留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
陈宝春, 黄福云, 薛俊青, 罗小烨, 庄一舟, 刘永健, 徐明, 赵秋红, BRISEGHELLABruno. 无伸缩缝桥梁研究综述[J]. 交通运输工程学报, 2022, 22(5): 1-40. doi: 10.19818/j.cnki.1671-1637.2022.05.001
引用本文: 陈宝春, 黄福云, 薛俊青, 罗小烨, 庄一舟, 刘永健, 徐明, 赵秋红, BRISEGHELLABruno. 无伸缩缝桥梁研究综述[J]. 交通运输工程学报, 2022, 22(5): 1-40. doi: 10.19818/j.cnki.1671-1637.2022.05.001
CHEN Bao-chun, HUANG Fu-yun, XUE Jun-qing, LUO Xiao-ye, ZHUANG Yi-zhou, LIU Yong-jian, XU Ming, ZHAO Qiu-hong, BRISEGHELLA Bruno. Review on research of jointless bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 1-40. doi: 10.19818/j.cnki.1671-1637.2022.05.001
Citation: CHEN Bao-chun, HUANG Fu-yun, XUE Jun-qing, LUO Xiao-ye, ZHUANG Yi-zhou, LIU Yong-jian, XU Ming, ZHAO Qiu-hong, BRISEGHELLA Bruno. Review on research of jointless bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 1-40. doi: 10.19818/j.cnki.1671-1637.2022.05.001

无伸缩缝桥梁研究综述

doi: 10.19818/j.cnki.1671-1637.2022.05.001
基金项目: 

国家自然科学基金项目 51578161

国家自然科学基金项目 51508103

国家自然科学基金项目 51778147

国家自然科学基金项目 51778148

详细信息
    作者简介:

    陈宝春(1958-),男,福建罗源人,福建工程学院与福州大学教授,工学博士,从事无伸缩缝桥梁、拱桥、UHPC桥梁等研究

  • 中图分类号: U442.59

Review on research of jointless bridges

Funds: 

National Natural Science Foundation of China 51578161

National Natural Science Foundation of China 51508103

National Natural Science Foundation of China 51778147

National Natural Science Foundation of China 51778148

More Information
    Author Bio:

    CHEN Baochun (1958–), male, from Luoyuan, Fujian; professor of Fujian University of Technology and Fuzhou University, PhD in Engineering. Research interest: jointless bridges, arch bridges, and UHPC bridges. E-mail: baochunchen@fzu.edu.cn

  • 摘要: 综述了无伸缩缝桥梁(简称“无缝桥”)技术发展,介绍了无缝桥优点、应用和研究热点,分析了无缝桥纵桥向受力特点、桩-土相互作用、台后土压力与抗震性能,指出了新技术研发与应用的现状与发展方向。分析结果表明:无缝桥技术受到许多国家的重视,已开展了大量的实桥监测和其他研究;在纵桥向受力方面,温度变形是其主因,现有规范中所给出的平均温差与实桥监测结果相差较大,应研究精度更高的计算方法;桩-土相互作用是整体桥受力的特点与研究的难点,在计算土抗力时,m法应限于小位移的无缝桥,位移较大时宜采用p-y曲线法;桥台桩基受力复杂,H型钢桩存在屈服、疲劳、屈曲的破坏可能,混凝土桩则易出现开裂病害;无缝桥温升时台后土压力增大,是研究的热点与难点,它随水平变形量和往复变形次数增大而增大的机理、量值和分布未达成共识,有待今后深入、系统的研究;纵桥向受力分析应建立全桥有限元模型,考虑结构-土相互作用和节点非线性性能;钢主梁受压稳定性和混凝土主梁抗裂性能是研究与设计的关键;引板是无缝桥的病害易发构件,面板式引板应减小板底摩阻力,避免开裂和末端沉降,而斜埋入式引板应控制其末端之上接线路面的隆起和下陷;许多无缝桥新技术已被提出并得到应用,今后还需深入研究,如:新材料与新构造在无缝桥各组成部分、台背、桩基与引板中的应用等;无缝桥具有较强的结构强健性、抗倒塌和防落梁能力,抗震研究已取得可喜的进展,但许多国家尚未形成相关的设计规定,应继续研究,为将来的应用和规范制订提供科学依据。

     

  • 图  1  升温时的桩-土相互作用

    Figure  1.  Pile-soil interaction when temperature rising

    图  2  柔性台身整体桥变形

    Figure  2.  Deformation of integral bridge with flexible abutment

    图  3  整体桥二维土弹簧有限元模型

    Figure  3.  Two-dimensional finite element model with soil springs for an intergral bridge

    图  4  整体桥二维土单元有限元模型(单位: m)

    Figure  4.  Two-dimensional finite element model with soil elements for an integral bridge (unit: m)

    图  5  面板式引板-土相互作用计算模型

    Figure  5.  Calculation model of flat approach slab considering SSI

    图  6  UHPC在无缝桥上部结构中的应用

    Figure  6.  Application of UHPC in superstructure of jointless bridge

    图  7  UHPC在整体桥桩基中应用的试验装置

    Figure  7.  Test setups of UHPC applied in pile foundation of jointless bridge

    图  8  新型台后填料试验模型(单位: mm)

    Figure  8.  Test model of new-type backfill behind abutment (unit: mm)

    图  9  Z形引板

    Figure  9.  Z-shaped approach slab

    图  10  两种新型全无缝桥引板构造

    Figure  10.  Two new types of approach slab structures for totally seamless bridges

    图  11  整体桥地震反应等效弹簧简化模型

    Figure  11.  Simplified model simulated by equivalent springs for integral bridge under seismic load

    表  1  无缝桥长期监测情况

    Table  1.   Long-term monitoring situation of jointless bridges

    桥名 总跨径或总长度(最大跨径)/m 主梁 桥台基础 监测内容 监测时长/年 备注
    美国SR-25桥[31] 46.0(23.0) 钢梁 钢管桩 A、DASPP 9.5 25.0°
    加拿大New Brunswick桥[32-33] 76.0(38.0) PC梁 H型钢桩 DAP 9.0
    美国宾州203号桥[34] 52.4(26.8) PC梁 H型钢桩 DARPDBSPSA 7.0
    美国24号桥[35] 41.8 钢梁 H型钢桩 DA 7.0
    美国Minnesota桥[36] 66.0(22.0) PC梁 H型钢桩 DADBR、SPSBP、TA 7.0
    美国宾州211号桥[34] 34.7(34.7) PC梁 H型钢桩 DAR、P、DBSPSA 7.0
    美国宾州109号桥[34] 128.0(37.2) PC梁 H型钢桩 DAR、P、DBSPSA 7.0
    美国宾州222号桥[34] 18.9(18.9) PC梁 H型钢桩 DAR、P、DBSPSA 7.0
    芬兰Haavistonjoki桥[37] 56.0(19.0) RC梁 钢管桩 TBP 7.0
    美国19号桥[35] 53.3(26.7) RC梁 H型钢桩 DA 7.0
    美国SR-18桥[31] 113.0(25.0) PC梁 钢管桩 TADASPP 6.5 8.0°
    美国Jackson River桥[38] 100.0 钢梁 H型钢桩 P、SBDAR 5.0
    美国US-231桥[31] 67.0(25.0) PC梁 钢管桩 TADASPP 3.5 33.8°
    美国I-44桥[39] 64.0(27.4) 组合梁 H型钢桩 SPP、DB 3.3 10.0°
    美国OW桥[40] 82.3(33.5) 钢梁 H型钢桩 DAR、DPP 3.0
    南非Van Zylspruit River桥[41-42] 90.5(20.7) RC梁 RC桩 TATSDAP 3.0
    韩国某桥[43] 43.0(41.5) 钢梁 三排钢桩 SBSQP、DA 2.9 半整体,8.0°
    美国Forks桥[44] 50.0(50.0) 钢梁 扩大基础 P、TATB 2.8 20.0°
    英国Middlesex桥[45] 55.0(43.0) 钢梁 H型钢桩 DAP 2.5
    英国East Montpelier桥[45] 49.0(37.0) 钢梁 H型钢桩 DAP 2.5 15.0°
    美国I-81桥[46] 98.0(49.0) 钢梁 钢桩 P、SBTATB 2.5 5.0°
    美国Caminada Bay桥[47] 91.0(9.1) RC板 预制PC桩 TBSADAR、SP 2.3
    美国Maple River桥[48] 98.0(38.0) 钢梁 H型钢桩 TATBDBSP 2.1 30.0°
    美国Boone River桥[48] 98.9(25.1) PC梁 H型钢桩 TATBDBSP 2.1 45.0°
    美国Story County桥[49] 61.0(21.0) PC梁 H型钢桩 DAR、SPSBTB 2.0 15.0°
    美国Guthrie County桥[49] 97.0(33.0) PC梁 H型钢桩 DAR、SPSBTB 2.0 30.0°
    美国Kishwaukee桥[50] 167.3(46.3) 钢梁 钢管填砂桩 DASPSB 2.0 30.0°
    美国某整体桥[51] 66.0(22.0) PC梁 H型钢桩 DAR、SPP、SBSS 2.0
    美国I-95桥[52] 90.9 钢梁 H型钢桩 SPP、DAR、TS 2.0 15.0°
    中国清远龙塘桥[53] 109.3(13.6) RC梁 扩大基础 SBSASR 1.7 半整体
    中国河口村桥[53] 93.0(20.0) PC梁 RC桩 SASRDB 1.5 半整体,36.0°
    美国Brimfield桥[54] 19.8(19.8) PC梁 H型钢桩 DAR、SSSB 1.5 30.0°
    美国309号桥[55] 97.2(45.4) 钢梁 H型钢桩 SBSPTBTSP 1.3 弯斜桥,15.0°
    美国UTRR桥[50] 56.2 (56.2) 钢梁 钢管填砂桩 DASBSP 1.3 42.5°
    美国Kii桥[56] 24.4(24.4) PC梁 H型钢桩 DAP 1.3
    美国Tama County桥[57] 34.0(34.0) PC梁 PC桩 TATBSPDAR 1.3 20.0°
    中国李和村桥[53] 86.7(20.0) PC梁 RC桩 DBP、SASR 1.2 半整体,20.0°
    美国Cass County桥[58] 137.0(22.8) RC梁 H型钢桩 DADBTSTA 1.0
    美国Miller River桥[59] 82.3(33.5) RC梁 H型钢桩 P、DBTSSP 1.0
    澳地利Marktwasser桥[60] 67.1(28.1) RC梁 RC桩 DAP、DS 1.0 19.5°
    美国Nash Stream桥[61] 30.0(30.0) 钢梁 H型钢桩 SPTATBP 1.0 30.0°
    中国某整体桥[62] 64.0(16.0) PC梁 RC桩 P
    美国PSO桥[63] 80.8(44.5) RC梁 RC桩 A、W 38.9°
    下载: 导出CSV

    表  2  新西兰无缝桥震害

    Table  2.   Earthquake damages of jointless bridges in New Zealand

    州道号 桥名 修建年份 桥长/m 跨数 台高/m 加速度峰值/g 震害情况
    1 Wairau River 1939 293.0 24 1.3 0.13 台身出现了细裂缝,可能由横向地震力引起;墙端出现了较宽裂缝,可能是由收缩引起
    1 Spring Creek 1939 43.0 3 1.8 0.15 大部分的桥台桩基均有细裂缝,其中,某外侧桩的缝宽达3 mm,桩顶桥台也有细裂缝
    1 Flaxbourne River 1955 64.0 5 1.1 0.40 与墩上支座相接处的主梁表面混凝土剥落
    1 Needles Creek 1953 43.0 5 1.2 0.35 结构无可见损伤
    1 Tirohanga 1939 21.0 2 2.3 0.17 结构无可见损伤
    75 Halswell River 1937 6.7 1 2.1 0.30 侧向大土压力作用下台身出现弯曲破坏
    77 Selwyn River 1931 92.0 10 2.1 0.45 无可见明显损伤
    77 Hawkins River 1939 82.0 6 1.4 0.45 桥墩和桩顶出现开裂和剥落,桥台桩基未损伤
    下载: 导出CSV
  • [1] MARTIN P B. Integral & Semi-Integral Bridges[M]. Singapore: Wiley-Blackwell, 2009.
    [2] 陈宝春, 庄一舟, 黄福云. 无伸缩缝桥梁[M]. 2版. 北京: 人民交通出版社, 2019.

    CHEN Bao-chun, ZHUANG Yi-zhou, HUANG Fu-yun. Jointless Bridges[M]. 2nd Edition. Beijing: China Communication Press, 2019. (in Chinese)
    [3] AZIZINAMINI A, POWER E H, MYERS G F, et al. Design guide for bridges for service life[R]. Washington DC: The National Academies Press, 2013.
    [4] PÉTURSSON H, COLLIN P. Innovative solutions for integral abutments[C]//COLLIN P, VELJKOVIC M, PÉTURSSON H. 2006 International Workshop on the Bridges with Integral Abutments. Luleå: Luleå Tekniska Universitet, 2006: 65-76.
    [5] SHI Cheng-cheng, WANG Yuan-feng, CHEN Bao-chun, et al. Life-cycle environmental and economic benefits of jointless bridges considering climate change[J]. Structure and Infrastructure Engineering, 2021, DOI: 10.1080/15732479.2021.1979598.
    [6] MARURI R F, PETRO S H. Integral abutments and jointless bridges (IAJB) 2004 survey summary[C]//FHWA. 2005 FHWA Conference on Integral Abutment and Jointless Bridges. Baltimore: West Virginia University, 2005: 12-29.
    [7] PARASCHOS A, AMDE A M. A survey on the status of use, problems, and costs associated with integral abutment bridges[J]. Better Roads, 2011: 54032327.
    [8] KEROKOSKI O, LAAKSONEN A. Soil-structure interaction of jointless bridges[C]//FHWA. 2005 FHWA Conference on Integral Abutment and Jointless Bridges. Baltimore: West Virginia University, 2005: 323-336.
    [9] FRANCO J M. Design and field testing of jointless bridges[D]. Morgantown: West Virginia University, 1999.
    [10] WOOD J, MURASHEV A, PALERMO A, et al. Criteria and guidance for the design of integral bridges in New Zealand[M]. New Zealand: NZ Transport Agency, 2015.
    [11] ILES D, ASCOT U K. Integral bridges in the UK[C]// COLLIN P, VELJKOVIC M, PÉTURSSON H. 2006 International Workshop on the Bridges with Integral Abutments. Luleå: Luleå University of Technology, 2006: 13-24.
    [12] PÖTZL M. Less is more-design principles for joint-less bridges[C]//CHEN Bao-chun. The 1st International Symposium on Jointless Bridges. Fuzhou: Fuzhou University, 2014: 20-32.
    [13] GEIER R. Recent austrian experiences in design, construction and monitoring of integral bridges[C]//CHEN Bao-chun. The 1st International Symposium on Jointless and Sustainable Bridges. Fuzhou: Fuzhou University, 2016: 127-146.
    [14] RUSSO G, BERGAMO O, DAMIANI L. Retrofitting a short span bridge with a semi-integral abutment bridge: the Treviso Bridge[J]. Structural Engineering International, 2009, 19(2): 137-141. doi: 10.2749/101686609788220051
    [15] XUE Jun-qing, BRISEGHELLA B, CHEN Bao-chun, et al. Italian national road authority IABs sstrategy[C]//IABMA. The 7th International Conference on Bridge Maintenance, Safety and Management. Shanghai: Tongji University, 2014: 1854-1862.
    [16] ENGLAND G L, TSANG N C M, BUSH D I. Integral bridges: a Fundamental Approach to the Time-Temperature Loading Problem[M]. London: Thomas Telford, 2000.
    [17] GEIER R, ANGELMAIER V, GRAUBNER C A, et al. Integrale Brücken: Entwurf, Berechnung, Ausführung, Monitoring[M]. Berlin: John Wiley & Sons, 2017.
    [18] ISHIKAWA Y, AOYAMA M, KUROYANAGI M, et al. Proposition of a new type of jointless system for existing concrete bridges[J]. Journal of Physical Science and Application, 2014, 4(2): 84-89.
    [19] CHOI K S, LEE T H, JEON G W, et al. The present and future of jointless bridges for expressway[J]. The Magazine of the Korean Society of Civil Engineers, 2018, 66(10): 51-56.
    [20] 陈宝春, 付毳, 庄一舟, 等. 中国无伸缩缝桥梁应用现状与发展对策[J]. 中外公路, 2018, 38(1): 87-95. doi: 10.14048/j.issn.1671-2579.2018.01.020

    CHEN Bao-chun, FU Cui, ZHUANG Yi-zhou, et al. Application status and development strategies of jointless bridgs in China[J]. Journal of China and Foreign Highway, 2018, 38(1): 87-95. (in Chinese) doi: 10.14048/j.issn.1671-2579.2018.01.020
    [21] 陈宝春, 王晨辉, 薛俊青, 等. 我国无伸缩缝桥梁调查与分析[J]. 建筑科学与工程学报, 2022, 39(5): 13-21.

    CHEN Bao-chun, WANG Chen-hui, XUE Jun-qing, et al. Investigation and analysis on the application of jointless bridges in China[J]. Journal of Architecture and Civil Engineering, 2022, 39(5): 13-21. (in Chinese)
    [22] XU Zhen, CHEN Bao-chun, ZHUANG Yi-zhou, et al. Rehabilitation and retrofitting of a multispan simply-supported adjacent box girder bridge into a jointless and continuous structure[J]. Journal of Performance of Constructed Facilities, 2018, 32(1): 04017112. doi: 10.1061/(ASCE)CF.1943-5509.0001107
    [23] XU Zhen, CHEN Bao-chun, HUANG Fu-yun, et al. Nonlinear stiffness of semi-fixed dowel joints in semi-integral bridges[J]. Applied Sciences, 2022, 12(4): 2138. doi: 10.3390/app12042138
    [24] 董桔灿, 陈宝春, BRISEGHELLA B, 等. 多跨空心板简支梁桥整体化改造设计[J]. 建筑科学与工程学报, 2015, 32(5): 73-80. doi: 10.3969/j.issn.1673-2049.2015.05.010

    DONG Ju-can, CHEN Bao-chun, BRISEGHELLA B, et al. Integral transformation design of multi-span hollow slab simply-supported bridge[J]. Journal of Architecture and Civil Engineering, 2015, 32(5): 73-80. (in Chinese) doi: 10.3969/j.issn.1673-2049.2015.05.010
    [25] 许震, 陈宝春, 黄福云, 等. 无缝化改造的空心板桥受力性能[J]. 交通运输工程学报, 2018, 18(5): 66-76. doi: 10.3969/j.issn.1671-1637.2018.05.007

    XU Zhen, CHEN Bao-chun, HUANG Fu-yun, et al. Mechanical performance of jointless retrofitted bridge with hollow-slabs[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 66-76. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.05.007
    [26] 董桔灿, 许震, BRISEGHELLA B, 等. 某多跨简支空心板梁桥无缝化改造设计与施工[J]. 中外公路, 2015, 35(4): 170-174. doi: 10.14048/j.issn.1671-2579.2015.04.039

    DONG Ju-can, XU Zhen, BRISEGHELLA B, et al. Jointless reconstruction and design of jointless transformation of a multi-span simply supported hollow slab bridge[J]. Journal of China and Foreign Highway, 2015, 35(4): 170-174. (in Chinese) doi: 10.14048/j.issn.1671-2579.2015.04.039
    [27] 林上顺, 林文, 欧智菁, 等. 公路旧桥无缝化改造技术[J]. 福建工程学院学报, 2017, 15(3): 205-209. doi: 10.3969/j.issn.1672-4348.2017.03.001

    LIN Shang-shun, LIN Wen, OU Zhi-jing, et al. Jointless reconstruction technology of old highway bridges[J]. Journal of Fujian University of Technology, 2017, 15(3): 205-209. (in Chinese) doi: 10.3969/j.issn.1672-4348.2017.03.001
    [28] YEN W P, KUO L M. Integral abutment and jointless bridges design issues and recommendations[C]//CHEN Bao-chun. The 1st International Conference on Jointless Bridges. Fuzhou: Fuzhou University, 2014: 1-9.
    [29] XUE Jun-qing. Retrofit of existing bridges with concept of integral abutment bridge: static and dynamic parametric analysis[D]. Trento: University of Trento, 2013.
    [30] KAUFMANN W, ALVAREZ M. Swiss federal roads office guidelines for integral bridges[J]. Structural Engineering International, 2011, 21(2): 189-194. doi: 10.2749/101686611X12994961034057
    [31] FROSCH R J, LOVELL M D. Long-term behavior of integral abutment bridges[D]. Indiana: Purdue University, 2011.
    [32] HUNTLEY S A, VALSANGKAR A J. Nine-year field-monitoring data from an integral-abutment bridge[C]//ZHANG Xiong, COSENTINO P J, HUSSEIN M H. IFCEE 2018. Orlando: American Society of Civil Engineers, 2018: 101-111.
    [33] HUNTLEY S A, VALSANGKAR A J. Field monitoring of earth pressures on integral bridge abutments[J]. Canadian Geotechnical Journal, 2013, 50(8): 841-857. doi: 10.1139/cgj-2012-0440
    [34] KIM W S, LAMAN J A. Seven-year field monitoring of four integral abutment bridges[J]. Journal of Performance of Constructed Facilities, 2012, 26(1): 54-64. doi: 10.1061/(ASCE)CF.1943-5509.0000250
    [35] SIMAC M R, ELTON D J. 16-year performance update: geosynthetic reinforced soil walls as integral bridge abutment walls[C]//BRANDON T L, VALENTINE R J. Geotechnical Frontiers 2017. Orlando: American Society of Civil Engineers, 2017: 102-111.
    [36] HUANG Ji-min, SHIELD C K, FRENCH C. Time-dependent behavior of a concrete integral abutment bridge[C]//TRB. 6th International Bridge Engineering Conference. Boston: Transportation Research Board, 2005: 299-309.
    [37] PÉTURSSON H, KEROKOSKI O. Monitoring and analysis of abutment-soil interaction of two integral bridges[J]. Journal of Bridge Engineering, 2013, 18(1): 54-64. doi: 10.1061/(ASCE)BE.1943-5592.0000314
    [38] HOPPE E J. Field study of integral backwall with elastic inclusion[C]//FHWA. 2005 FHWA Conference on Integral Abutment and Jointless Bridges. Baltimore: West Virginia University, 2005: 257-269.
    [39] KIRUPAKARAN K, MURALEETHARAN K K, MILLER G A. Soil-structure interactions in a skewed integral abutment bridge[C]//ASCE. IFCEE 2015. San Antonio: American Society of Civil Engineers, 2015: 309-318.
    [40] BREÑA S F, BONCZAR C H, CIVJAN S A, et al. Evaluation of seasonal and yearly behavior of an integral abutment bridge[J]. Journal of Bridge Engineering, 2007, 12(3): 296-305. doi: 10.1061/(ASCE)1084-0702(2007)12:3(296)
    [41] SKORPEN S A, KEARSLEY E P, KRUGER E J. Measured temperature and shrinkage effects on a 90 m long integral bridge in South Africa[J]. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2018, 171(3): 169-178. doi: 10.1680/jbren.17.00019
    [42] SKORPEN S A, KEARSLEY E P, CLAYTON C R I. Structural health monitoring of an integral bridge[C]//DEJONG M J, SCHOOLING J M, VIGGIANI G M B. International Conference on Smart Infrastructure and Construction 2019. London: ICE Publishing, 2019: 743-749.
    [43] KIM S H, AHN J H, JUNG C Y, et al. Behaviour of steel-box semi-integral abutment bridge considering temperature-earth pressure change[J]. International Journal of Steel Structures, 2014, 14(1): 117-140. doi: 10.1007/s13296-014-1011-7
    [44] SANDFORD T, ELGAALY M. Skew effects on backfill pressures at frame bridge abutments[J]. Transportation Research Record, 1993, 1415: 1-11.
    [45] CIVJAN S A, KALAYCI E, QUINN B H, et al. Observed integral abutment bridge substructure response[J]. Engineering Structures, 2013, 56: 1177-1191. doi: 10.1016/j.engstruct.2013.06.029
    [46] HOPPE E J, GOMEZ J P. Field study of an integral backwall bridge[R]. Charlottesville: Virginia Transportation Research Council, 1996.
    [47] KONG B, CAI C S, KONG X. Field monitoring study of an integral abutment bridge supported by prestressed precast concrete piles on soft soils[J]. Engineering Structures, 2015, 104: 18-31.
    [48] GIRTON D D, HAWKINSON T R, GREIMANN L F. Validation of design recommendations for integral-abutment piles[J]. Journal of Structural Engineering, 1991, 117(7): 2117-2134. doi: 10.1061/(ASCE)0733-9445(1991)117:7(2117)
    [49] ABENDROTH R E, GREIMANN L F. Field testing of integral abutments[R]. Ames: Iowa State University, 2005.
    [50] LAFAVE J M, BRAMBILA G, KODE U, et al. Field behavior of integral abutment bridges under thermal loading[J]. Journal of Bridge Engineering, 2021, 26(4): 04021013. doi: 10.1061/(ASCE)BE.1943-5592.0001677
    [51] LAWVER A, FRENCH C, SHIELD C K. Field performance of integral abutment bridge[J]. Transportation Research Record, 2000, 1740: 108-117. doi: 10.3141/1740-14
    [52] HASSIOTIS S, LOPEZ J A, BERMUDEZ R. Full-scale testing of an integral abutment bridge[C]//FHWA. 2005 FHWA Conference on Integral Abutment and Jointless Bridges. Baltimore: West Virginia University, 2005: 199-210.
    [53] 邵旭东. 半整体式无缝桥梁新体系[M]. 北京: 人民交通出版社, 2014.

    SHAO Xu-dong. New Structures of Jointless Bridge with Semi-Integral Abutment[M]. Beijing: China Communications Press, 2014. (in Chinese)
    [54] BAHJAT R. Short and long-term performance of a skewed integral abutment prestressed concrete bridge[D]. Amherst: University of Massachusetts Amherst, 2014.
    [55] DENG Y H, PHARES B M, GREIMANN L, et al. Behavior of curved and skewed bridges with integral abutments[J]. Journal of Constructional Steel Research, 2015, 109: 115-136. doi: 10.1016/j.jcsr.2015.03.003
    [56] OOI P S K, LIN X B, HAMADA H S. Field behavior of an integral abutment bridge supported on drilled shafts[J]. Journal of Bridge Engineering, 2010, 15(1): 4-18. doi: 10.1061/(ASCE)BE.1943-5592.0000036
    [57] ABENDROTH R E, GREIMANN L F, LAVIOLETTE M D. An integral abutment bridge with precast concrete piles[R]. Ames: Iowa State University, 2007.
    [58] JORGENSON J L. Behavior of abutment piles in an integral abutment in response to bridge movements[J]. Transportation Research Record, 1983, 903: 72-79.
    [59] DEJONG J T, HOWEY D S, CIVJAN S A, et al. Influence of daily and annual thermal variations on integral abutment bridge performance[C]//YEGIAN M K, KAVAZANJIAN E. GeoTrans 2004. Los Angeles: American Society of Civil Engineers, 2004: 496-505.
    [60] WENDNER R, STRAUSS A. Inclined approach slab solution for jointless bridges: performance assessment of the soil-structure interaction[J]. Journal of Performance of Constructed Facilities, 2015, 29(2): 04014045. doi: 10.1061/(ASCE)CF.1943-5509.0000522
    [61] HARTT S L, SANDFORD T C, DAVIS W G. Monitoring a pile-supported integral abutment bridge at a site with shallow bedrock[R]. Augusta: Maine DOT, 2006.
    [62] 李丹丹, 李文华. 整体式桥梁台后土压力的试验研究[J]. 铁道建筑, 2014, 54(11): 33-36. doi: 10.3969/j.issn.1003-1995.2014.11.10

    LI Dan-dan, LI Wen-hua. Experimental research on earth pressure behind integral bridge abutment[J]. Railway Engineering, 2014, 54(11): 33-36. (in Chinese) doi: 10.3969/j.issn.1003-1995.2014.11.10
    [63] GOEL R K. Earthquake characteristics of bridges with integral abutments[J]. Journal of Structural Engineering, 1997, 123(11): 1435-1443. doi: 10.1061/(ASCE)0733-9445(1997)123:11(1435)
    [64] 刘永健, 刘江, 张宁. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(5): 59-78. doi: 10.15951/j.tmgcxb.2019.05.006

    LIU Yong-jian, LIU Jiang, ZHANG Ning. Review on solar thermal actions of bridge structures[J]. China Civil Engineering Journal, 2019, 52(5): 59-78. (in Chinese) doi: 10.15951/j.tmgcxb.2019.05.006
    [65] 薛俊青, 林健辉, BRISEGHELLA B, 等. 适用于桥梁截面温度场计算的太阳辐射模型研究综述[J]. 福州大学学报(自然科学版), 2018, 46(4): 526-533. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201804011.htm

    XUE Jun-qing, LIN Jian-hui, BRISEGHELLA B, et al. A state-of-the-art of research on solar radiation model for calculation of temperature distribution of bridge cross section[J]. Journal of Fuzhou University (Natural Science Edition), 2018, 46(4): 526-533. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201804011.htm
    [66] AKTAN H, ATTANAYAKE U, ULKU E. Combining link slab, deck sliding over backwall, and revising bearings[D]. Kalamazoo: Western Michigan University, 2008.
    [67] ENGLAND G L, TSANG N C M, BUSH D I. Integral Bridges: a Fundamental Approach to the Time-Temperature Loading Problem[M]. London: Thomas Telford, 2000.
    [68] OESTERLE R G, VOLZ J S. Effective temperature and longitudinal movement in integral abutment bridges[C]//FHWA. 2005 FHWA Conference on Integral Abutment and Jointless Bridges. Baltimore: West Virginia University, 2005: 302-311.
    [69] 薛俊青, 陈宝春, 林健辉. 空心板延伸桥面板桥温度胀缩变形研究[J]. 桥梁建设, 2018, 48(2): 37-42. doi: 10.3969/j.issn.1003-4722.2018.02.007

    XUE Jun-qing, CHEN Bao-chun, LIN Jian-hui. Study of temperature expansion and contraction deformation of bridges with their deck slabs extended by hollow slabs[J]. Bridge Construction, 2018, 48(2): 37-42. (in Chinese) doi: 10.3969/j.issn.1003-4722.2018.02.007
    [70] RODRIGUEZ L E, BARR P J, HALLING M W. Temperature effects on a box-girder integral-abutment bridge[J]. Journal of Performance of Constructed Facilities, 2014, 28(3): 583-591. doi: 10.1061/(ASCE)CF.1943-5509.0000437
    [71] RUSSELL H G, GERKEN L J. Jointless bridges——the knowns and the unknowns[J]. Concrete International, 1994, 16(4): 44-48.
    [72] 薛俊青, 林健辉, BRISEGHELLA B, 等. 箱内边界模拟方法对箱梁截面温度场的影响研究[J]. 桥梁建设, 2019, 49(4): 52-57. doi: 10.3969/j.issn.1003-4722.2019.04.010

    XUE Jun-qing, LIN Jian-hui, BRISEGHELLA B, et al. Research on influence of simulation method of inner boundary condition on temperature distributions on cross-sections of concrete box girders[J]. Bridge Construction, 2019, 49(4): 52-57. (in Chinese) doi: 10.3969/j.issn.1003-4722.2019.04.010
    [73] KUNIN J, ALAMPALLI S. Integral abutment bridges: current practice in United States and Canada[J]. Journal of Performance of Constructed Facilities, 2000, 14(3): 104-111. doi: 10.1061/(ASCE)0887-3828(2000)14:3(104)
    [74] 刘永健, 刘江. 钢-混凝土组合梁桥温度作用与效应综述[J]. 交通运输工程学报, 2020, 20(1): 42-59. doi: 10.19818/j.cnki.1671-1637.2020.01.003

    LIU Yong-jian, LIU Jiang. Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 42-59. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.003
    [75] 薛俊青, 林健辉, 黄福云, 等. 极端气候下小箱梁截面平均温度简化计算方法研究[J]. 桥梁建设, 2021, 51(4): 53-59. doi: 10.3969/j.issn.1003-4722.2021.04.008

    XUE Jun-qing, LIN Jian-hui, HUANG Fu-yun, et al. Simplified method to calculate average cross-section temperature of small box girder under extreme climate conditions[J]. Bridge Construction, 2021, 51(4): 53-59. (in Chinese) doi: 10.3969/j.issn.1003-4722.2021.04.008
    [76] LIN Jian-hui, BRISEGHELLA B, XUE Jun-qing, et al. Research on effective temperature of T-shaped girder for jointless bridges in China[C]//IABSE. 2019 IABSE Congress. New York: IABSE, 2019: 1265-1269.
    [77] 李哲熙. 无缝桥混凝土主梁有效温度和竖向温度梯度取值方法研究[D]. 福州: 福州大学, 2021.

    LI Zhe-xi. Research on effective temperature and vertical temperature gradient of concrete girder in jointless bridge[D]. Fuzhou: Fuzhou University, 2021. (in Chinese)
    [78] 马志元, 刘江, 刘永健, 等. 钢-混组合梁桥有效温度取值的地域差异性[J]. 浙江大学学报(工学版), 2022, 22(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202205008.htm

    MA Zhi-yuan, LIU Jiang, LIU Yong-jian, et al. Regional difference of value taking of effective temperature for steel-concrete composite girder bridges[J]. Journal of Zhejiang University (Engineering Science), 2022, 22(5): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202205008.htm
    [79] ABID S R, TAYŞI N, ÖZAKÇA M. Experimental analysis of temperature gradients in concrete box-girders[J]. Construction and Building Materials, 2016, 106: 523-532. doi: 10.1016/j.conbuildmat.2015.12.144
    [80] OESTERLE R G, TABATABAI H, LAWSON T J, et al. Jointless and integral abutment bridges volume Ⅲ: summary report[R]. Washington DC: Federal Highway Administration, 1999.
    [81] FELDMANN M, NAUMES J, PAK D, et al. Economic and durable design of composite bridges with integral abutments[R]. Luxembourg: Publications Office of the European Union, 2010.
    [82] 林健辉. 福建省无伸缩缝桥梁有效温度研究[D]. 福州: 福州大学, 2018.

    LIN Jian-hui. Research on effective temperature of jointless bridges in Fujian Province[D]. Fuzhou: Fuzhou University, 2018. (in Chinese)
    [83] 刘扬. 延伸桥面板混凝土无缝桥温度变形研究[D]. 福州: 福州大学, 2016.

    LIU Yang. Research on temperature deformation of extended slab concrete jointless bridges[D]. Fuzhou: Fuzhou University, 2016. (in Chinese)
    [84] 薛俊青, 陈宝春, BRISEGHELLA B, 等. 高速公路延伸桥面板桥设计、施工与监测[J]. 中外公路, 2018, 38(6): 76-82. doi: 10.14048/j.issn.1671-2579.2018.06.016

    XUE Jun-qing, CHEN Bao-chun, BRISEGHELLA B, et al. Design, construction and monitoring of deck-extension bridge deck in expressway[J]. Journal of China and Foreign Highway, 2018, 38(6): 76-82. (in Chinese) doi: 10.14048/j.issn.1671-2579.2018.06.016
    [85] LIN Jian-hui, BRISEGHELLA B, XUE Jun-qing, et al. Temperature monitoring and response of deck-extension side-by-side box girder bridges[J]. Journal of Performance of Constructed Facilities, 2020, 34(2): 04019122. doi: 10.1061/(ASCE)CF.1943-5509.0001399
    [86] 樊健生, 刘诚, 刘宇飞. 钢-混凝土组合梁桥温度场与温度效应研究综述[J]. 中国公路学报, 2020, 33(4): 1-13. doi: 10.3969/j.issn.1001-7372.2020.04.001

    FAN Jian-sheng, LIU Cheng, LIU Yu-fei. Review of temperature distribution and temperature effects of steel-concrete composite girder bridges in China[J]. China Journal of Highway and Transport, 2020, 33(4): 1-13. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.04.001
    [87] 赖秀英. 钢管混凝土拱桥收、缩徐变效应研究[D]. 福州: 福州大学, 2016.

    LAI Xiu-ying. Research on effects of shrinkage and creep in concrete filled steel tubular arch bridges[D]. Fuzhou: Fuzhou University, 2016. (in Chinese)
    [88] 王磊, 张书建, 王志鹏, 等. 收缩、徐变对无伸缩缝桥梁的影响[J]. 吉林大学学报(工学版), 2008, 38(增刊2): 80-84. doi: 10.13229/j.cnki.jdxbgxb2008.s2.020

    WANG Lei, ZHANG Shu-jian, WANG Zhi-peng, et al. Effects of shrinkage and creep on jointless bridges[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(S2): 80-84. (in Chinese) doi: 10.13229/j.cnki.jdxbgxb2008.s2.020
    [89] SHERAFATI A, AZIZINAMINI A. Flexible pile head in jointless bridges: experimental investigation[J]. Journal of Bridge Engineering, 2015, 20(4): 04014071. doi: 10.1061/(ASCE)BE.1943-5592.0000628
    [90] VASHEGHANI-FARAHANI R, ZHAO Qiu-hong, BURDETTE E G. Seismic analysis of integral abutment bridge in Tennessee, including soil-structure interaction[J]. Transportation Research Record, 2010, 2201(1): 70-79. doi: 10.3141/2201-09
    [91] KIM W, LAMAN J A. Integral abutment bridge response under thermal loading[J]. Engineering Structures, 2010, 32(6): 1495-1508. doi: 10.1016/j.engstruct.2010.01.004
    [92] ERHAN S, DICLELI M. Effect of dynamic soil-bridge interaction modeling assumptions on the calculated seismic response of integral bridges[J]. Soil Dynamics and Earthquake Engineering, 2014, 66: 42-55. doi: 10.1016/j.soildyn.2014.06.033
    [93] PARK M C, NAM M S. Behavior of integral abutment bridge with partially protruded piles[J]. Geomechanics and Engineering, 2018, 14(6): 601-614.
    [94] MCCLELLAND B, FOCHT J. Soil modulus for laterally loaded piles[J]. Journal of the Soil Mechanics and Foundations Division, 1956, 82(4): 1-22.
    [95] ANDERSON J B, TOWNSEND F C, GRAJALES B. Case history evaluation of laterally loaded piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 187-196. doi: 10.1061/(ASCE)1090-0241(2003)129:3(187)
    [96] KIM B T, KIM N K, LEE W J, et al. Experimental load-transfer curves of laterally loaded piles in Nak-Dong River Sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(4): 416-425. doi: 10.1061/(ASCE)1090-0241(2004)130:4(416)
    [97] GUO Wei-dong. Simple model for nonlinear response of 52 laterally loaded piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 234-252. doi: 10.1061/(ASCE)GT.1943-5606.0000726
    [98] RAZMI J. Effect of moisture on mechanical characteristic of soil and interaction of soil-pile in integral abutment bridges[J]. Bridge Structures, 2021, 16(2/3): 75-83.
    [99] 于天来, 周田, 姜立东, 等. 升温作用下整体桥台台后土压力计算方法的探讨[J]. 桥梁建设, 2010, 40 (1): 29-31, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201001009.htm

    YU Tian-lai, ZHOU Tian, JIANG Li-dong, et al. Study of calculating methods for earth pressure behind abutment of integral abutment bridge under action of rising temperatures[J]. Bridge Construction, 2010, 40 (1): 29-31, 35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201001009.htm
    [100] 郑刚. 高等基础工程学[M]. 北京: 机械工业出版社, 2007.

    ZHENG Gang. Advanced Foundation Engineering[M]. Beijing: China Machine Press, 2007. (in Chinese)
    [101] 黄福云, 林友炜, 程俊峰, 等. 整体式桥台-H形钢桩-土相互作用低周往复拟静力试验[J]. 中国公路学报, 2019, 32(5) 100-114. doi: 10.19721/j.cnki.1001-7372.2019.05.010

    HUANG Fu-yun, LIN You-wei, CHENG Jun-feng, et al. Interaction of integral abutment-H-shaped steel pile-soil under reciprocating low-cycle pseudo-static test[J]. China Journal of Highway and Transport, 2019, 32(5): 100-114. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2019.05.010
    [102] HUANG Fu-yun, WU Sui-wen, LUO Xiao-ye, et al. Pseudo-static low cycle test on the mechanical behavior of PHC pipe piles with consideration of soil-pile interaction[J]. Engineering Structures, 2018, 171: 992-1006. doi: 10.1016/j.engstruct.2018.01.060
    [103] LUO Xiao-ye, HUANG Fu-yun, ZHUANG Yi-zhou, et al. Modified calculations of lateral displacement and soil pressure of pile considering pile-soil interaction under cyclic loads[J]. Journal of Testing and Evaluation, 2021, 49(4): 2840-2859.
    [104] CHEN Bao-chun, LUO Xiao-ye, HUANG Fu-yun, et al. Displacement-based simplified calculation for pile-soil interaction under reciprocating low-cycle pseudo-static loads[J]. Journal of Testing and Evaluation, 2021, 49(4): 2609-2626.
    [105] 衡江峰. 不同下部结构形式的整体式桥台无缝桥受力研究[D]. 西安: 长安大学, 2018.

    HENG Jiang-feng. Mechanical characteristics of integral abutment bridges with different substructures[D]. Xi'an: Chang'an University, 2018. (in Chinese)
    [106] 庄一舟, 应滕勇, 苏浩, 等. 无缝桥抗震性能的对比研究[J]. 世界地震工程, 2021, 37(3): 73-84. doi: 10.3969/j.issn.1007-6069.2021.03.009

    ZHUANG Yi-zhou, YING Teng-yong, SU Hao, et al. Comparative study on seismic performance of main jointless bridges[J]. World Earthquake Engineering, 2021, 37(3): 73-84. (in Chinese) doi: 10.3969/j.issn.1007-6069.2021.03.009
    [107] 苏浩. 三类主要无缝桥的静力特性及抗震性能研究[D]. 杭州: 浙江工业大学, 2019.

    SU Hao. Static characteristics and seismic behavior of three kinds of main jointless bridges[D]. Hangzhou: Zhejiang University of Technology, 2019. (in Chinese)
    [108] 缪继超. 混凝土桩整体桥梁受力性能及其简化设计方法研究[D]. 杭州: 浙江工业大学, 2017.

    MIAO Ji-chao. Research on behavior and simplified design method of integral abutment bridges with concrete piles[D]. Hangzhou: Zhejiang University of Technology, 2017. (in Chinese)
    [109] RAZMI J, LADANI L, AGGOUR M S. Fatigue crack initiation and propagation in piles of integral abutment bridges[J]. Computer-Aided Civil and Infrastructure Engineering, 2013, 28(5): 389-402. doi: 10.1111/j.1467-8667.2012.00801.x
    [110] FROSCH R J, LOVELL M D. Long-term behavior of integral abutment bridges[R]. West Lafayette: Indiana Department of Transportation and Purdue University, 2011.
    [111] DAVIDS W G, SANDFORD T, ASHLEY S, et al. Field-measured response of an integral abutment bridge with short steel H-piles[J]. Journal of Bridge Engineering, 2010, 15(1): 32-43. doi: 10.1061/(ASCE)1084-0702(2010)15:1(32)
    [112] RAZMI J, LADANI L, AGGOUR S M. Finite element simulation of pile behaviour under thermo-mechanical loading in integral abutment bridges[J]. Structure and Infrastructure Engineering, 2014, 10(5): 643-653. doi: 10.1080/15732479.2012.757794
    [113] 于天来, 赵云鹏, 孙小龙, 等. 在水平荷载下整体式桥台桥梁受力分析[J]. 沈阳建筑大学学报(自然科学版), 2014, 30(4): 600-608. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201404005.htm

    YU Tian-lai, ZHAO Yun-peng, SUN Xiao-long, et al. Analysis for mechanical properties of integral abutment bridge subjected to horizontal loads[J]. Journal of Shenyang Jianzhu University (Natural Science), 2014, 30(4): 600-608. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201404005.htm
    [114] 黄福云, 周志明, 庄一舟, 等. 整体桥高性能混凝土桩-土相互作用试验研究[J]. 岩土力学, 2022, 43(3): 591-601. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202203003.htm

    HUANG Fu-yun, ZHOU Zhi-ming, ZHUANG Yi-zhou, et al. Experiment on interaction of high performance concrete pile-soil in IAJBs[J]. Rock and Soil Mechanics, 2022, 43(3): 591-601. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202203003.htm
    [115] LUY D, ZHAO Da-jun, LI Long, et al. Solving internal forces of piles of jointless bridges under the action of temperature using ordinary differential systems[J]. Advanced Materials Research, 2014, 1082: 220-223. doi: 10.4028/www.scientific.net/AMR.1082.220
    [116] SHERAFATI A, CHAFI M S, AZIZINAMINI A. Buckling of piles in cohesive soil supporting jointless bridges[J]. Bridge Structures, 2012, 8(1): 15-24. doi: 10.3233/BRS-2012-0034
    [117] 赵秋红, 齐朝阳, 安泽宇, 等. 考虑SSI的整体式钢桥抗震性能参数分析[J]. 交通运输工程学报, 2018, 18(5): 35-46. doi: 10.3969/j.issn.1671-1637.2018.05.004

    ZHAO Qiu-hong, QI Zhao-yang, AN Ze-yu, et al. Parametric analysis on seismic behavior of integral abutment steel bridge considering SSI[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 35-46. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.05.004
    [118] 蔺鹏臻, 武发辉, 杨子江. 考虑边坡效应的桥梁桩基受力分析[J]. 中国铁道科学, 2016, 37(4): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201604010.htm

    LIN Peng-zhen, WU Fa-hui, YANG Zi-jiang. Mechanics analysis of bridge pile foundation considering slope effect[J]. China Railway Science, 2016, 37(4): 54-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201604010.htm
    [119] 刘建华, 赵明华, 杨明辉. 高陡岩质边坡上桥梁基桩模型试验研究[J]. 岩土工程学报, 2009, 31(3): 372-377. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200903015.htm

    LIU Jian-hua, ZHAO Ming-hua, YANG Ming-hui. Model tests on bridge pile foundation in high and steep rock slopes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 372-377. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200903015.htm
    [120] WEI C L, BUCKLE I, ELFASS S. Lateral load capacity of abutment piles in sloping ground under jointless bridges[C]//CHEN Bao-chun. The 1st International Symposium on Jointless and Sustainable Bridges. Fuzhou: Fuzhou University, 2016: 36-44.
    [121] 单玉麟, 黄福云, 罗小烨, 等. 非对称条件下整体桥H型钢桩-土相互作用拟静力试验研究[J]. 湖南大学学报(自然科学版), 2022, 49(3): 175-186. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202203017.htm

    SHAN Yu-lin, HUANG Fu-yun, LUO Xiao-ye, et al. Pseudo-static test on interaction of soil-steel H-pile in integral abutment jointless bridges (IAJBs) under asymmetric conditions[J]. Journal of Hunan University (Natural Sciences), 2022, 49(3): 175-186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202203017.htm
    [122] 单玉麟, 黄福云, 周桂吉, 等. 考虑台后不平衡土压力下整体桥H型钢桩基-土相互作用内力计算方法[J]. 建筑科学与工程学报, 2022, 39(1): 125-133. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202201013.htm

    SHAN Yu-lin, HUANG Fu-yun, ZHOU Gui-ji, et al. Internal force calculation method of soil-steel H-pile considering unbalance earth pressure of backfill behind abutment in integral abutment jointless bridge[J]. Journal of Architecture and Civil Engineering, 2022, 39(1): 125-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202201013.htm
    [123] KIM W S, LAMAN J A, ZAREIAN F, et al. Influence of construction joint and bridge geometry on integral abutment bridges[J]. Applied Sciences, 2021, 11(11): 5031.
    [124] VERMA M, MISHRA S S. Temperature-driven fatigue life of reinforced concrete integral bridge pile considering nonlinear soil-structure interaction[J]. Structural Concrete, 2020, 21(6): 2565-2583.
    [125] LEE J, JEONG Y, KIM W S. Buckling behavior of steel girder in integral abutment bridges under thermal loadings in summer season during deck replacement[J]. International Journal of Steel Structures, 2016, 16(4): 1071-1082.
    [126] WILLIAM G W, SHOUKRY S N, RIAD M Y, et al. Stability of steel girders under the effect of temperature variations and moving loads in integral abutment bridges[J]. Bridge Structures: Assessment, Design and Construction, 2009, 5(1): 45-59.
    [127] AU A, LAM C, AU J, et al. Eliminating deck joints using debonded link slabs: research and field tests in Ontario[J]. Journal of Bridge Engineering, 2013, 18(8): 768-778.
    [128] 丁勇, 黄奇, 黄剑源. 连续桥面简支梁桥静动力特性的理论分析方法研究[J]. 工程力学, 2015, 32(9): 100-110. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201509015.htm

    DING Yong, HUANG Qi, HUANG Jian-yuan. Theoretical analysis for static and dynamic characteristics of multi-simple-span bridge with continuous deck[J]. Engineering Mechanics, 2015, 32(9): 100-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201509015.htm
    [129] FARAJI S, TING J M, CROVO D S. Nonlinear analysis of integral bridges: finite-element model[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(5): 454-461.
    [130] 彭大文, 陈朝慰, 洪锦祥. 整体式桥台桥梁的桥台结点受力性能研究[J]. 中国公路学报, 2005, 18(1): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200501011.htm

    PENG Da-wen, CHEN Chao-wei, HONG Jin-xiang. Study of loaded property of abutment node of integral abutment bridges[J]. China Journal of Highway and Transport, 2005, 18(1): 46-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200501011.htm
    [131] DICLELI M, ERHAN S. Effect of soil-bridge interaction on the magnitude of internal forces in integral abutment bridge components due to live load effects[J]. Engineering Structures, 2010, 32(1): 129-145.
    [132] DICLELI M. Integral abutment-backfill behavior on sand soil-pushover analysis approach[J]. Journal of Bridge Engineering, 2005, 10(3): 354-364.
    [133] 朱伟庆, 刘永健, 衡江峰, 等. 采用不同下部结构形式的整体式无缝桥受力特征[J]. 建筑科学与工程学报, 2017, 34(1): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201701008.htm

    ZHU Wei-qing, LIU Yong-jian, HENG Jiang-feng, et al. Mechanical characteristics of integral abutment bridges with different substructures[J]. Journal of Architecture and Civil Engineering, 2017, 34(1): 49-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201701008.htm
    [134] 刘鹏飞. 加筋土整体式桥台地震响应数值分析[D]. 北京: 清华大学, 2015.

    LIU Peng-fei. Numerical analysis of geosynthetic-reinforced soil integral abutment subjected to seismic loads[D]. Beijing: Tsinghua University, 2015. (in Chinese)
    [135] ZHU Zhi-hui, DAVIDSON M T, HARIK I E, et al. Effect of superstructure temperature changes on intermediate pier foundation stresses in integral abutment bridges[J]. Journal of Bridge Engineering, 2015, 20(1): 04014058.
    [136] KALAYCI E, CIVJAN S A, BREÑA S F, et al. Load testing and modeling of two integral abutment bridges in Vermont, US[J]. Structural Engineering International, 2011, 21(2): 181-188.
    [137] XIAO Y, CHEN L. Behavior of model steel H-pile-to-pile-cap connections[J]. Journal of Constructional Steel Research, 2013, 80: 153-162.
    [138] KARALAR M, DICLELI M. Fatigue in jointless bridge H-piles under axial load and thermal movements[J]. Journal of Constructional Steel Research, 2018, 147, 504-522.
    [139] FAR N E, MALEKI S, BARGHIAN M. Design of integral abutment bridges for combined thermal and seismic loads[J]. Earthquakes and Structures, 2015, 9(2), 415-430.
    [140] HUNTLEY S A, VALSANGKAR A J. Behaviour of H-piles supporting an integral abutment bridge[J]. Canadian Geotechnical Journal, 2014, 51(7): 713-734.
    [141] SALMAN N N, ISSA M A. Displacement capacities of H-piles in integral abutment bridges[J]. Journal of Bridge Engineering, 2019, 24(12): 04019122.
    [142] RAZMI J. Fracture mechanics-based and continuum damage modeling approach for prediction of crack initiation and propagation in integral abutment bridges[J]. Journal of Computing in Civil Engineering, 2016, 30(4): 4015061.
    [143] RAZMI J, LADANI L, AGGOUR M S. Fatigue life of piles in integral-abutment bridges: case study[J]. Journal of Bridge Engineering, 2013, 18(10): 1105-1117.
    [144] ABDOLLAHNIA H, ALIZADEH ELIZEI M H, REZA KASHYZADEH K. Low-cycle fatigue behavior of H-shaped steel piles of an integral concrete bridge subjected to temperature variations[J]. Materials Today: Proceedings. 2021, 46(4): 1657-1662.
    [145] KHODAIR Y A, HASSIOTIS S. Rigidity of abutments in integral abutment bridges[J]. Structure and Infrastructure Engineering, 2013, 9(2): 151-160,
    [146] MIRREZAEI S S, BARGHIAN M, GHAFFARZADEH H, et al. Retrofitting of steel pile-abutment connections of integral bridges using CFRP[J]. Structural Engineering and Mechanics, 2016, 59(2): 209-226.
    [147] YANG P S, WOLDE-TINSAE A M, GREIMANN L F. Effects of predrilling and layered soils on piles[J]. Journal of Geotechnical Engineering, 1985, 111(1): 18-31.
    [148] KHODAIR Y, HASSIOTIS S. Numerical and experimental analyses of an integral bridge[J]. International Journal of Advanced Structural Engineering, 2013, 5(1): 14.
    [149] SALMAN N N I. Parametric investigation of integral abutment bridges: behavior and pile buckling analysis[D]. Chicago: University of Illinois at Chicago, 2018.
    [150] 高恩全, 陈方东, 郑国平. 无伸缩缝桥梁在浙江省实践及适用性研究[J]. 公路交通科技(应用技术版), 2019, 15(5): 235-238. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201905077.htm

    GAO En-quan, CHEN Fang-dong, ZHENG Guo-ping. Research on practice and applicability of jointless bridge in Zhejiang Province[J]. Journal of Highway and Transportation Research and Development (Application Technology Edition), 2019, 15(5): 235-238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201905077.htm
    [151] KONG B, CAI C S, ZHANG Y. Parametric study of an integral abutment bridge supported by prestressed precast concrete piles[J]. Engineering Structures, 2016, 120: 37-48.
    [152] GAMA D, ALMEIDA J F. Concrete integral abutment bridges with reinforced concrete piles[J]. Structural Concrete, 2014, 15(3): 292-304.
    [153] 许震. 多跨空心板桥无缝化改造方法与受力性能研究[D]. 福州: 福州大学, 2020.

    XU Zhen. Retrofitting method and mechanical performance of jointless bridge of multi-span hollow-slabs[D]. Fuzhou: Fuzhou University, 2020. (in Chinese)
    [154] 许震, 罗小烨, 陈宝春, 等. 均匀温度下多跨半刚接整体桥受力性能[J]. 福州大学学报(自然科学版), 2019, 47(5): 669-674, 682. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201905018.htm

    XU Zhen, LUO Xiao-ye, CHEN Bao-chun, et al. Mechanical performance of multi-span semi-rigid integral bridge under uniform temperature[J]. Journal of Fuzhou University (Natural Science Edition), 2019, 47(5): 669-674, 682. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201905018.htm
    [155] 庄一舟, 黄福云, 钱海敏, 等. PHC管桩-土相互作用受力性能拟静力试验[J]. 中国公路学报, 2017, 30(4): 42-51, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201704006.htm

    ZHUANG Yi-zhou, HUANG Fu-yun, QIAN Hai-min, et al. Pseudo-static test research on mechanic behavior of PHC piles with soil-pile interaction[J]. China Journal of Highway and Transport, 2017, 30(4): 42-51, 71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201704006.htm
    [156] 黄福云, 钱海敏, 付毳, 等. 基于位移的PHC管桩-土相互作用计算方法[J]. 中国公路学报, 2018, 31(3): 68-79, 88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201803009.htm

    HUANG Fu-yun, QIAN Hai-min, FU Cui, et al. Displacement-based simplified calculation on soil-pile interaction of PHC pipe-piles[J]. China Journal of Highway and Transport, 2018, 31(3): 68-79, 88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201803009.htm
    [157] 黄福云, 何凌峰, 单玉麟, 等. 整体桥预应力桩-土相互作用试验[J]. 建筑科学与工程学报, 2021, 38(1): 31-40. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202101005.htm

    HUANG Fu-yun, HE Ling-feng, SHAN Yu-lin, et al. Experiment on interaction of prestressed pile-soil in integral bridge[J]. Journal of Architecture and Civil Engineering, 2021, 38(1): 31-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202101005.htm
    [158] ABENDROTH R E, GREIMANN L F, EBNER P B. Abutment pile design for jointless bridges[J]. Journal of Structural Engineering, 1989, 115(11): 2914-2929.
    [159] GREIMANN L, WOLDE-TINSAE A M. Design model for piles in jointless bridges[J]. Journal of Structural Engineering, 1988, 114(6): 1354-1371.
    [160] LAN C, BRISEGHELLA B, FENU L, et al. The optimal shapes of piles in integral abutment bridges[J]. Journal of Traffic and Transportation Engineering (English Edition), 2017, 4(6): 576-593.
    [161] 罗小烨, 陈宝春, 黄福云, 等. 不同类型桩基支撑的整体桥力学性能[J]. 建筑科学与工程学报, 2020, 37(5): 151-160. doi: 10.19815/j.jace.2019.12002

    LUO Xiao-ye, CHEN Bao-chun, HUANG Fu-yun, et al. Mechanical property of integral bridge supported by different types of pile foundations[J]. Journal of Architecture and Civil Engineering, 2020, 37(5): 151-160. (in Chinese) doi: 10.19815/j.jace.2019.12002
    [162] HUANG Fu-yun, SHAN Yu-lin, JAVANMARDI A, et al. Seismic performance of various piles considering soil-pile interaction under lateral cycle loads for integral abutment jointless bridges (IAJBs)[J]. Applied Sciences, 2020, 10(10): 3406. doi: 10.3390/app10103406
    [163] QUINN B H, CIVJAN S A. Parametric study on effects of pile orientation in integral abutment bridges[J]. Journal of Bridge Engineering, 2017, 22(4): 04016132. doi: 10.1061/(ASCE)BE.1943-5592.0000952
    [164] 徐明, 刘鹏飞. 整体式桥台研究综述[J]. 工程力学, 2016, 33(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201604003.htm

    XU Ming, LIU Peng-fei. Research on integral bridge abutments[J]. Engineering Mechanics, 2016, 33(4): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201604003.htm
    [165] WALTER J R, MORSY A M, ZORNBERG J G. Experimental and numerical investigation of lateral earth pressures generated from repeated loading[C]//LEMNITZER A, STUEDLEIN A W, SULEIMAN M T. IFCEE 2018. Reston: American Society of Civil Engineers, 2018: 158-168.
    [166] NAM M S, PARK Y H. Relationship between earth pressure and thermally induced movement of integral abutments[J]. Journal of Performance of Constructed Facilities, 2015, 29(4): 04014093. doi: 10.1061/(ASCE)CF.1943-5509.0000562
    [167] ALIZADEH M H, RASHID A R K, CHIK Z, et al. Investigation of abutment displacement of a full height integral bridges in dense granule backfill[J]. American Journal of Engineering and Applied Sciences, 2010, 3(4): 749-756. doi: 10.3844/ajeassp.2010.749.756
    [168] OESTERLE R G, TABATABAI H. Design considerations for integral abutment/jointless bridges in the USA[C]//CHEN Bao-chun. The 1st International Symposium on Jointless Bridges. Fuzhou: Fuzhou University, 2014: 71-101.
    [169] LUO Sha, DE LUCA F, DE RISI R, et al. Challenges and perspectives for integral bridges in the UK: PLEXUS small-scale laboratory experiments[J]. Proceedings of the Institution of Civil Engineers-Smart Infrastructure and Construction, 2022, 175(1): 27-43. doi: 10.1680/jsmic.21.00020
    [170] MOVAHEDIFAR M, BOLOURI-BAZAZ J. An investigation on the effect of cyclic displacement on the integral bridge abutment[J]. Journal of Civil Engineering and Management, 2014, 20(2): 256-269. doi: 10.3846/13923730.2013.802707
    [171] 林上顺, 林友炜, 黄福云, 等. 往复位移作用下整体桥台后土压力计算方法[J]. 中国公路学报, 2019, 32(2): 116-125. doi: 10.3969/j.issn.1001-7372.2019.02.012

    LIN Shang-shun, LIN You-wei, HUANG Fu-yun, et al. Method to calculate earth pressure of backfill of integral abutment bridges under the action of reciprocating longitudinal displacement[J]. China Journal of Highway and Transport, 2019, 32(2): 116-125. (in Chinese) doi: 10.3969/j.issn.1001-7372.2019.02.012
    [172] NG C, SPRINGMAN S, NORRISH A. Soil-structure interaction of spread-base integral bridge abutments[J]. Soils and Foundations, 1998, 38(1): 145-162. doi: 10.3208/sandf.38.145
    [173] XU Ming, GUO Jin-wu. DEM study on the development of the earth pressure of granular materials subjected to lateral cyclic loading[J]. Computers and Geotechnics, 2021, 130: 103915. doi: 10.1016/j.compgeo.2020.103915
    [174] 徐明. 整体式桥台后粗粒土填料力学特性的试验研究[J]. 土木工程学报, 2010, 43(5): 136-141. doi: 10.15951/j.tmgcxb.2010.05.002

    XU Ming. Laboratory study of the behavior of granular soils behind integral bridge abutments[J]. China Civil Engineering Journal, 2010, 4(5): 136-141. (in Chinese) doi: 10.15951/j.tmgcxb.2010.05.002
    [175] XU Ming, BLOODWORTH A G, CLAYTON C R I. Behavior of a stiff clay behind embedded integral abutments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 721-730. doi: 10.1061/(ASCE)1090-0241(2007)133:6(721)
    [176] CLAYTON C R I, XU M, BLOODWORTH A. A laboratory study of the development of earth pressure behind integral bridge abutments[J]. Géotechnique, 2006, 56(8): 561-571. doi: 10.1680/geot.2006.56.8.561
    [177] BLOODWORTH A G, XU Ming, BANKS J R, et al. Predicting the earth pressure on integral bridge abutments[J]. Journal of Bridge Engineering, 2012, 17(2): 37l-381.
    [178] BROMS B B, INGELSON I. Earth pressure against the abutments of a rigid frame bridge[J]. Géotechnique, 1971, 21(1): 15-28. doi: 10.1680/geot.1971.21.1.15
    [179] DICLELI M. A rational design approach for prestressed- concrete-girder integral bridges[J]. Engineering Structures, 2000, 22(3): 230-245. doi: 10.1016/S0141-0296(98)00080-7
    [180] XU Ming, CLAYTON C R I, BLOODWORTH A G. The earth pressure behind full-height frame integral abutments supporting granular fill[J]. Canadian Geotechnical Journal, 2007, 44(3): 284-298. doi: 10.1139/t06-122
    [181] ARGYROUDIS S, PALAIOCHORINOU A, MITOULIS S, et al. Use of rubberised backfills for improving the seismic response of integral abutment bridges[J]. Bulletin of Earthquake Engineering, 2016, 14(12): 3573-3590. doi: 10.1007/s10518-016-0018-1
    [182] CUI L, MITOULIS S. DEM analysis of green rubberised backfills towards future smart integral abutment bridges (IABs)[C]//SOGA K, KUMAR K, BISCONTIN G, et al. Proceedings of the TC105 ISSMGE International Symposium on Geomechanics from Micro to Macro. Boca Raton: CRC Press, 2014: 583-588.
    [183] MIR MOHAMMAD HOSSEINI S M, KHATIBI F. Earth pressure behind an integral bridge abutment under traffic loadings[J]. Arabian Journal for Science and Engineering, 2013, 38(10): 2619-2629. doi: 10.1007/s13369-013-0612-3
    [184] 单玉麟, 黄福云, 罗小烨, 等. 整体桥台后大不平衡土压力计算方法研究[J]. 郑州大学学报(工学版), 2022, 43(2): 84-90, 104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY202202013.htm

    SHAN Yu-lin, HUANG Fu-yun, LUO Xiao-ye, et al. Study on calculation method of larger unbalanced earth pressure of backfill behind abutment in integral abutment jointless bridges[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(2): 84-90, 104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY202202013.htm
    [185] FENNEMA J L, LAMAN J A, LINZELL D G. Predicted and measured response of an integral abutment bridge[J]. Journal of Bridge Engineering, 2005, 10(6): 666-677. doi: 10.1061/(ASCE)1084-0702(2005)10:6(666)
    [186] DICLELI M. Simplified model for computer-aided analysis of integral bridges[J]. Journal of Bridge Engineering, 2000, 5(3): 240-248. doi: 10.1061/(ASCE)1084-0702(2000)5:3(240)
    [187] 赵云鹏, 于天来, 毕瑞锋. 整体式桥梁在温度荷载作用下的台后土压力研究[J]. 桥梁建设, 2016, 46(6): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201606012.htm

    ZHAO Yun-peng, YU Tian-lai, BI Rui-feng. Study of earth pressure behind abutment of integral bridge under action of temperature load[J]. Bridge Construction, 2016, 46(6): 56-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201606012.htm
    [188] DENTON S, CHRISTIE T, SHAVE J, et al. PD 6694-1: recommendations for the design of structures subject to traffic loading to EN 1997-1[C]//DENTON S. Bridge Design to Eurocodes: UK Implementation. London: ICE Publishing, 2011: 434-450.
    [189] ABDEL-FATTAH M T, ABDEL-FATTAH T T. Behavior of integral frame abutment bridges due to cyclic thermal loading: nonlinear finite-element analysis[J]. Journal of Bridge Engineering, 2019, 24(5): 04019031. doi: 10.1061/(ASCE)BE.1943-5592.0001394
    [190] ABDEL-FATTAH M T, ABDEL-FATTAH T T, HEMADA A A. Nonlinear finite-element analysis of integral abutment bridges due to cyclic thermal changes[J]. Journal of Bridge Engineering, 2018, 23(2): 04017134. doi: 10.1061/(ASCE)BE.1943-5592.0001183
    [191] 徐明, 林勇志, 周文轩. 整体式桥台后砂土压力累积效应的反分析研究[J]. 交通运输工程学报, 2022, 22(5): 163-172 https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202205009.htm

    XU Ming, LIN Yong-zhi, ZHOU Wen-xuan. Back analysis of build-up effect of earth pressure behind integral abutments[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 163-172. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202205009.htm
    [192] SANDBERG J, ARGYLE T, PETTY R, et al. The design of integral bridges with bankseat, halt-height and full-height abutments on the A14, UK[J]. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2018, 171(3): 222-234. doi: 10.1680/jbren.17.00018
    [193] STEIGER H, ZEIßLER T, BERNHARD M, et al. Integrale großbrücken mit flexiblen widerlagern[J]. Beton-Und Stahlbetonbau, 2012, 107(3): 175-182. doi: 10.1002/best.201100082
    [194] 马竞, 金晓勤. 我国第一座整体式全无缝桥梁——广东清远四九桥的设计思路[J]. 中南公路工程, 2002, 27(2): 32-34. doi: 10.3969/j.issn.1674-0610.2002.02.013

    MA Jing, JIN Xiao-qin. Design philosophy of Guandong Qingyuan Sijiu Bridge-the first integral bridge without expansion in China[J]. Central South Highway Engineering, 2002, 27(2): 32-34. (in Chinese) doi: 10.3969/j.issn.1674-0610.2002.02.013
    [195] 陈洪, 薛俊青, BRISEGHELLA B, 等. 某整体式桥台桥梁的设计与施工[C]//陆新征. 第26届全国结构工程学术会议. 长沙: 工程力学杂志社, 2017: 356-361.

    CHEN Hong, XUE Jun-qing, BRISEGHELLA B, et al. Design and construction of an integral abutment bridge[C]//LU Xin-zheng. The 26th National Conference on Structural Engineering. Changsha: Engineering Mechanics Press, 2017: 356-361. (in Chinese)
    [196] 王先前, 郭晓燕, 严国齐. 整体式桥梁力学性能的关键参数分析[J]. 铁道科学与工程学报, 2018, 15(9): 2276-2284. doi: 10.19713/j.cnki.43-1423/u.2018.09.014

    WANG Qian-qian, GUO Xiao-yan, YAN Guo-qi. Parametric study on the mechanical properties of integral bridges[J]. Journal of Railway Science and Engineering, 2018, 15(9): 2276-2284. (in Chinese) doi: 10.19713/j.cnki.43-1423/u.2018.09.014
    [197] 朱伟庆, 衡江峰, 刘永健, 等. 采用墙式整体桥台的无缝桥受力特征[J]. 交通运输工程学报, 2017, 17(6): 36-45. doi: 10.3969/j.issn.1671-1637.2017.06.005

    ZHU Wei-qing, HENG Jiang-feng, LIU Yong-jian, et al. Mechanical characteristics of jointless bridge with wall-type integral abutment[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 36-45. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.06.005
    [198] XUE Jun-qing, BRISEGHELLA B, LIN Jian-hui, et al. Design and field tests of a deck-extension bridge with small box girder[J]. Journal of Traffic and Transportation Engineering (English Edition), 2018, 5(6): 467-479. doi: 10.1016/j.jtte.2018.10.004
    [199] ZORDAN T, BRISEGHELLA B, LAN Cheng. Parametric and pushover analyses on integral abutment bridge[J]. Engineering Structures, 2011, 33(2): 502-515. doi: 10.1016/j.engstruct.2010.11.009
    [200] PUGASAP K, KIM W, LAMAN J A. Long-term response prediction of integral abutment bridges[J]. Journal of Bridge Engineering, 2009, 14(2): 129-139. doi: 10.1061/(ASCE)1084-0702(2009)14:2(129)
    [201] KIM W S, LAMAN J A, JEONG Y, et al. Comparative study of integral abutment bridge structural analysis methods[J]. Canadian Journal of Civil Engineering, 2016, 43(4): 378-389. doi: 10.1139/cjce-2015-0202
    [202] 金永学, 徐栋, 郑明万, 等. 基于统一边界和梁格模型的整体式桥台桥梁分析[J]. 同济大学学报(自然科学版), 2021, 49(1): 40-48. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202101006.htm

    JIN Yong-xue, XU Dong, ZHENG Ming-wan, et al. Analysis of an integral abutment bridge based on unified boundary condition and grillage model[J]. Journal of Tongji University (Natural Science), 2021, 49(1): 40-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202101006.htm
    [203] PERI AC'G D, MILETI AC'G M, SHAH B R, et al. Thermally induced soil structure interaction in the existing integral bridge[J]. Engineering Structures, 2016, 106: 484-494. doi: 10.1016/j.engstruct.2015.10.032
    [204] BRISEGHELLA B, ZORDAN T. Integral abutment bridge concept applied to the rehabilitation of a simply supported concrete structure[J]. Structural Concrete, 2007, 8(1): 25-33. doi: 10.1680/stco.2007.8.1.25
    [205] LAFAVE J M, RIDDLE J K, JARRETT M W, et al. Numerical simulations of steel integral abutment bridges under thermal loading[J]. Journal of Bridge Engineering. 2016, 21(10): 04016061. doi: 10.1061/(ASCE)BE.1943-5592.0000919
    [206] KIM W S, LAMAN J A. Numerical analysis method for long-term behavior of integral abutment bridges[J]. Engineering Structures, 2010, 32(8): 2247-2257. doi: 10.1016/j.engstruct.2010.03.027
    [207] THANOON W A, ABDULRAZEG A A, NOORZAEI J, et al. Soil structure interaction for integral abutment bridge using spring analogy approach[J]. IOP Conference Series: Materials Science and Engineering. 2011, 17: 012035. doi: 10.1088/1757-899X/17/1/012035
    [208] KRIZEK J. Soil-structure interaction of integral bridges[J]. Structural Engineering International, 2011, 21(2): 169-174. doi: 10.2749/101686611X12994961034372
    [209] ZORDAN T, BRISEGHELLA B, LAN Cheng. Analytical formulation for limit length of integral abutment bridges[J]. Structural Engineering International, 2011, 21(3): 304-310. doi: 10.2749/101686611X13049248220654
    [210] DAVID T K, FORTH J P, YE Jian-qiao. Superstructure behavior of a stub-type integral abutment bridge[J]. Journal of Bridge Engineering, 2014, 19(6): 04014012. doi: 10.1061/(ASCE)BE.1943-5592.0000583
    [211] PAUL M, LAMAN J A, LINZELL D G. Thermally induced superstructure stresses in prestressed girder integral abutment bridges[J]. Journal of the Transportation Research Board, 2005, 11S: 287-297. doi: 10.3141/trr.11s.x5n68617433k3117
    [212] RAZMI J, MCCABE M. Analytical and computational modeling of integral abutment bridges foundation movement due to seasonal temperature variations[J]. International Journal of Geomechanics, 2020, 20(3): 04019189. doi: 10.1061/(ASCE)GM.1943-5622.0001622
    [213] ALBHAISI S, NASSIF H, HWANG E S. Effect of substructure stiffness on performance of steel integral abutment bridges under thermal loads[J]. Journal of the Transportation Research Board, 2012, 2313: 22-32. doi: 10.3141/2313-03
    [214] PRAJAPATI S P, SHAH N A, ZALA J. Structural behaviour analysis of integral type bridge with influence of modulus of subgrade reaction of soil[J]. International Journal of Pure and Applied Research in Engineering and Technology, 2018, 6(10): 31-46.
    [215] 于天来, 李海生, 郑彬双, 等. 桥台高度对整体式桥台桥梁内力的影响分析[J]. 科学技术与工程, 2017, 17(19): 241-246. doi: 10.3969/j.issn.1671-1815.2017.19.044

    YU Tian-lai, LI Hai-sheng, ZHENG Bin-shuang, et al. Influence of abutment height on integral abutment bridges internal force[J]. Science Technology and Engineering, 2017, 17(19): 241-246. (in Chinese) doi: 10.3969/j.issn.1671-1815.2017.19.044
    [216] NAJI M, FIROOZI A A, FIROOZI A A. A review: study of integral abutment bridge with consideration of soil-structure interaction[J]. Latin American Journal of Solids and Structures, 2020, 17(2): e252. doi: 10.1590/1679-78255869
    [217] RAZZAQ M K, SENNAH K, GHRIB F. Effect of sequence of construction on the moment distribution of skewed integral abutment bridges[C]//CHEN Bao-chun. The 1st International Symposium on Jointless and Sustainable Bridges. Fuzhou: Fuzhou University, 2016: 42-53.
    [218] BIANA I. A semi-integral composite bridge of high skew[J]. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2010, 163(3): 115-124. doi: 10.1680/bren.2010.163.3.115
    [219] KALAYCI E, CIVJAN S A, BREÑA S F. Parametric study on the thermal response of curved integral abutment bridges[J]. Engineering Structures, 2012, 43: 129-138. doi: 10.1016/j.engstruct.2012.05.007
    [220] 许震, 罗小烨, 卢琪, 等. 整体式弯桥试设计研究[J]. 建筑科学与工程学报, 2019, 36(6): 104-111. doi: 10.3969/j.issn.1673-2049.2019.06.013

    XU Zhen, LUO Xiao-ye, LU Qi, et al. Trial-design study on integral curved bridge[J]. Journal of Architecture and Civil Engineering, 2019, 36(6): 104-111. (in Chinese) doi: 10.3969/j.issn.1673-2049.2019.06.013
    [221] 李冰, 胡玉柳. 混凝土曲线桥整体式改造后的受力特性分析[J]. 东莞理工学院学报, 2021, 28(1): 82-89. doi: 10.16002/j.cnki.10090312.2021.01.014

    LI Bing, HU Yu-liu. Mechanical characteristics of concrete curved bridge after integral transformation[J]. Journal of Dongguan University of Technology, 2021, 28(1): 82-89. doi: 10.16002/j.cnki.10090312.2021.01.014
    [222] HOFFMAN J, PHARES B. Thermal load design philosophies for horizontally curved girder bridges with integral abutments[J]. Journal of Bridge Engineering, 2014, 19(5): 04014008. doi: 10.1061/(ASCE)BE.1943-5592.0000573
    [223] BAPTISTE K T, KIM W S, LAMAN J A. Parametric study and length limitations for prestressed concrete girder integral abutment bridges[J]. Structural Engineering International, 2011, 21(2): 151-156. doi: 10.2749/101686611X12994961034219
    [224] BRISEGHELLA B, 薛俊青, 兰成, 等. 整体式桥台桥梁极限长度[J]. 建筑科学与工程学报, 2014, 31(1): 104-110. doi: 10.3969/j.issn.1673-2049.2014.01.013

    BRISEGHELLA B, XUE Jun-qing, LAN Cheng, et al. Maximum length of integral abutment bridge[J]. Journal of Architecture and Civil Engineering, 2014, 31(1): 104-110. (in Chinese) doi: 10.3969/j.issn.1673-2049.2014.01.013
    [225] STRAUSS A, KRAWTSCHUK A, WENDNER R, et al. Monitoring based assessment of a jointless bridge[C]//BIONDINI F, FRANGOPOL D M. Proceedings of the Sixth International Conference on Bridge Maintenance, Safety, Management, Resilience and Sustainability. London: Taylor and Francis Group, 2012: 922-929.
    [226] KIM W S, LAMAN J A. Integral abutment bridge behavior under uncertain thermal and time-dependent load[J]. Structural Engineering and Mechanics, 2013, 46(1): 53-73. doi: 10.12989/sem.2013.46.1.053
    [227] BRISEGHELLA B, 唐玉风, 薛俊青, 等. 无伸缩缝桥梁引板研究综述[J]. 福州大学学报(自然科学版), 2021, 49(2): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ202102011.htm

    BRISEGHELLA B, TANG Yu-feng, XUE Jun-qing, et al. Review of research on approach slabs in jointless bridges[J]. Journal of Fuzhou University (Natural Science Edition), 2021, 49(2): 209-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ202102011.htm
    [228] WHITE Ⅱ H, PÉTURSSON H, COLLIN P. Integral abutment bridges: the european way[J]. Practice Periodical on Structural Design and Construction, 2010, 15(3): 201-208. doi: 10.1061/(ASCE)SC.1943-5576.0000053
    [229] AL-QARAWI A, LEO C, LIYANAPATHIRANA D S. Effects of wall movements on performance of integral abutment bridges[J]. International Journal of Geomechanics, 2020, 20(2): 04019157. doi: 10.1061/(ASCE)GM.1943-5622.0001559
    [230] MARTIN R D, KANG T H K. Structural design and construction issues of approach slabs[J]. Practice Periodical on Structural Design and Construction, 2013, 18(1): 12-20. doi: 10.1061/(ASCE)SC.1943-5576.0000133
    [231] AKIYAMA H. Fundamentally structural characteristics of integral bridges[D]. Kanazawa: Kanazawa University, 2008.
    [232] CONNAL J. Integral abutment bridges-Australian and US practice[C]//Austroads. Austroads 5th Bridge Conference. Hobart: Austroads, 2004.
    [233] PHARES B M, FARIS A S, GREIMANN L, et al. Integral bridge abutment to approach slab connection[J]. Journal of Bridge Engineering, 2013, 18(2): 179-181. doi: 10.1061/(ASCE)BE.1943-5592.0000333
    [234] 张培权. 无缝桥面板式搭板工作机理研究[D]. 福州: 福州大学, 2015.

    ZHANG Pei-quan. Mechanical analysis of plate-type approach slab of jointless bridges[D]. Fuzhou: Fuzhou University, 2015. (in Chinese)
    [235] 宋征, 祝启坤. 考虑切向摩阻力作用下弹性地基梁的内力计算[J]. 武汉工程大学学报, 2010, 32(9): 43-45. doi: 10.3969/j.issn.1674-2869.2010.09.012

    SONG Zheng, ZHU Qi-kun. Calculation of elastic foundation beam considering the tangential friction[J]. Journal of Wuhan Institute of Technology, 2010, 32(9): 43-45. (in Chinese) doi: 10.3969/j.issn.1674-2869.2010.09.012
    [236] 庄一舟, 徐亮, 黄炎准. 一种半整体式桥台桥梁搭板的内力计算方法[J]. 建筑科学与工程学报, 2016, 33(5): 35-43. doi: 10.3969/j.issn.1673-2049.2016.05.007

    ZHUANG Yi-zhou, XU Liang, HUANG Yan-jun. One way about internal force calculation of approach slab in semi-integral abutment bridge[J]. Journal of Architecture and Civil Engineering, 2016, 33(5): 35-43. (in Chinese) doi: 10.3969/j.issn.1673-2049.2016.05.007
    [237] TANG Yu-feng, BRISEGHELLA B, XUE Jun-qing, et al. Research on friction between grade flat approach slab and sliding material in jointless bridges[C]//IABSE. 2019 IABSE Congress. New York: IABSE, 2019: 959-963.
    [238] 付毳, 庄一舟, 陈宝春. 微型桩支撑引板的无缝桥试设计研究[J]. 建筑科学与工程学报, 2017, 34(4): 96-104. doi: 10.3969/j.issn.1673-2049.2017.04.013

    FU Cui, ZHUANG Yi-zhou, CHEN Bao-chun. Trial-design study on jointless bridge with approach slab supported by micro-piles[J]. Journal of Architecture and Civil Engineering, 2017, 34(4): 96-104. (in Chinese) doi: 10.3969/j.issn.1673-2049.2017.04.013
    [239] 庄一舟, 钱海敏, 韩裕添, 等. 温度荷载下半整体无缝斜桥搭板的力学性能研究[J]. 福州大学学报(自然科学版), 2016, 44(4): 480-486. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201604006.htm

    ZHUANG Yi-zhou, QIAN Hai-min, HAN Yu-tian, et al. Study on the mechanical properties of approach slab of semi-integral abutment skew bridges under thermal load[J]. Journal of Fuzhou University (Natural Science Edition), 2016, 44(4): 480-486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201604006.htm
    [240] DREIER D, BURDET O, MUTTONI A. Transition slabs of integral abutment bridges[J]. Structural Engineering International, 2011, 21(2): 144-150.
    [241] BURDET O, EINPAUL J, MUTTONI A. Experimental investigation of soil-structure interaction for the transition slabs of integral bridges[J]. Structural Concrete, 2015, 16(4): 470-479. doi: 10.1002/suco.201500018
    [242] WENDNER R, STRAUSS A, BERGMEISTER K. Jointless bridges-performance assessment of soil-structure interaction[C]//FABER M H, KÖHLER J, NISHIJIMA K. Proceedings of the 11th International Conference on Applications of Statistics and Probability in Civil Engineering. London: Taylor and Francis Group, 2011: 1069-1076.
    [243] GANGONE M V, WHELAN M J, JANOYAN K D, et al. Experimental characterization and diagnostics of the early-age behavior of a semi-integral abutment FRP deck bridge[J]. Sensor Review, 2012, 32(4): 296-309. doi: 10.1108/02602281211257533
    [244] KONG B, CAI C S, KONG X. Thermal property analysis and applications of GFRP panels to integral abutment bridges[J]. Engineering Structures, 2014, 76: 1-9. doi: 10.1016/j.engstruct.2014.06.009
    [245] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. doi: 10.3969/j.issn.1673-2049.2014.03.002

    CHEN Bao-chun, JI Tao, HUANG Qing-wei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24. (in Chinese) doi: 10.3969/j.issn.1673-2049.2014.03.002
    [246] XUE Jun-qing, BRISEGHELLA B, HUANG Fu-yun, et al. Review of ultra-high performance concrete and its application in bridge engineering[J]. Construction and Building Materials, 2020, 260: 119844. doi: 10.1016/j.conbuildmat.2020.119844
    [247] VOO Y L, FOSTER J. Design and construction of the 100 metre span UHPC batu 6 segmental box girder bridge[C]//MIDDENDORF B, FEHLING E, WETZEL A. The 4th International Symposium on Ultra-High Performance Concrete and High Performance Materials. Kassel: Kassel University Press, 2016: 1-8.
    [248] HONG Yu. Analysis and design of link slabs in jointless bridges with fibre-reinforced concrete[D]. Waterloo: University of Waterloo, 2014.
    [249] SABER A, ALETI A R. Behavior of FRP link slabs in jointless bridge decks[J]. Advances in Civil Engineering, 2012, 2012.
    [250] HOU Meng-jun, HU Ke-xu, YU Jiang-tao, et al. Experimental study on ultra-high ductility cementitious composites applied to link slabs for jointless bridge decks[J]. Composite Structures, 2018, 204: 167-177. doi: 10.1016/j.compstruct.2018.07.067
    [251] ZHANG Li-fei, ZHENG Yu, YU Yong, et al. Structural performance evaluation of ECC link slabs reinforced with FRP bars for jointless bridge decks[J]. Construction and Building Materials, 2021, 304: 124462. doi: 10.1016/j.conbuildmat.2021.124462
    [252] ZHANG Pu, SHANG Jia-qi, FAN Jia-jun, et al. Experimental study on the bond behavior of the CFRP plate-ECC-concrete composite interface under freeze-thaw cycles[J]. Construction and Building Materials, 2022, 316: 125822. doi: 10.1016/j.conbuildmat.2021.125822
    [253] KARIM R, SHAFEI B. Performance of fiber-reinforced concrete link slabs with embedded steel and GFRP rebars[J]. Engineering Structures, 2021, 229: 111590. doi: 10.1016/j.engstruct.2020.111590
    [254] 刘其伟, 许崇法, 郭建, 等. MMA材料在桥面连续中的应用研究[J]. 江苏交通科技, 2019(1): 6-9, 15. https://cdmd.cnki.com.cn/Article/CDMD-10213-1017739298.htm

    LIU Qi-wei, XU Chong-fa, GUO Jian, et al. Study on the application of mma material in deck continuity of bridge[J]. Jiangsu Transportation Research, 2019(1): 6-9, 15. (in Chinese) https://cdmd.cnki.com.cn/Article/CDMD-10213-1017739298.htm
    [255] DOIRON G, WHITE P. UHPC link slab solutions in North America[C]//TOUTLEMONDE F, RESPENDINO J. 3rd International Symposium on Ultra-High Performance Fibre-Reinforced Concrete. Montpellier: RILEM Publications, 2017: 975-982.
    [256] GRAYBEAL B A. Emerging UHPC-based bridge construction and preservation solutions[C]//TOUTLEMONDE F, RESPENDINO J. 3rd International Symposium on Ultra-High Performance Fibre-Reinforced Concrete. Montpellier: RILEM Publications, 2017: 965-974.
    [257] 林健辉, BRISEGHELLA B, 薛俊青, 等. UHPC桥面连接板受弯性能及裂缝宽度计算方法研究[J]. 桥梁建设, 2022, 52(10): 60-68. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202205009.htm

    LIN Jian-hui, BRISEGHELLA B, XUE Jun-qing, et al. Research on flexural performance and crack width calculation method of ultra-high performance concrete link slab[J]. Bridge Construction, 2022, 52(10): 60-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202205009.htm
    [258] SHAABAN M, AHMED S. Development of ultra-high performance concrete jointed precast decks and concrete piles in integral abutment bridges[C]//CHEN Bao-chun. The 1st International Symposium on Jointless and Sustainable Bridges. Fuzhou: Fuzhou University, 2016: 1-10.
    [259] BIRCKEL T, WEIHER H. Innovative post-tensioning concept with UHPC anchorages (hybridanker) for railway bridge for Spoorbypass Mechelen[C]//HORDIJK D A, LUKOVIC M. High Tech Concrete: Where Technology and Engineering Meet. Maastricht: Springer International Publishing, 2018: 2638-2644.
    [260] DE JONG A. Innovations in integral abutment connection details for accelerated bridge construction[D]. Ames: Iowa State University, 2019.
    [261] KIM S H, YOON J H, KIM J H, et al. Structural details of steel girder-abutment joints in integral bridges: an experimental study[J]. Journal of Constructional Steel Research, 2012, 70: 190-212. doi: 10.1016/j.jcsr.2011.07.009
    [262] BRISEGHELLA B, ZORDAN T. An innovative steel-concrete joint for integral abutment bridges[J]. Journal of Traffic and Transportation Engineering (English Edition), 2015, 2(4): 209-222. doi: 10.1016/j.jtte.2015.05.001
    [263] LIANG Chen, LIU Yu-qing, ZHAO Chang-jun, et al. Experimental and numerical study on an innovative girder-abutment joint in composite bridges with integral abutments[J]. Construction and Building Materials, 2018, 186: 709-730. doi: 10.1016/j.conbuildmat.2018.07.208
    [264] MORGENTHAL G, OLNEY P. Concrete hinges and integral bridge piers[J]. Journal of Bridge Engineering, 2016, 21(1): 06015005. doi: 10.1061/(ASCE)BE.1943-5592.0000783
    [265] NG K W, GARDER J, SRITHARAN S. Investigation of ultra high performance concrete piles for integral abutment bridges[J]. Engineering Structures, 2015, 105: 220-230. doi: 10.1016/j.engstruct.2015.10.009
    [266] GARDER J A. Use of UHPC piles in integral abutment bridges[D]. Ames: Iowa State University, 2012.
    [267] SULEIMAN M T, VANDE VOORT T, SRITHARAN S. Behavior of driven ultrahigh-performance concrete H-piles subjected to vertical and lateral loadings[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(10): 1403-1413. doi: 10.1061/(ASCE)GT.1943-5606.0000350
    [268] 戴沂新. 整体桥H型UHPC桩基本结构受压性能试验研究[D]. 福州: 福州大学, 2018.

    DAI Yi-xin. Experimental research on the compressive properties of H-shaped UHPC columns piles in integral abutment bridge[D]. Fuzhou: Fuzhou University, 2018. (in Chinese)
    [269] 陈宝春, 陈国栋, 苏家战, 等. 采用UHPC-RC阶梯桩的整体桥试设计[J]. 建筑科学与工程学报, 2018, 35(1): 1-8. doi: 10.3969/j.issn.1673-2049.2018.01.001

    CHEN Bao-chun, CHEN Guo-dong, SU Jia-zhan, et al. Trial-design study on integral abutment bridge by using UHPC-RC stagewise piles[J]. Journal of Architecture and Civil Engineering, 2018, 35(1): 1-8. (in Chinese) doi: 10.3969/j.issn.1673-2049.2018.01.001
    [270] 庄一舟, 宋琨生, 宋永青, 等. 整体桥H型钢-RC阶梯桩与土相互作用拟静力试验[J]. 交通运输工程学报, 2022, 22(5): 145-162. doi: 10.19818/j.cnki.1671-1637.2022.05.008

    ZHUANG Yi-zhou, SONG Kun-sheng, SONG Yong-qing, et al. Quasi-static test on H-shaped steel-RC stepped pile-soil interaction of integral abutment bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 145-162. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.05.008
    [271] 陈国栋. 带阶梯桩的整体桥试设计研究[D]. 福州: 福州大学, 2019.

    CHEN Guo-dong. Trail-design study on integral abutment bridge by using UHPC-RC segmental piles[D]. Fuzhou: Fuzhou University, 2019. (in Chinese)
    [272] GUPTA K. Behavior of fiber reinforced polymer piles with octagonal cross-sections in integral abutment bridge foundations[D]. College Park: University of Maryland, College Park, 2020.
    [273] AZIZINAMINI A, YAKEL A, SHERAFATI A, et al. Flexible pile head in jointless bridges: design provisions for H-piles in cohesive soils[J]. Journal of Bridge Engineering, 2016, 21(3): 04015064 doi: 10.1061/(ASCE)BE.1943-5592.0000791
    [274] LEE J, KIM W S, KIM K, et al. Strengthened and flexible pile-to-pile cap connections for integral abutment bridges[J]. Steel and Composite Structures, 2016, 20(4): 731-748. doi: 10.12989/scs.2016.20.4.731
    [275] AHN J H, YOON J H, KIM J H, et al. Evaluation on the behavior of abutment-pile connection in integral abutment bridge[J]. Journal of Constructional Steel Research, 2011, 67(7): 1134-1148. doi: 10.1016/j.jcsr.2011.02.007
    [276] 齐朝阳. 整体式桥台-桩节点抗震性能试验研究[D]. 天津: 天津大学, 2017.

    QI Chao-yang. Experimental research on seismic behavior of integral abutment-pile joint[D]. Tianjin: Tianjin University, 2017. (in Chinese)
    [277] ALQARAWI A S, LEO C J, LIYANAPATHIRANA D S, et al. Parametric study on the approach problem of an integral abutment bridge subjected to cyclic loading due to temperature changes[J]. Applied Mechanics and Materials, 2016, 846: 421-427. doi: 10.4028/www.scientific.net/AMM.846.421
    [278] DAVIES L, BULL J, KUCKI T. Lightweight backfill materials in integral bridge construction[J]. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2014, 167(1): 3-16. doi: 10.1680/bren.10.00051
    [279] 黄福云, 程俊峰, 薛俊青, 等. 带EPS的整体式桥台-桩-土相互作用拟静力试验[J]. 中国公路学报, 2019, 32(7): 77-89. doi: 10.19721/j.cnki.1001-7372.2019.07.009

    HUANG Fu-yun, CHENG Jun-feng, XUE Jun-qing, et al. Displacement-based simplified calculation on soil-pile interaction of PHC pipe-piles[J]. China Journal of Highway and Transport, 2019, 32(7): 77-89. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2019.07.009
    [280] LIU H, HAN J, PARSONS R L. Mitigation of seasonal temperature change-induced problems with integral bridge abutments using EPS foam and geogrid[J]. Geotextiles and Geomembranes, 2021, 49(5): 1380-1392. doi: 10.1016/j.geotexmem.2021.05.010
    [281] HUMPHREY D, BLUMENTHAL M. The use of tire-derived aggregate in road construction applications[C]//WEINSTEIN N. Green Streets and Highways Conference 2010. Denver: American Society of Civil Engineers, 2010: 299-313.
    [282] 杜振江. 废旧轮胎加筋土研究进展综述[J]. 土工基础, 2019, 33(3): 326-330. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201903021.htm

    DU Zhen-jiang. Review of the applications of shredded tire chips for the soil reinforcements[J]. Soil Engineering and Foundation, 2019, 33(3): 326-330. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201903021.htm
    [283] 姚燕, 崔琪, 赵君, 等. 废旧橡胶应用的新领域[J]. 世界橡胶工业, 2009, 36(5): 40-46. doi: 10.3969/j.issn.1671-8232.2009.05.009

    YAO Yan, CUI Qi, ZHAO Jun, et al. New applications of waste rubber[J]. World Rubber Industry, 2009, 36(5): 40-46. (in Chinese) doi: 10.3969/j.issn.1671-8232.2009.05.009
    [284] ZADEHMOHAMAD M, BAZAZ J B, RIAHIPOUR R, et al. Physical modeling of the long-term behavior of integral abutment bridge backfill reinforced with tire-rubber[J]. International Journal of Geo-Engineering, 2021, 12(1): 36. doi: 10.1186/s40703-021-00163-2
    [285] MITOULIS S A, PALAIOCHORINOU A, GEORGIADIS I, et al. Extending the application of integral frame abutment bridges in earthquake-prone areas by using novel isolators of recycled materials[J]. Earthquake Engineering and Structural Dynamics, 2016, 45(14): 2283-2301. doi: 10.1002/eqe.2760
    [286] ZADEHMOHAMAD M, BOLOURI BAZAZ J. Cyclic behaviour of geocell-reinforced backfill behind integral bridge abutment[J]. International Journal of Geotechnical Engineering, 2019, 13(5): 438-450. doi: 10.1080/19386362.2017.1364882
    [287] ADAMS M, NICKS J, STABILE T, et al. Geosynthetic reinforced soil integrated bridge system interim implementation guide[R]. Washington DC: Federal Highway Administration, 2012.
    [288] XU Chao, LUO Min-min, SHEN Pan-pan, et al. Seismic performance of a whole geosynthetic reinforced soil-integrated bridge system (GRS-IBS) in shaking table test[J]. Geotextiles and Geomembranes, 2020, 48(3): 315-330. doi: 10.1016/j.geotexmem.2019.12.004
    [289] ARDAH A, ABU-FARSAKH M, VOYIADJIS G. Numerical parametric study of geosynthetic reinforced soil integrated bridge system (GRS-IBS)[J]. Geotextiles and Geomembranes, 2021, 49(1): 289-303. doi: 10.1016/j.geotexmem.2020.10.005
    [290] TALEBI M, MEEHAN C L, LESHCHINSKY D. Applied bearing pressure beneath a reinforced soil foundation used in a geosynthetic reinforced soil integrated bridge system[J]. Geotextiles and Geomembranes, 2017, 45 (6): 580-591. doi: 10.1016/j.geotexmem.2017.07.008
    [291] SAGHEBFAR M, ABU-FARSAKH M, ARDAH A, et al. Performance monitoring of geosynthetic reinforced soil integrated bridge system (GRS-IBS) in Louisiana[J]. Geotextiles and Geomembranes, 2017, 45(2): 34-47. doi: 10.1016/j.geotexmem.2016.11.004
    [292] ADAMS M, NICKS J. Design and construction guidelines for geosynthetic reinforced soil abutments and integrated bridge systems[R]. Washington DC: Federal Highway Administration, 2018.
    [293] 罗敏敏, 徐超, 杨阳, 等. 加筋土柔性桥台复合结构抗震性能试验[J]. 同济大学学报(自然科学版), 2019, 47(11): 1541-1547. doi: 10.11908/j.issn.0253-374x.2019.11.002

    LUO Min-min, XU Chao, YANG Yang, et al. Seismic performance of geosynthetic reinforced soil-integrated structure in shaking table test[J]. Journal of Tongji University (Natural Science), 2019, 47(11): 1541-1547. (in Chinese) doi: 10.11908/j.issn.0253-374x.2019.11.002
    [294] 罗敏敏, 徐超, 杨子凡. 土工合成材料加筋土柔性桥台复合结构及应用[J]. 土木工程学报, 2019, 52(S1): 226-232. doi: 10.15951/j.tmgcxb.2019.s1.029

    LUO Min-min, XU Chao, YANG Zi-fan. Geosynthetic reinforced soil-integrated bridge system and its applications[J]. China Civil Engineering Journal, 2019, 52(S1): 226-232. (in Chinese) doi: 10.15951/j.tmgcxb.2019.s1.029
    [295] 徐超, 罗敏敏, 任非凡, 等. 加筋土柔性桥台复合结构抗震性能的试验研究[J]. 岩土力学, 2020, 41(S1): 179-186. doi: 10.16285/j.rsm.2019.0658

    XU Chao, LUO Min-min, REN Fei-fan, et al. Experimental study on seismic behaviour of reinforced soil flexible abutment composite structures[J]. Rock and Soil Mechanics, 2020, 41(S1): 179-186. (in Chinese) doi: 10.16285/j.rsm.2019.0658
    [296] 华传彬, 薛俊青, BRISEGHELLA B, 等. 带Z形引板无缝桥的路面平整度研究[C]//陆新征. 第27届全国结构工程学术会议. 西安: 工程力学杂志社, 2018: 528-535.

    HUAChuan-bin, XUE Jun-qing, BRISEGHELLA B, et al. Research on pavement roughness of jointless bridge with Z shaped approach slab[C]//LU Xin-zheng. The 27th National Conference on Structural Engineering. Xi'an: Engineering Mechanics Press, 2018: 528-535. (in Chinese)
    [297] CHEN Qi-ming, ABU-FARSAKH M. Mitigating the bridge end bump problem: a case study of a new approach slab system with geosynthetic reinforced soil foundation[J]. Geotextiles and Geomembranes, 2016, 44 (1): 39-50. doi: 10.1016/j.geotexmem.2015.07.001
    [298] 付毳, 樊争辉, 庄一舟, 等. 无缝桥引板微型桩-土共同作用试验研究[J]. 福州大学学报(自然科学版), 2017, 45(2): 179-184. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201702005.htm

    FU Cui, FAN Zheng-hui, ZHUANG Yi-zhou, et al. Study on micropile under approach slab and soil interaction in jointless bridge[J]. Journal of Fuzhou University (Natural Science edition), 2017, 45(2): 179-184. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201702005.htm
    [299] BRIDGE R, GRIFFITHS S, BOWMAKER G. The concept of a seamless concrete pavement and bridge deck[C]//STEWART M G, DOCKRILL B. Australian Structural Engineering Conference 2005. Sydney: INFORMIT, 2005: 289-298.
    [300] ALA N M, AZIZINAMINI A. Proposed design provisions for a seamless bridge system: cases of flexible and jointed pavements[J]. Journal of Bridge Engineering, 2016, 21(2): 04015045. doi: 10.1061/(ASCE)BE.1943-5592.0000750
    [301] ALA N M, AZIZINAMINI A. Experimental study of seamless bridge transition system for US practice[J]. Journal of Bridge Engineering, 2016, 21(2): 04015046. doi: 10.1061/(ASCE)BE.1943-5592.0000749
    [302] ZHAN Xue-fang, LIU Kai-le, ZHAO Yi-bin, et al. Tensile performance of SHCC road-bridge link slabs in fully jointless bridges[J]. Advances in Civil Engineering, 2021, 2021: 6643643.
    [303] 占雪芳, 王宪, 严亨利, 等. 全无缝桥梁用掺橡胶粉LEM-SHCC路桥连接板拉伸性能及其应用[J]. 交通运输工程学报, 2022, 22(5): 104-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202205005.htm

    ZHAN Xue-fang, WANG Xian, YANG Heng-li, et al. Tensile deformation performance and application of LEM-SHCC road-bridge link slab mixed with rubber powder of fully jointless bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 104-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202205005.htm
    [304] EICHWALDER B, KOLLEGGER J. Durable transition structure for long integral abutment bridges[J]. Structural Concrete, 2018, 19(4): 1092-1100. doi: 10.1002/suco.201700111
    [305] MAYER M, HUß M, KIM H H, et al. UHPFRC for jointless transition structures of integral bridges[C]//MIDDENDORF B, FEHLING E, WETZEL A. The 5th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials. Kassel: Kassel University Press, 2020: 117-118.
    [306] MAYER M, HUß M. KIM H H, et al. Übergangskonstruktionen aus UHPFRC für den integralbrückenbau[J]. Beton-Und Stahlbetonbau, 2022, 117(2): 78-89. doi: 10.1002/best.202100093
    [307] 庄一舟, 徐亮, 任卫岗, 等. 整体式桥台无缝桥梁抗洪性能分析[J]. 福州大学学报(自然科学版), 2016, 44(4): 472-479, 486. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201604005.htm

    ZHUANG Yi-zhou, XU Liang, REN Wei-gang, et al. Research on flooding-resistant performance of integral abutment jointless bridge[J]. Journal of Fuzhou University (Natural Science Edition), 2016, 44(4): 472-479, 486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201604005.htm
    [308] 周雨龙, 韩强, 陈敬一. 地震作用下桥台非线性力-位移能力预测及其应用[J]. 中国公路学报, 2016, 29(7): 96-102, 158. doi: 10.3969/j.issn.1001-7372.2016.07.012

    ZHOU Yu-long, HAN Qiang, CHEN Jing-yi. Prediction and application of nonlinear force-displacement capacity of bridge abutment under earthquakes action[J]. China Journal of Highway and Transport, 2016, 29(7): 96-102, 158. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.07.012
    [309] SIMON J, VIGH L G. Seismic fragility assessment of integral precast multi-span bridges in areas of moderate seismicity[J]. Bulletin of Earthquake Engineering, 2016, 14(11): 3125-3150. doi: 10.1007/s10518-016-9947-y
    [310] KOZAK D L, LAFAVE J M, FAHNESTOCK L A. Seismic modeling of integral abutment bridges in Illinois[J]. Engineering Structures, 2018, 165: 170-183. doi: 10.1016/j.engstruct.2018.02.088
    [311] FIORENTINO G, CENGIZ C, DE LUCA F, et al. Integral abutment bridges: investigation of seismic soil-structure interaction effects by shaking table testing[J]. Earthquake Engineering and Structural Dynamics, 2021, 50(6): 1517-1538. doi: 10.1002/eqe.3409
    [312] 付毳. 微型桩支撑引板的无缝桥受力特性研究[D]. 福州: 福州大学, 2018.

    FU Cui. Behavioranalysis of jointless bridge with micro-piles supported approach slab[D]. Fuzhou: Fuzhou University, 2018. (in Chinese)
    [313] 焦驰宇, 鲁子明, 龙佩恒, 等. 桥台-土-结构相互作用对桥梁结构地震反应影响的研究进展[J]. 工程抗震与加固改造, 2016, 38(6): 1-8, 31. doi: 10.16226/j.issn.1002-8412.2016.06.001

    JIAO Chi-yu, LU Zi-ming, LONG Pei-heng, et al. Advanced researches on the influences of abutment-soil-structure interaction on the seismic response of bridges[J]. Earthquake Resistant Engineering and Retrofitting, 2016, 38(6): 1-8, 31. (in Chinese) doi: 10.16226/j.issn.1002-8412.2016.06.001
    [314] DHAR S, DASGUPTA K. Seismic soil structure interaction for integral abutment bridges: a review[J]. Transportation Infrastructure Geotechnology, 2019, 6(4): 249-267. doi: 10.1007/s40515-019-00081-y
    [315] TSINIDIS G, PAPANTOU M, MITOULIS S. Response of integral abutment bridges under a sequence of thermal loading and seismic shaking[J]. Earthquakes and Structures, 2019, 16(1): 11-28.
    [316] BUCKLE I G. Seismic design issues for joint-less bridges with innovative integral abutments[C]//CHEN Bao-chun. The 1st International Symposium on Jointless Bridges. Fuzhou. Fuzhou University, 2014: 166-178.
    [317] 黄福云, 庄一舟, 付毳, 等. 无伸缩缝梁桥抗震性能与设计计算方法研究[J]. 地震工程与工程振动, 2015, 35(5): 15-22. doi: 10.13197/j.eeev.2015.05.15.huangfy.003

    HUANG Fu-yun, ZHUANG Yi-zhou, FU Cui, et al. Review on the seismic performance and simplified design method of jointless bridge[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(5): 15-22. (in Chinese) doi: 10.13197/j.eeev.2015.05.15.huangfy.003
    [318] 彭倩倩. 考虑土-桥台相互作用的桥梁抗震性能分析[D]. 邯郸: 河北工程大学, 2014.

    PENG Qian-qian. Considering the interaction among soil-the abutment bridge seismic performance analysis[D]. Handan: Hebei University of Engineering, 2014. (in Chinese)
    [319] 黄福云, 李岚, 张峰, 等. 水平往复大位移作用下整体桥台后土压力计算方法[J]. 交通运输工程学报, 2022, 22(5): 131-144. doi: 10.19818/j.cnki.1671-1637.2022.05.010

    HUANG Fu-yun, LI Lan, ZHANG Feng, et al. Calculation method for earth pressure behind integral abutment under reciprocating large displacement action[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 131-144. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.05.010
    [320] 黄福云, 陈伟, 徐普, 等. 整体式桥台-H形钢桩-土体系抗震性能试验[J]. 中国公路学报, 2020, 33(9): 180-192. doi: 10.3969/j.issn.1001-7372.2020.09.018

    HUANG Fu-yun, CHEN Wei, XU Pu, et al. Experimental on seismic performance of integral abutment-steel H-pile-soil system[J]. China Journal of Highway and Transport, 2020, 33(9): 180-192. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.09.018
    [321] SEID-KARBASI M, FERNANDO V. Numerical assessment of seismic earth pressures for integral abutment bridges[C]//MEEHAN C L, KUMAR S, PANDO M A, et al. Eighth International Conference on Case Histories in Geotechnical Engineering. Philadelphia: American Society of Civil Engineers, 2019: 40-48.
    [322] ZANGENEH A, SVEDHOLM C, ANDERSSON A, et al. Identification of soil-structure interaction effect in a portal frame railway bridge through full-scale dynamic testing[J]. Engineering Structures, 2018, 159: 299-309. doi: 10.1016/j.engstruct.2018.01.014
    [323] XU Ming, LIU Peng-fei. Response of full-height frame integral abutments subjected to seismic motions[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 356-368. doi: 10.1016/j.soildyn.2019.03.024
    [324] DHAR S, DASGUPTA K. Comparison of modal behaviour of integral abutment bridge with and without soil-structure interaction[M]//RAO A, RAMANJANEYULU K. Recent Advances in Structural Engineering. Berlin: Springer, 2019: 245-253.
    [325] FRANCHIN P, PINTO P E. Performance-based seismic design of integral abutment bridges[J]. Bulletin of Earthquake Engineering, 2014, 12(2): 939-960. doi: 10.1007/s10518-013-9552-2
    [326] MITOULIS S A. Challenges and opportunities for the application of integral abutment bridges in earthquake-prone areas: a review[J]. Soil Dynamics and Earthquake Engineering, 2020, 135: 106183. doi: 10.1016/j.soildyn.2020.106183
    [327] ERHAN S, DICLELI M. Parametric study on the effect of structural and geotechnical properties on the seismic performance of integral bridges[J]. Bulletin of Earthquake Engineering, 2017, 15(10): 4163-4191. doi: 10.1007/s10518-017-0123-9
    [328] DICLELI M, ERHAN S. Effect of foundation soil stiffness on the seismic performance of integral bridges[J]. Structural Engineering International, 2011, 21(2): 162-168. doi: 10.2749/101686611X12994961034255
    [329] ERHAN S, DICLELI M. Comparative assessment of the seismic performance of integral and conventional bridges with respect to the differences at the abutments[J]. Bulletin of Earthquake Engineering, 2015, 13(2): 653-677. doi: 10.1007/s10518-014-9635-8
    [330] 石丽峰, 徐明. 整体式桥台地震反应机理分析[J]. 岩土力学, 2014, 35(11): 3289-3297. doi: 10.16285/j.rsm.2014.11.027

    SHI Li-feng, XU Ming. Analysis of seismic response of integral bridge abutments[J]. Rock and Soil Mechanics, 2014, 35(11): 3289-3297. (in Chinese) doi: 10.16285/j.rsm.2014.11.027
    [331] MOHEBBI A, RYAN K L, SANDERS D H. Seismic protection of the piers of integral bridges using sliding bearings[J]. Journal of Earthquake Engineering, 2017, 21(8): 1365-1384. doi: 10.1080/13632469.2016.1211567
    [332] CHOI B H, MORENO L B, LIM C S, et al. Seismic performance evaluation of a fully integral concrete bridge with end-restraining abutments[J]. Advances in Civil Engineering, 2019, 2019: 6873096.
    [333] NGUYEN D D, NGUYEN H C. Seismic performance evaluation of integral bridges considering soil-structure interaction[M]//DI PRISCO M, CHEN Sheng-hong, AVYAS I, et al. Recent Advances in Earthquake Engineering. Berlin: Springer, 2021: 91-102.
    [334] 赵秋红, 郭浩猛, 董硕, 等. 整体式斜交桥中桥台钢桩地震响应[J]. 交通运输工程学报, 2022, 22(5): 119-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202205006.htm

    ZHAO Qiu-hong, GUO Hao-meng, DONG Shuo. Seismic responses of abutment steel piles in integralskewed bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 119-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202205006.htm
    [335] 赵秋红, 张冀豪, 陈宝春. 整体式斜交桥抗震性能分析[J]. 地震工程与工程振动, 2018, 38(4): 34-40. doi: 10.13197/j.eeev.2018.04.34.zhaoqh.006

    ZHAO Qiu-hong, ZHANG Ji-hao, CHEN Bao-chun. Seismic analysis on skewed integral abutment bridges[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(4): 34-40. (in Chinese) doi: 10.13197/j.eeev.2018.04.34.zhaoqh.006
    [336] 黄朝光. 整体式桥台斜交梁桥地震反应研究[J]. 水利与建筑工程学报, 2020, 18(3): 182-188. doi: 10.3969/j.issn.1672-1144.2020.03.032

    HUANG Chao-guang. Seismic response analysis of integral abutment skew beam bridges under earthquake excitation[J]. Journal of Water Resources and Architectural Engineering, 2020, 18(3): 182-188. (in Chinese) doi: 10.3969/j.issn.1672-1144.2020.03.032
    [337] VANDER WERFF J, SRITHARAN S. Girder load distribution for seismic design of integral bridges[J]. Journal of Bridge Engineering, 2015, 20(1): 04014055. doi: 10.1061/(ASCE)BE.1943-5592.0000641
    [338] YEN W P, DEKELBAB W, KHALEGHI B. Connections for integral jointless bridges in seismic regions suitable for accelerated bridge construction[J]. Transportation Research Record, 2017, 2642: 147-154. doi: 10.3141/2642-16
    [339] EASAZADEH FAR N, BARGHIAN M. Safety identifying of integral abutment bridges under seismic and thermal loads[J]. The Scientific World Journal, 2014, 2014: 757608.
    [340] NÍ CHOINE M, O'CONNOR A J, PADGETT J E. Comparison between the seismic performance of integral and jointed concrete bridges[J]. Journal of Earthquake Engineering, 2015, 19(1): 172-191. doi: 10.1080/13632469.2014.946163
    [341] CARISTO A, PALAIOCHORINOU A, MITOULIS S A. Numerical research on the seismic response of novel integral abutment bridge designs and comparison to the current design practice[C]//ASCE. The 1st International Conference on Natural Hazards and Infrastructure. Chania: American Society of Civil Engineers, 2016.
    [342] AHMED B F, DASGUPTA K. Seismic damage assessment of integral abutment bridge[M]//DUTTA S, INAN E, DWIVEDY S. Advances in Rotor Dynamics, Control, and Structural Health Monitoring. Berlin: Springer, 2020: 359-373.
    [343] SHAO Yi-han, XIE Ya-zhou, ROBLEE C J, et al. Seismic fragility of approach backfill differential settlement for statewide bridges in California[J]. Soil Dynamics and Earthquake Engineering, 2022, 153: 107049. doi: 10.1016/j.soildyn.2021.107049
    [344] MITOULIS S, ARGYROUDIS S, KOWALSKY M. Evaluation of the siffness and damping of abutments to extend direct displacement based design to the design of integral bridges[C]//PAPADRAKAKIS M, PAPADOPOULOS V, PLEVRIS V. 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Crete Island: National Technical University of Athens (NTUA), 2015, DOI: 10.7712/120115.3500.1060.
    [345] XUE Jun-qing, ALOISIO A, LIN Yi-biao, et al. Optimum design of piles with pre-hole filled with high-damping material: experimental tests and analytical modeling[J]. Soil Dynamics and Earthquake Engineering, 2021, 151: 106995. doi: 10.1016/j.soildyn.2021.106995
    [346] 薛俊青, 林毅标, BRISEGHELLA B, 等. 扩孔隔震桩-土相互作用受力性能拟静力试验[J]. 中国公路学报, 2022, 35(4): 153-165. doi: 10.3969/j.issn.1001-7372.2022.04.012

    XUE Jun-qing, LIN Yi-bao, BRISEGHELLA B, et al. Quasi-static test on mechanical behaviors of pre-hole isolation pile-soil interaction[J]. China Journal of Highway and Transport, 2022, 35(4): 153-165. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.04.012
    [347] FU Rui-huan, BRISEGHELLA B, XUE Jun-qing, et al. Experimental and finite element analyses of laterally loaded RC piles with pre-hole filled by various filling material in IABs[J]. Engineering Structures, 2022, 272: 114991. doi: 10.1016/j.engstruct.2022.114991
    [348] XUE Jun-qing, LIN Yi-bao, FU Rui-huan, et al. Pseudo- static test on mechanic behavior of pile with pre-hole filled by foam[C]//IABSE. 2019 IABSE Congress. New York: IABSE, 2019: 2039-2043.
    [349] MITOULIS S A, TEGOS I A. Two new earthquake resistant integral abutments for medium to long span bridges[J]. Structural Engineering International, 2011, 21(2): 157-161. doi: 10.2749/101686611X12994961034011
    [350] WILSON J C. Stiffness of non-skew monolithic bridge abutments for seismic analysis[J]. Earthquake Engineering and Structural Dynamics, 1988, 16(6): 867-883. doi: 10.1002/eqe.4290160608
    [351] 李桓兴, 杨春雷, 郑罡, 等. 云南石羊江桥抗震性能评估及加固设计[J]. 世界桥梁, 2007, 35(3): 66-68. doi: 10.3969/j.issn.1671-7767.2007.03.019

    LI Huan-xing, YANG Chun-lei, ZHENG Gang, et al. Seismic performance assessment and strengthening design of shiyang river bridge in Yunnan[J]. World Bridges, 2007, 35(3): 66-68. (in Chinese) doi: 10.3969/j.issn.1671-7767.2007.03.019
    [352] 翟红丽, 王进, 王承格. 高地震区高速公路无伸缩缝半整体式桥梁的抗震研究[J]. 价值工程, 2013, 32(8): 59-62. doi: 10.3969/j.issn.1006-4311.2013.08.032

    ZHAI Hong-li, WANG Jin, WANG Cheng-ge. Seismic research on half-whole bridge without expansion joint of highway at highland earthquake region[J]. Value Engineering, 2013, 32(8): 59-62. (in Chinese) doi: 10.3969/j.issn.1006-4311.2013.08.032
    [353] 王胜智. 抗震型半整体桥中扩孔微型桩动力性能和耗能能力研究[D]. 福州: 福州大学, 2016.

    WANG Sheng-zhi. Research on dynamic behaviors and energy dissipation capacity of micropile with predrilled oversize hole in aseismic semi-integral abutment[D]. Fuzhou: Fuzhou University, 2016. (in Chinese)
    [354] 庄一舟, 李增锋, 程俊峰, 等. 半整体式桥台无缝化斜交桥的抗震性能分析[J]. 建筑科学与工程学报, 2017, 34(3): 24-30. doi: 10.3969/j.issn.1673-2049.2017.03.004

    ZHUANG Yi-zhou, LI Zeng-feng, CHENG Jun-feng, et al. Analysis on seismic performance of semi-integral abutment jointless skew bridge[J]. Journal of Architecture and Civil Engineering, 2017, 34(3): 24-30. (in Chinese) doi: 10.3969/j.issn.1673-2049.2017.03.004
    [355] 郭维强, BRISEGHELLA B, 薛俊青, 等. 无伸缩缝桥梁动力特性与抗震性能研究[J]. 建筑科学与工程学报, 2021, 38(4): 89-100. doi: 10.19815/j.jace.2020.11058

    GUO Wei-qiang, BRISEGHELLA B, XUE Jun-qing, et al. Research on dynamic characteristics and seismic performance of jointless bridges[J]. Journal of Architecture and Civil Engineering, 2021, 38(4): 89-100. (in Chinese) doi: 10.19815/j.jace.2020.11058
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1217
  • HTML全文浏览量:  260
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回