留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模型预测控制的CACC系统通信延时补偿方法

田彬 姚柯 王孜健 谷淦 徐志刚 赵祥模 景峻

田彬, 姚柯, 王孜健, 谷淦, 徐志刚, 赵祥模, 景峻. 基于模型预测控制的CACC系统通信延时补偿方法[J]. 交通运输工程学报, 2022, 22(4): 361-381. doi: 10.19818/j.cnki.1671-1637.2022.04.028
引用本文: 田彬, 姚柯, 王孜健, 谷淦, 徐志刚, 赵祥模, 景峻. 基于模型预测控制的CACC系统通信延时补偿方法[J]. 交通运输工程学报, 2022, 22(4): 361-381. doi: 10.19818/j.cnki.1671-1637.2022.04.028
TIAN Bin, YAO Ke, WANG Zi-jian, GU Gan, XU Zhi-gang, ZHAO Xiang-mo, JING Jun. Communication delay compensation method of CACC platooning system based on model predictive control[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 361-381. doi: 10.19818/j.cnki.1671-1637.2022.04.028
Citation: TIAN Bin, YAO Ke, WANG Zi-jian, GU Gan, XU Zhi-gang, ZHAO Xiang-mo, JING Jun. Communication delay compensation method of CACC platooning system based on model predictive control[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 361-381. doi: 10.19818/j.cnki.1671-1637.2022.04.028

基于模型预测控制的CACC系统通信延时补偿方法

doi: 10.19818/j.cnki.1671-1637.2022.04.028
基金项目: 

国家重点研发计划 2019YFB1600100

国家重点研发计划 2021YFB2501203

国家自然科学基金项目 61973045

中国博士后科学基金项目 2020M673323

中国博士后科学基金项目 2021T140586

高等学校学科创新引智计划 B14043

陕西省重点研发计划 S2018-YF-ZDGY-0300

详细信息
    作者简介:

    田彬(1983-),男,内蒙古通辽人,长安大学讲师,工学博士,从事自动驾驶与车路协同研究

    通讯作者:

    徐志刚(1979-),男,湖北鄂州人,长安大学教授,工学博士

  • 中图分类号: U491.2

Communication delay compensation method of CACC platooning system based on model predictive control

Funds: 

National Key Research and Development Program of China 2019YFB1600100

National Key Research and Development Program of China 2021YFB2501203

National Natural Science Foundation of China 61973045

Postdoctoral Science Foundation of China 2020M673323

Postdoctoral Science Foundation of China 2021T140586

Programme of Introducing Talents of Discipline to Universities B14043

Key Research and Development Program of Shaanxi Province S2018-YF-ZDGY-0300

More Information
  • 摘要: 为确保通信延时条件下协同式自适应巡航控制(CACC)系统的弦稳定性,利用模型预测控制(MPC)和长短期记忆(LSTM)预测方法,研究CACC系统中车辆协同控制下的通信延时补偿方法;基于车辆队列四元素架构理论,构建了包括车辆动力学模型、间距策略、网络拓扑和MPC纵向控制器的系统模型,并综合考虑2范数和无穷范数弦稳定性条件,提出了CACC车辆队列混合范数弦稳定性量化指标,最终形成协同式车辆队列建模与评价体系;设计了一种利用前车加速度轨迹(PVAT)作为开环优化参考轨迹的MPC方法,即MPC-PVAT,通过综合考虑队列的跟驰、安全、通行效率和燃油消耗等性能指标,使目标函数趋于最小代价,从而得到当前时刻的最优控制量,并利用庞特里亚金最大值原理对所设计的优化问题进行快速求解;在MPC-PVAT基础上,提出一种基于长短期记忆(LSTM)网络的通信延时补偿方法,即MPC-LSTM,将跟驰车辆的传感器信息输入LSTM网络来预测其前车的运动状态,从而缓解短暂通信延时对车辆队列稳定性的影响。仿真测试结果表明:MPC-LSTM可容忍的通信延时上界大于1.5 s,比MPC-PVAT提升了0.8 s,比线性控制器提升了1.1 s;在基于实车数据测试中,当通信延时增加到1.2 s时,MPC-LSTM的弦稳定性指标相比MPC-PVAT提升了20.33%,与线性控制器相比稳定性提升了39.35%。可见,在通信延时较大的情况下,MPC-LSTM对通信延时具有很好的容忍性,从而有效地保证了CACC车辆队列的弦稳定性。

     

  • 图  1  协同式车辆队列系统

    Figure  1.  Cooperative vehicle platoon system

    图  2  考虑通信延时的MPC结构

    Figure  2.  MPC structure considering communication delay

    图  3  系统弦稳定性状态对比

    Figure  3.  Comparison of system string stability states

    图  4  MPC-PVAT模型预测控制

    Figure  4.  Predictive control of MPC-PVAT model

    图  5  LSTM预测模型架构

    Figure  5.  Predictive model architecture of LSTM

    图  6  MPC-LSTM前车加速度轨迹预测

    Figure  6.  Front vehicle acceleration trajectory prediction of MPC-LSTM

    图  7  无延时条件下基于正弦运动工况的加速度测试结果

    Figure  7.  Acceleration test results without delay under sinusoidal scenario

    图  8  0.4 s延时条件下基于正弦运动工况的加速度测试结果

    Figure  8.  Acceleration test results with 0.4 s delay under sinusoidal scenario

    图  9  0.7 s延时条件下基于正弦运动工况的加速度测试结果

    Figure  9.  Acceleration test results with 0.7 s delay under sinusoidal scenario

    图  10  1.5 s延时条件下基于正弦运动工况的加速度测试结果

    Figure  10.  Acceleration test results with 1.5 s delay under sinusoidal scenario

    图  11  无延时条件下基于正弦运动工况的速度测试结果

    Figure  11.  Speed test results without delay under sinusoidal scenario

    图  12  0.4 s延时条件下基于正弦运动工况的速度测试结果

    Figure  12.  Speed test results with 0.4 s delay under sinusoidal scenario

    图  13  0.7 s延时条件下基于正弦运动工况的速度测试结果

    Figure  13.  Speed test results with 0.7 s delay under sinusoidal scenario

    图  14  1.5 s延时条件下基于正弦运动工况的速度测试结果

    Figure  14.  Speed test results with 1.5 s delay under sinusoidal scenario

    图  15  无延时条件下基于正弦运动工况的间距测试结果

    Figure  15.  Distance test results without delay under sinusoidal scenario

    图  16  0.4 s延时条件下基于正弦运动工况的间距测试结果

    Figure  16.  Distance test results with 0.4 s delay under sinusoidal scenario

    图  17  0.7 s延时条件下基于正弦运动工况的间距测试结果

    Figure  17.  Distance test results with 0.7 s delay under sinusoidal scenario

    图  18  1.5 s延时条件下基于正弦运动工况的间距测试结果

    Figure  18.  Distance test results with 1.5 s delay under sinusoidal scenario

    图  19  无延时条件下基于正弦运动工况的间距误差测试结果

    Figure  19.  Spacing error test results without delay under sinusoidal scenario

    图  20  0.4 s延时条件下基于正弦运动工况的间距误差测试结果

    Figure  20.  Spacing error test results with 0.4 s delay under sinusoidal scenario

    图  21  0.7 s延时条件下基于正弦运动工况的间距误差测试结果

    Figure  21.  Spacing error test results with 0.7 s delay under sinusoidal scenario

    图  22  1.5 s延时条件下基于正弦运动工况的间距误差测试结果

    Figure  22.  Spacing error test results with 1.5 s delay under sinusoidal scenario

    图  23  基于正弦运动工况测试中三种控制器在各延时条件下的系统弦稳定性量化指标

    Figure  23.  Quantified indicators of system string stability from three controllers with various delays in sinusoidal scenario test

    图  24  无延时条件下基于NGSIM数据的加速度测试结果

    Figure  24.  Acceleration test results without delay based on NGSIM data

    图  25  0.4 s延时条件下基于NGSIM数据的加速度测试结果

    Figure  25.  Acceleration test results with 0.4 s delay based on NGSIM data

    图  26  0.8 s延时条件下基于NGSIM数据的加速度测试结果

    Figure  26.  Acceleration test results with 0.8 s delay based on NGSIM data

    图  27  1.2 s延时条件下基于NGSIM数据的加速度测试结果

    Figure  27.  Acceleration test results with 1.2 s delay based on NGSIM data

    图  28  无延时条件下基于NGSIM数据的速度测试结果

    Figure  28.  Speed test results without delay based on NGSIM data

    图  29  0.4 s延时条件下基于NGSIM数据的速度测试结果

    Figure  29.  Speed test results with 0.4 s delay based on NGSIM data

    图  30  0.8 s延时条件下基于NGSIM数据的速度测试结果

    Figure  30.  Speed test results with 0.8 s delay based on NGSIM data

    图  31  1.2 s延时条件下基于NGSIM数据的速度测试结果

    Figure  31.  Speed test results with 1.2 s delay based on NGSIM data

    图  32  无延时条件下基于NGSIM数据的间距误差测试结果

    Figure  32.  Spacing error test results without delay based on NGSIM data

    图  33  0.4 s延时条件下基于NGSIM数据的间距误差测试结果

    Figure  33.  Spacing error test results with 0.4 s delay based on NGSIM data

    图  34  0.8 s延时条件下基于NGSIM数据的间距误差测试结果

    Figure  34.  Spacing error test results with 0.8 s delay based on NGSIM data

    图  35  1.2 s延时条件下基于NGSIM数据的间距误差测试结果

    Figure  35.  Spacing error test results with 1.2 s delay based on NGSIM data

    图  36  基于NGSIM数据测试中三种控制器在各延时条件下的系统弦稳定性量化指标

    Figure  36.  Quantified indicators of system string stability from three controllers with various delays based on NGSIM data in test

    表  1  仿真主要参数设置

    Table  1.   Main parameters setting for simulation

    参数 取值
    车头时距/s 0.8
    车辆长度/m 4
    初始速度/(km·h-1) 90
    预测时域/s 3
    前车加速度控制增益 10
    速度之差控制增益 3
    间距误差控制增益 1
    控制量增益 5
    控制量约束上界/(m·s-2) -8
    控制量约束下界/(m·s-2) 1.5
    最大速度约束/(km·h-1) 120
    最小间距约束/m 2
    下载: 导出CSV

    表  2  预测性能对比

    Table  2.   Prediction performance comparison

    预测方法 拟合优度指标 均方根误差
    LSTM 0.766 2.132
    RNNs 0.739 2.248
    GRUs 0.544 2.976
    下载: 导出CSV
  • [1] RAJAMANI R, TAN H S, LAW B K, et al. Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons[J]. IEEE Transactions on Control Systems Technology, 2000, 8(4): 695-708. doi: 10.1109/87.852914
    [2] FERNANDES P, NUNES U. Platooning with IVC-enabled autonomous vehicles: strategies to mitigate communication delays, improve safety and traffic flow[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1): 91-106. doi: 10.1109/TITS.2011.2179936
    [3] XU Zhi-gang, WANG Yu, WANG Guan-qun, et al. Trajectory optimization for a connected automated traffic stream: comparison between an exact model and fast heuristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(5): 2969-2978. doi: 10.1109/TITS.2020.2978382
    [4] ZHAO Xiang-mo, WANG Zhen, XU Zhi-gang, et al. Field experiments on longitudinal characteristics of human driver behavior following an autonomous vehicle[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 205-224. doi: 10.1016/j.trc.2020.02.018
    [5] BONNET C, FRITZ H. Fuel consumption reduction in a platoon: experimental results with two electronically coupled trucks at close spacing[R]. Warrendale: SAE International, 2000.
    [6] FRITZ H, GERN A, SCHIEMENZ H, et al. CHAUFFEUR assistant-a driver assistance system for commercial vehicles based on fusion of advanced ACC and lane keeping[C]//IEEE. 2004 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2004: 495-500.
    [7] CHAN E. SARTRE automated platooning vehicles[J]. Towards Innovative Freight and Logistics, 2016, 2: 137-150.
    [8] EILERS S, MÅRTENSSON J, PETTERSSON H, et al. COMPANION: towards co-operative platoon management of heavy-duty vehicles[C]//IEEE. 2015 IEEE 18th International Conference on Intelligent Transportation Systems. New York: IEEE, 2015: 1267-1273.
    [9] VANDERWERF J, SHLADOVER S, KOURJANSKAIA N, et al. Modeling effects of driver control assistance systems on traffic[J]. Transportation Research Record, 2001, 1748(1): 167-174. doi: 10.3141/1748-21
    [10] DARBHA S, KONDURI S, PAGILLA P R. Benefits of V2V communication for autonomous and connected vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(5): 1954-1963. doi: 10.1109/TITS.2018.2859765
    [11] NAUS G J L, VUGTS R P A, PLOEG J, et al. String-stable CACC design and experimental validation: a frequency-domain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4268-4279. doi: 10.1109/TVT.2010.2076320
    [12] DEY K C, YAN Li, WANG Xu-jie, et al. A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control(CACC)[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 491-509. doi: 10.1109/TITS.2015.2483063
    [13] RAJAMANI R, ZHU Chun-yu. Semi-autonomous adaptive cruise control systems[J]. IEEE Transactions on Vehicular Technology, 2002, 51(5): 1186-1192. doi: 10.1109/TVT.2002.800617
    [14] 徐志刚, 李金龙, 赵祥模, 等. 智能公路发展现状与关键技术[J]. 中国公路学报, 2019, 32(8): 1-24. doi: 10.19721/j.cnki.1001-7372.2019.08.001

    XU Zhi-gang, LI Jin-long, ZHAO Xiang-mo, et al. A review on intelligent road and its related key technologies[J]China Journal of Highway and Transport, 2019, 32(8): 1-24. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2019.08.001
    [15] ZHENG Yang, LI S E, LI Ke-qiang, et al. Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies[J]. IEEE Transactions on Control Systems Technology, 2017, 25(3): 899-910. doi: 10.1109/TCST.2016.2594588
    [16] LIU Xiang-heng, GOLDSMITH A, MAHAL S S, et al. Effects of communication delay on string stability in vehicle platoons[C]//IEEE. 2001 IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2001: 625-630.
    [17] SWAROOP D V A H G. String stability of interconnected systems: an application to platooning in automated highway systems[D]. Berkeley: University of California, Berkeley, 1994.
    [18] XU Zhi-gang, JIANG Zi-jun, WANG Guan-qun, et al. When the automated driving system fails: dynamics of public responses to automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103271. doi: 10.1016/j.trc.2021.103271
    [19] QIN W B, OROSZ G. Experimental validation of string stability for connected vehicles subject to information delay[J]. IEEE Transactions on Control Systems Technology, 2020, 28(4): 1203-1217. doi: 10.1109/TCST.2019.2900609
    [20] ZHANG Yu-qin, TIAN Bin, XU Zhi-gang, et al. A local traffic characteristic based dynamic gains tuning algorithm for cooperative adaptive cruise control considering wireless communication delay[J]. Transportation Research Part C: Emerging Technologies, 2022, 142: 103766. doi: 10.1016/j.trc.2022.103766
    [21] PLOEG J, SCHEEPERS B T M, VAN NUNEN E, et al. Design and experimental evaluation of cooperative adaptive cruise control[C]//IEEE. 2011 14th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2011: 260-265.
    [22] WANG Meng, DAAMEN W, HOOGENDOORN S P, et al. Rolling horizon control framework for driver assistance systems. Part Ⅰ: mathematical formulation and non-cooperative systems[J]. Transportation Research Part C: Emerging Technologies, 2014, 40: 271-289. doi: 10.1016/j.trc.2013.11.023
    [23] WANG Meng, DAAMEN W, HOOGENDOORN S P, et al. Rolling horizon control framework for driver assistance systems. Part Ⅱ: cooperative sensing and cooperative control[J]. Transportation Research Part C: Emerging Technologies, 2014, 40: 290-311. doi: 10.1016/j.trc.2013.11.024
    [24] ZHANG Yu, BAI Yu, WANG Meng, et al. Cooperative adaptive cruise control with robustness against communication delay: an approach in the space domain[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 5496-5507. doi: 10.1109/TITS.2020.2987746
    [25] WANG Meng, HOOGENDOORN S P, DAAMEN W, et al. Delay-compensating strategy to enhance string stability of adaptive cruise controlled vehicles[J]. Transportmetrica B: Transport Dynamics, 2018, 6(3): 211-229. doi: 10.1080/21680566.2016.1266973
    [26] MAXIM A, CARUNTU C F, LAZAR C. Distributed model predictive control algorithm for vehicle platooning[C]//IEEE. 2016 20th International Conference on System Theory, Control and Computing (ICSTCC). New York: IEEE, 2016: 657-662.
    [27] NAUS G, VAN DEN BLEEK R, PLOEG J, et al. Explicit MPC design and performance evaluation of an ACC Stop-&-Go[C]//IEEE. 2008 American Control Conference. New York: IEEE, 2008: 224-229.
    [28] ZHOU Yang, AHN S. Robust local and string stability for a decentralized car following control strategy for connected automated vehicles[J]. Transportation Research Part B: Methodological, 2019, 125: 175-196. doi: 10.1016/j.trb.2019.05.003
    [29] PLOEG J, SEMSAR-KAZEROONI E, LIJSTER G, et al. Graceful degradation of cooperative adaptive cruise control[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 488-497. doi: 10.1109/TITS.2014.2349498
    [30] BESSELINK B, JOHANSSON K H. String stability and a delay-based spacing policy for vehicle platoons subject to disturbances[J]. IEEE Transactions on Automatic Control, 2017, 62(9): 4376-4391. doi: 10.1109/TAC.2017.2682421
    [31] XIAO Ling-yun, GAO Feng. Practical string stability of platoon of adaptive cruise control vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1184-1194. doi: 10.1109/TITS.2011.2143407
    [32] KIM N, CHA S, PENG H. Optimal control of hybrid electric vehicles based on Pontryagin's minimum principle[J]. IEEE Transactions on Control Systems Technology, 2011, 19(5): 1279-1287. doi: 10.1109/TCST.2010.2061232
    [33] HOOGENDOORN S, HOOGENDOORN R, WANG Meng, et al. Modeling driver, driver support, and cooperative systems with dynamic optimal control[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012, 2316(1): 20-30. doi: 10.3141/2316-03
    [34] TIAN Bin, WANG Guan-qun, XU Zhi-gang, et al. Communication delay compensation for string stability of CACC system using LSTM prediction[J]. Vehicular Communications, 2021, 29: 100333. doi: 10.1016/j.vehcom.2021.100333
    [35] GAO Ying, LI Jin-long, XU Zhi-gang, et al. A novel image-based convolutional neural network approach for traffic congestion estimation[J]. Expert Systems with Applications, 2021, 180: 115037. doi: 10.1016/j.eswa.2021.115037
    [36] LI Jin-long, XU Zhi-gang, FU Lan, et al. Domain adaptation from daytime to nighttime: a situation-sensitive vehicle detection and traffic flow parameter estimation framework[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 102946. doi: 10.1016/j.trc.2020.102946
  • 加载中
图(36) / 表(2)
计量
  • 文章访问数:  559
  • HTML全文浏览量:  156
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回