameters[J]. Acta Aerodynamica Sinica, 2019, 37(1): 33-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201901003.htm
    [13] 魏志强, 李志远, 刘薇. 侧风影响下的飞机尾流强度消散与涡核运动[J]. 空军工程大学学报(自然科学版), 2017, 18(6): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201706005.htm

    WEI Zhi-qiang, LI Zhi-yuan, LIU Wei. Research on aircraft wake vortex strength dissipation and vortex motion under crosswind impact[J]. Journal of Air Force Engineering University(Natural Science Edition), 2017, 18(6): 27-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201706005.htm
    [14] 朱睿, 刘锦生, 刘志荣, 等. 新概念机翼尾流特性实验[J]. 航空学报, 2017, 38(4): 120250. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201704001.htm

    ZHU Rui, LIU Jin-sheng, LIU Zhi-rong, et al. Experiment on a new concept wing layout with alleviated wake vortex[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4): 120250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201704001.htm
    [15] LIU Fei, LIU Xin-ze, MOU Ming-jiang, et al. Safety assessment of approximate segregated parallel operation on closely spaced parallel runways[J]. Chinese Journal of Aeronautics, 2019, 32(2): 463-476.
    [16] 韩红蓉, 李娜, 魏志强. 飞机遭遇尾涡的安全性分析[J]. 交通运输工程学报, 2012, 12(1): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201201012.htm

    HAN Hong-rong, LI Na, WEI Zhi-qiang. Safety analysis of aircraft encountering wake vortex[J]. Journal of Traffic and Transportation Engineering, 2012, 12(1): 45-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201201012.htm
    [17] 冯志勇. 尾流对飞行的影响及安全间隔研究[D]. 成都: 西南交通大学, 2007.

    FENG Zhi-yong. How wake vortexes affect the flights and safety separation research[D]. Chengdu: Southwest Jiaotong University, 2007. (in Chinese)
    [18] HALLOCK J N, HOLZÄPFEL F. A review of recent wake vortex research for increasing airport capacity[J]. Progress in Aerospace Sciences, 2018, 98: 27-36.
    [19] CHENG J, HOFF A, TITTSWORTH J, et al. The development of wake turbulence re-categorization in the United States[C]// AIAA. 8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016: 3434.
    [20] ANTOLOVIC D, FRANJKOVIC D. Calculation of airplane wake turbulence re-categorisation effects[J]. Transportation Research Procedia, 2020, 51: 179-189.
    [21] 魏志强, 牟明江. 飞机尾流间隔标准中的机型分类方法[J]. 空军工程大学学报(自然科学版), 2019, 20(1): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201901006.htm

    WEI Zhi-qiang, MOU Ming-jiang. Study of classification of aircraft types in the wake turbulence separation standards[J]. Journal of Air Force Engineering University (Natural Science Edition), 2019, 20(1): 32-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201901006.htm
    [22] LUCKNER R, REINKE A. Pilot models for simulation of wake vortex encounters in cruise[C]//AIAA. AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010: 7683.
    [23] ROJAS J I, MELGOSA M, PRATS X. Sensitivity analysis of maximum circulation of wake vortex encountered by en-route aircraft[J]. Aerospace, 2021, 8(7): 194-215.
    [24] HOLZÄPFEL F. Effects of environmental and aircraft parameters on wake vortex behavior[J]. Journal of Aircraft, 2014, 51(5): 1490-1500.
    [25] POIREL D, PRICE S J. Bifurcation characteristics of a two- dimensional structurally non-linear airfoil in turbulent flow[J]. Nonlinear Dynamics, 2007, 48(4): 423-435.
    [26] KAZARIN P, PROVALOV A, GOLUBEV V, et al. Terminal- zone wake vortex safety assessment in the context of UAS integration in the NAS[J]. Transportation Research Procedia, 2016, 14(1): 1364-1373.
    [27] 魏志强, 吴金栋, 刘馨泽, 等. 空中交通尾流间隔标准的安全性评估分析[J]. 中国安全生产科学技术, 2018, 14(12): 180-185. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201812030.htm

    WEI Zhi-qiang, WU Jin-dong, LIU Xin-ze, et al. Safety assessment and analysis on standard of wake separation for air traffic[J]. Journal of Safety Science and Technology, 2018, 14(12): 180-185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201812030.htm
    [28] HOOGSTRATEN M, VISSER H G, HART D, et al. Improved understanding of en route wake-vortex encounters[J]. Journal of Aircraft, 2015, 52(3): 981-989.
    [29] HOLZÄPFEL F. Probabilistic two-phase aircraft wake-vortex model: further development and assessment[J]. Journal of Aircraft, 2006, 43(3): 700-708.
    [30] CROW S C. Stability theory for a pair of trailing vortices[J]. AIAA Journal, 1970, 8(12): 2172-2179.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  236
  • HTML全文浏览量:  98
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-06
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回