留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模拟酸雨侵蚀环境下钢筋混凝土结构长期性能研究综述

任青阳 靳红华 肖宋强 王飞飞 陈斌

任青阳, 靳红华, 肖宋强, 王飞飞, 陈斌. 模拟酸雨侵蚀环境下钢筋混凝土结构长期性能研究综述[J]. 交通运输工程学报, 2022, 22(5): 41-72. doi: 10.19818/j.cnki.1671-1637.2022.05.002
引用本文: 任青阳, 靳红华, 肖宋强, 王飞飞, 陈斌. 模拟酸雨侵蚀环境下钢筋混凝土结构长期性能研究综述[J]. 交通运输工程学报, 2022, 22(5): 41-72. doi: 10.19818/j.cnki.1671-1637.2022.05.002
REN Qing-yang, JIN Hong-hua, XIAO Song-qiang, WANG Fei-fei, CHEN Bin. Review on long-term performance of reinforced concrete structures under simulated acid rain erosion environments[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 41-72. doi: 10.19818/j.cnki.1671-1637.2022.05.002
Citation: REN Qing-yang, JIN Hong-hua, XIAO Song-qiang, WANG Fei-fei, CHEN Bin. Review on long-term performance of reinforced concrete structures under simulated acid rain erosion environments[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 41-72. doi: 10.19818/j.cnki.1671-1637.2022.05.002

模拟酸雨侵蚀环境下钢筋混凝土结构长期性能研究综述

doi: 10.19818/j.cnki.1671-1637.2022.05.002
基金项目: 

国家自然科学基金项目 U20A20314

国家自然科学基金项目 41472262

重庆市自然科学基金项目 cstc2020jcyj-zdxmX0012

重庆市高校创新研究群体项目 CXQT19021

重庆英才计划 CQYC201903026

重庆交通大学研究生科研创新项目 CYB21210

详细信息
    作者简介:

    任青阳(1975-),男,河南南阳人,重庆交通大学教授,工学博士,从事土木工程防灾减灾研究

  • 中图分类号: U448.34

Review on long-term performance of reinforced concrete structures under simulated acid rain erosion environments

Funds: 

National Natural Science Foundation of China U20A20314

National Natural Science Foundation of China 41472262

Natural Science Foundation of Chongqing cstc2020jcyj-zdxmX0012

Innovation Research Group Project of Universities in Chongqing CXQT19021

Chongqing Talents Plan CQYC201903026

Graduate Scientific Research Innovation Project of Chongqing Jiaotong University CYB21210

More Information
    Author Bio:

    REN Qing-yang (1975–), male, born in Nanyang, Henan, professor in Chongqing Jiaotong University, doctor of engineering. He is engaged in research on disaster prevention and mitigation in civil engineering. E-mail: qyren@cqjtu.edu.cn

  • 摘要: 为深化对酸雨侵蚀环境下钢筋混凝土结构长期性能演变机制的认识,论述了酸雨侵蚀作用下混凝土材料腐蚀机理、侵蚀模型和物理力学性能时变过程;分析了酸雨锈蚀钢筋的溶液腐蚀机理和大气动态冲刷机制,总结了锈蚀钢筋形貌表征与锈蚀率指标定量化研究成果,归纳了已有锈蚀钢筋力学性能退化模型和本构模型,概述了钢混界面黏结性能演变规律和黏结-滑移本构关系模型;梳理了梁、柱构件及结构静、动力学性能演变规律的室内试验结果、理论计算方法和数值仿真结果的最新研究进展与不足,并展望了未来的研究方向与重点。研究结果表明:酸雨腐蚀混凝土可归因于酸雨离子成分的交互作用,亟需适用性较强的理论模型以揭示腐蚀和扩散机制;室内加速试验揭示了酸雨侵蚀作用下混凝土物理力学性能时变规律,应完善室内加速试验制度,搭建耦合宏细观层次关键指标的混凝土损伤评价体系和预估模型;酸雨加速锈蚀钢筋试验多基于均匀锈蚀,钢筋腐蚀方法和形貌表征逐渐向不均匀锈蚀发展,应进一步发展高精度扫描技术,借助统计分析理论建立钢筋不均匀锈蚀特征参数,优化钢筋力学性能退化模型;通电锈蚀试验和拉拔试验演绎了钢混界面黏结性能演化规律,并建立了黏结-滑移本构关系,但忽略了实际钢筋混凝土结构的受力特点,且锈蚀过程显著区别于自然锈蚀,应考虑酸雨环境与材料特性复杂多变的特点,研究细微观钢混界面损伤行为,揭示酸雨环境、材料特性与黏结性能的内在关系;酸雨侵蚀钢筋混凝土结构时效性能研究多集中在试件层次,且采用腐蚀试验与承载力试验分阶段进行,忽略了荷载-环境的耦合作用,试验所设环境较为单一,试验制度与方法亦未统一,应对标实际工程,考虑实际结构承载和环境工况,搭建长期荷载-酸雨侵蚀耦合作用试验系统,探索荷载-环境-材料多场关联机制,完善理论计算方法与数值仿真手段,揭示结构长期性能演变过程,并推动现场暴露试验发展,量化室内-现场映射关系,指导工程实际。

     

  • 图  1  不同pH值下混凝土孔隙率变化曲线

    Figure  1.  Variation curves of concrete porosities under different pH values

    图  2  不同pH值下混凝土侵蚀深度变化曲线

    Figure  2.  Chang curves of erosion depths of concrete under different pH values

    图  3  不同侵蚀龄期下混凝土腐蚀层pH值变化曲线

    Figure  3.  Change curves of pH values of concrete corrosion layer under different corrosion ages

    图  4  不同pH值下混凝土的质量损失

    Figure  4.  Mass losses of concrete under different pH values

    图  5  不同pH值下混凝土相对抗压强度变化曲线

    Figure  5.  Change curves of relative compressive strengths of concrete under different pH values

    图  6  不同pH值下混凝土相对静力弹性模量变化曲线

    Figure  6.  Change curves of relative static elastic moduli of concrete under different pH values

    图  7  不同pH值下混凝土相对动弹性模量变化曲线

    Figure  7.  Change curves of relative dynamic elastic moduli of concrete under different pH values

    图  8  混凝土中性化深度和质量变化率随侵蚀龄期的变化

    Figure  8.  Variations of neutralization depth and mass change rate of concrete with respect to erosion age

    图  9  混凝土强度损失和相对动弹性模量随侵蚀龄期的变化

    Figure  9.  Variations of strength loss and relative dynamic elastic modulus of concrete with respect to erosion age

    图  10  酸雨侵蚀后混凝土本构模型

    Figure  10.  Constitutive model of concrete eoroded by acid rain

    图  11  钢筋在酸性环境中的腐蚀

    Figure  11.  Corrosion of reinforcement in acidic environments

    图  12  模拟酸雨试验结果

    Figure  12.  Experimental results of simulated acid rain

    图  13  锈蚀钢筋3D激光扫描模型

    Figure  13.  3D laser scanning models of corroded reinforcement

    图  14  均匀锈蚀与非均匀锈蚀钢筋轮廓对比

    Figure  14.  Comparison of reinforcement profiles between uniform corrosion and non-uniform corrosion

    图  15  ηaveηcrtR间关系

    Figure  15.  Relationships between ηave and ηcrt, R

    图  16  酸雨腐蚀下钢筋屈服强度退化系数与腐蚀率的关系

    Figure  16.  Relationship between yield strength degradation coefficient and corrosion rate of reinforcement under acid rain corrosion

    图  17  酸雨腐蚀下钢筋名义极限强度退化系数、弹性模量退化系数与腐蚀率的关系

    Figure  17.  Relationships between nominal ultimate strength degradation coefficient, elastic modulus degradation coefficient and corrosion rate of steel reinforcement under acid rain corrosion

    图  18  酸雨锈蚀钢筋本构关系曲线

    Figure  18.  Constitutive relationship curves of reinforcement corroded by acid rain

    图  19  黏结应力与锈蚀率、滑移量关系

    Figure  19.  Relationships between bond stress and corrosion rate, slip

    图  20  既有锈蚀钢筋黏结-滑移本构关系模型

    Figure  20.  Existing bond-slip constitutive models of corroded reinforcement

    图  21  极限荷载和极限弯矩随腐蚀龄期的变化

    Figure  21.  Variations of ultimate load and ultimate bending moment with corrosion age

    图  22  抗弯承载力随腐蚀率和预应力度的变化

    Figure  22.  Variations of flexural bearing capacity with corrosion rate and prestress degree

    图  23  方形钢管混凝土梁抗弯承载力随钢管腐蚀率变化

    Figure  23.  Variations of flexural bearing capacity of square concrete filled steel tubular beam with corrosion rate of steel tube

    图  24  圆形钢管混凝土梁抗弯承载力随钢管腐蚀率变化

    Figure  24.  Variations of flexural bearing capacity of circular concrete filled steel tubular beam with corrosion rate of steel tube

    图  25  钢筋混凝土柱极限承载力时变规律

    Figure  25.  Time-varying laws of ultimate bearing capacities of reinforced concrete columns

    图  26  圆形钢管混凝土柱极限轴压承载力参数影响规律

    Figure  26.  Influence laws of parameters on ultimate axial compression bearing capacity of circular concrete filled steel tubular column

    图  27  方形钢管混凝土柱极限轴压承载力参数影响规律

    Figure  27.  Influence laws of parameters on ultimate axial compression bearing capacity of square concrete filled steel tubular column

    图  28  钢管混凝土柱偏压极限承载力随钢管腐蚀率变化

    Figure  28.  Variations of eccentric compression ultimate bearing capacities of concrete filled steel tubular columns with corrosion rate of steel tube

    图  29  钢管混凝土柱偏压极限承载力随偏心距变化

    Figure  29.  Variations of eccentric compression ultimate bearing capacities of concrete filled steel tubular columns with eccentricity

    图  30  圆形钢管混凝土柱的抗震性能演变规律

    Figure  30.  Evolutions of seismic behaviors of circular concrete filled steel tubular columns

    图  31  方形钢管混凝土柱抗震性能演变规律

    Figure  31.  Evolutions of seismic behaviors of square concrete filled steel tubular columns

    表  1  酸蚀深度代表性模型

    Table  1.   Representative models of acid etching depth

    数据来源 溶液类型 模型
    [24] 硝酸 d=kcmtn
    [25] 硝酸 d=k(A+BW/C)ncmtn
    [26] 醋酸 Vc=η0ηtηth
    [27] 硫酸 $d = K'\sqrt {f/H} t\varphi (S/H)$
    [28] 碳酸 $d = \sqrt {\frac{{2D{A_{\rm{L}}}}}{{{m_{\rm{L}}}{A_{\rm{g}}}}}} \left( {c_{\rm{s}}^ * - {c_{\rm{L}}}} \right)\sqrt t $
    [29] 硫酸+硝酸 $d = At + B\sqrt t + E$
    下载: 导出CSV

    表  2  酸雨环境下钢筋锈蚀退化模型

    Table  2.   Reinforcement corrosion degradation models in acid rain environment

    文献来源 锈蚀率 ay au as
    [73] ηd 0.007 5 0.007 7 0.009 0
    [74] ηs 0.011 7 8.718×10-6
    [46] ηave 0.012 0
    [46] ηave 0.012 0
    [75] ηs 0.018 0 0.013 7
    [76] ηd 0.007 8 0.007 6 0.004 7
    [76] ηd 0.008 4 0.008 4 0.001 1
    下载: 导出CSV
  • [1] MARCOS-MESON V, FISCHER G, EDVARDSEN C, et al. Durability of steel fibre reinforced concrete (SFRC) exposed to acid attack-a literature review[J]. Construction and Building Materials, 2019, 200: 490-501. doi: 10.1016/j.conbuildmat.2018.12.051
    [2] ZHOU Yan, ZHENG Shan-suo, CHEN Liu-zhuo, et al. Experimental investigation into the seismic behavior of squat reinforced concrete walls subjected to acid rain erosion[J]. Journal of Building Engineering, 2021, 44: 102899. doi: 10.1016/j.jobe.2021.102899
    [3] GUAN Yong-ying, ZHENG Shan-suo. Seismic behaviors of RC frame beam-column joints under acid rain circle: a pilot experimental study[J]. Journal of Earthquake Engineering, 2018, 22(6): 1008-1026. doi: 10.1080/13632469.2016.1269695
    [4] 任超. 化学-力学耦合作用下FRP增强混凝土梁力学性能研究[D]. 大连: 大连海事大学, 2013.

    REN Chao. Mechanical properties of FRP-reinforced concrete beams under the chemical-mechanical coupled action[D]. Dalian: Dalian Maritime University, 2013. (in Chinese)
    [5] EKOLU S O. Model for natural carbonation prediction (NCP): practical application worldwide to real life functioning concrete structures[J]. Engineering Structures, 2020, 224: 111126. doi: 10.1016/j.engstruct.2020.111126
    [6] LI Song, LIU Jin-liang, CUI Chen-xing, et al. Carbonation process of reinforced concrete beams under the combined effects of fatigue damage and environmental factors[J]. Applied Sciences, 2020, 10(11): 3981. doi: 10.3390/app10113981
    [7] HU Wei-kun, LI Yao-zhuang, PENG Hua. Experimental study on acid-rain corrosion mechanism of concrete based on periodic immersion method[J]. Science of Advanced Materials, 2020, 12(8): 1149-1156. doi: 10.1166/sam.2020.3785
    [8] 曹琛, 郑山锁, 胡卫兵. 酸雨环境下混凝土结构性能研究综述[J]. 材料导报, 2019, 33(6): 1869-1874. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201911018.htm

    CAO Chen, ZHENG Shan-suo, HU Wei-bing. A survey on concrete structure properties under acid rain erosion[J]. Materials Reports, 2019, 33(6): 1869-1874. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201911018.htm
    [9] YAO Jin-wei, CHEN Jian-kang, LU Chun-sheng. Entropy evolution during crack propagation in concrete under sulfate attack[J]. Construction and Building Materials, 2019, 209: 492-498. doi: 10.1016/j.conbuildmat.2019.03.083
    [10] YI Chao-fan, CHEN Zheng, BINDIGANAVILE V. Crack growth prediction of cement-based systems subjected to two-dimensional sulphate attack[J]. Construction and Building Materials, 2019, 222: 814-828. doi: 10.1016/j.conbuildmat.2019.06.187
    [11] YANG Yu, JI Tao, LIN Xu-jian, et al. Biogenic sulfuric acid corrosion resistance of new artificial reef concrete[J]. Construction and Building Materials, 2018, 158: 33-41. doi: 10.1016/j.conbuildmat.2017.10.007
    [12] GIRARDI F, MAGGIO R D. Resistance of concrete mixtures to cyclic sulfuric acid exposure and mixed sulfates: effect of the type of aggregate[J]. Cement and Concrete Composites, 2011, 33(2): 276-285. doi: 10.1016/j.cemconcomp.2010.10.015
    [13] CHEN Meng-cheng, WANG Kai, XIE Li. Deterioration mechanism of cementitious materials under acid rain attack[J]. Engineering Failure Analysis, 2013, 27: 272-285. doi: 10.1016/j.engfailanal.2012.08.007
    [14] YUAN Hai-feng, DANGLA P, CHATELLIER P, et al. Degradation modelling of concrete submitted to sulfuric acid attack[J]. Cement and Concrete Research, 2013, 53: 267-277. doi: 10.1016/j.cemconres.2013.08.002
    [15] MIN Hong-guang, SONG Zhi-gang. Investigation on the sulfuric acid corrosion mechanism for concrete in soaking environment[J]. Advances in Materials Science and Engineering, 2018, 2018: 3258123.
    [16] JAHANI F, DEVINNY J, MANSFELD F, et al. Investigations of sulfuric acid corrosion of concrete. Ⅰ: modeling and chemical observations[J]. Journal of Environmental Engineering, 2001, 127(7): 572-579. doi: 10.1061/(ASCE)0733-9372(2001)127:7(572)
    [17] BOHM M, DEVINNY J S, JAHANI F, et al. A moving boundary diffusion model for the corrosion of concrete wastewater systems: simulation and experimental validation[C]//IEEE. Proceedings of the 1999 American Control Conference. New York: IEEE, 2002: 1739-1743.
    [18] SONG Zhi-gang, ZAHNG Xue-song, MIN Hong-guang. Concentration boundary layer model of mortar corrosion by sulfuric acid[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2011, 26(3): 527-532. doi: 10.1007/s11595-011-0262-9
    [19] YANG Sheng-yuan, SONG Zhi-gang, LUO Xiang, et al. Comparative study on theory model and test result for dilute sulfuric acid to erode concrete[J]. Procedia Earth and Planetary Science, 2012, 5: 188-197. doi: 10.1016/j.proeps.2012.01.033
    [20] MAHDIKHANI M, BAMSHAD O, FALLAH SHIRVANI M. Mechanical properties and durability of concrete specimens containing nano silica in sulfuric acid rain condition[J]. Construction and Building Materials, 2018, 167: 929-935. doi: 10.1016/j.conbuildmat.2018.01.137
    [21] GU Lei, VISINTIN P, BENNETT T. Evaluation of accelerated degradation test methods for cementitious composites subject to sulfuric acid attack; application to conventional and alkali-activated concretes[J]. Cement and Concrete Composites, 2018, 87: 187-204. doi: 10.1016/j.cemconcomp.2017.12.015
    [22] FAN Ying-fan, LUAN Hai-yang. Pore structure in concrete exposed to acid deposit[J]. Construction and Building Materials, 2013, 49: 407-416. doi: 10.1016/j.conbuildmat.2013.08.075
    [23] FAN Ying-fan, HU Zu-quan, ZHANG Yang-zhi, et al. Deterioration of compressive property of concrete under simulated acid rain environment[J]. Construction and Building Materials, 2010, 24: 1975-1983. doi: 10.1016/j.conbuildmat.2010.04.002
    [24] PAVLÍK V. Effect of carbonates on the corrosion rate of cement mortars in nitric acid[J]. Cement and Concrete Research, 2000, 30: 481-489. doi: 10.1016/S0008-8846(00)00201-5
    [25] ONYEJEKWE O O, REDDY N. A numerical approach to the study of chloride ion penetration into concrete[J]. Magazine of Concrete Research, 2000, 52(4): 243-250. doi: 10.1680/macr.2000.52.4.243
    [26] ZIVICA V, BAJZA A. Acidic attack of cement based materials-a review: Part 1. Principle of acidic attack[J]. Construction and Building Materials, 2001, 15: 331-340. doi: 10.1016/S0950-0618(01)00012-5
    [27] 马北京. 酸雨环境下混凝土力学性能试验研究[D]. 西安: 长安大学, 2017.

    MA Bei-jing. Experimental study on mechanical properties of concretein acid environment[D]. Xi'an: Chang'an University, 2017. (in Chinese)
    [28] 唐咸燕, 肖佳, 陈烽. 酸沉降对混凝土耐久性的影响及研究进展[J]. 材料导报, 2006, 20(10): 97-101. doi: 10.3321/j.issn:1005-023X.2006.10.025

    TANG Xian-yan, XIAO Jia, CHEN Feng. Effect and research progress of acid deposition on concrete durability[J]. Materials Reports, 2006, 20(10): 97-101. (in Chinese) doi: 10.3321/j.issn:1005-023X.2006.10.025
    [29] 张亚明. 混凝土受酸雨侵蚀性能劣化规律及寿命预测模型研究[D]. 武汉: 武汉理工大学, 2016.

    ZHANG Ya-ming. Research on performance deterioration laws of concrete suffering from acid rain and life prediction model[D]. Wuhan: Wuhan University of Technology, 2016. (in Chinese)
    [30] LI Xin, LIN Xu-jian, LIN Kui, et al. Study on the degradation mechanism of sulphoaluminate cement sea sand concrete eroded by biological sulfuric acid[J]. Construction and Building Materials, 2017, 157: 331-336. doi: 10.1016/j.conbuildmat.2017.08.172
    [31] HADIGHEH S A, KE Fei-hu, KASHI S M. 3D acid diffusion model for FRP-strengthened reinforced concrete structures: long-term durability prediction[J]. Construction and Building Materials, 2020, 261: 120548. doi: 10.1016/j.conbuildmat.2020.120548
    [32] MAHMOODIAN M, ALANI A M. Effect of temperature and acidity of sulfuric acid on concrete properties[J]. Journal of Materials in Civil Engineering, 2017, 29 (10): 04017154. doi: 10.1061/(ASCE)MT.1943-5533.0002002
    [33] NNADI E O, LIZARAZO-MARRIAGA J. Acid corrosion of plain and reinforced concrete sewage systems[J]. Journal of Materials in Civil Engineering, 2013, 25(9): 1353-1356. doi: 10.1061/(ASCE)MT.1943-5533.0000641
    [34] MAHDIKHANI M, BAMSHAD O, FALLAH SHIRVANI M. Mechanical properties and durability of concrete specimens containing nano silica in sulfuric acid rain condition[J]. Construction and Building Materials, 2018, 167: 929-935. doi: 10.1016/j.conbuildmat.2018.01.137
    [35] BARBHUIYA S, KUMALA D. Behaviour of a sustainable concrete in acidic environment[J]. Sustainability, 2017, 9: 1556. doi: 10.3390/su9091556
    [36] 姜健, 徐惠, 唐轶繁. 酸雨模拟液侵蚀混凝土的损伤劣化研究[J]. 硅酸盐通报, 2015, 34(5): 1407-1411, 1416. doi: 10.16552/j.cnki.issn1001-1625.2015.05.042

    JIANG Jian, XU Hui, TANG Yi-fan. Degradation of concrete under the corrosion of modeling acid rain solution[J]. Bulletin of the Chinese Silicate Society, 2015, 34(5): 1407-1411, 1416. (in Chinese) doi: 10.16552/j.cnki.issn1001-1625.2015.05.042
    [37] GU Lei, VISINTIN P, BENNETT T. Evaluation of accelerated degradation test methods for cementitious composites subject to sulfuric acid attack; application to conventional and alkali-activated concretes[J]. Cement and Concrete Composites, 2018, 87: 187-204. doi: 10.1016/j.cemconcomp.2017.12.015
    [38] ARIFFIN M A M, BHUTTA M A R, HUSSIN M W, et al. Sulfuric acid resistance of blended ash geopolymer concrete[J]. Construction and Building Materials, 2013, 43: 80-86. doi: 10.1016/j.conbuildmat.2013.01.018
    [39] 张英姿, 赵颖华, 范颖芳. 受酸雨侵蚀混凝土弹性模量研究[J]. 工程力学, 2011, 28(2): 175-180. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201102028.htm

    ZHANG Ying-zi, ZHAO Ying-hua, FAN Ying-fang. A theoretical model for assessing elastic modulus of concrete corroded by acid rain[J]. Engineering Mechanics, 2011, 28(2): 175-180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201102028.htm
    [40] 李北星, 钱兴, 王凯. 酸雨-冻融耦合侵蚀作用下混凝土性能劣化规律[J]. 硅酸盐通报, 2019, 38(11): 3559-3564. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201911029.htm

    LI Bei-xing, QIAN Xing, WANG Kai. Performance degradation law of concrete under coupling effects of acid rain and freeze-thaw cycles[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3559-3564. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201911029.htm
    [41] 许崇法, 曹双寅, 范沈龙, 等. 多因素作用下混凝土中性化深度统一预测模型[J]. 东南大学学报(自然科学版), 2014, 44(2): 363-368. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201402024.htm

    XU Chong-fa, CAO Shuang-yin, FAN Shen-long, et al. Unified prediction model of concrete neutral depth under multiple factors[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(2): 363-368. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201402024.htm
    [42] 牛荻涛周浩爽, 牛建刚. 承载混凝土酸雨侵蚀中性化试验研究[J]. 硅酸盐通报, 2009, 28(3): 411-415. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200903001.htm

    NIU Di-tao, ZHOU Hao-shuang, NIU Jian-gang. Investigation of neutralization of concrete under loads by accelerated acid rain test[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(3): 411-415. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200903001.htm
    [43] 沈阳, 王功勋, 卢胜男, 等. 酸雨-荷载共同作用对废陶瓷再生混凝土中性化的影响研究[J]. 硅酸盐通报, 2018, 37(12): 3977-3982. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201812045.htm

    SHEN Yang, WANG Gong-xun, LU Sheng-nan, et al. Research on neutralization of waste ceramic recycled concrete under the acid rain-load[J]. Bulletin of the Chinese Silicate Society, 2018, 37(12): 3977-3982. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201812045.htm
    [44] 徐佳翔. 模拟酸雨环境应力及应变率对混凝土抗压性能影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    XU Jia-xiang. Effects of simulated acid rain environment stress and strain rate on compressive performance of concrete[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [45] 王凯, 林静, 葛翠翠, 等. 持续弯曲荷载下混凝土的酸雨侵蚀特性[J]. 硅酸盐通报, 2018, 37(1): 173-177. doi: 10.16552/j.cnki.issn1001-1625.2018.01.027

    WANG Kai, LIN Jing, GE Cui-cui, et al. Acid rain attack characteristics of concrete under continuous bending load[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(1): 173-177. (in Chinese) doi: 10.16552/j.cnki.issn1001-1625.2018.01.027
    [46] 李超. 模拟酸雨环境下钢筋混凝土梁力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    LI Chao. Study on mechanical properties of reinforced concrete beams under simulated acid rain environment[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [47] 陈子超. 模拟酸雨腐蚀下预应力混凝土梁受力性能的数值模拟[D]. 南昌: 华东交通大学, 2018.

    CHEN Zi-chao. Numerical simulation of performance of prestressed concrete beams under acid rain corrosion[D]. Nanchang: East China Jiaotong University, 2018. (in Chinese)
    [48] 周昌林, 朱哲明, 朱爱军, 等. 酸雨腐蚀对混凝土材料断裂特性的影响[J]. 工程科学与技术, 2019, 51(1) 144-1551. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201901019.htm

    ZHOU Chang-lin, ZHU Zhe-ming, ZHU Ai-jun, et al. Deterioration of fracture characteristics for concrete material under acid rain environment[J]. Advanced Engineering Sciences, 2019, 51(1): 144-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201901019.htm
    [49] LU Cai-feng, WANG Wei, ZHOU Qing-song, et al. Mechanical behavior degradation of recycled aggregate concrete after simulated acid rain spraying[J]. Journal of Cleaner Production, 2020, 262: 121237. doi: 10.1016/j.jclepro.2020.121237
    [50] 王艳, 牛荻涛, 苗元耀. 碳化与酸雨侵蚀共同作用下钢纤维混凝土的耐久性能[J]. 建筑材料学报, 2014, 17(4): 579-585. doi: 10.3969/j.issn.1007-9629.2014.04.004

    WANG Yan, NIU Di-tao, MIAO Yuan-yao. Durability of steel fiber reinforced concrete under the combined effects of carbonization and acid rain erosion[J]. Journal of Building Materials, 2014, 17(4): 579-585. (in Chinese) doi: 10.3969/j.issn.1007-9629.2014.04.004
    [51] SUN Yu-Li, TANG Long-song. Compressive properties analysis for concrete materials under acid-freezing rain action[J]. Fresenius Environmental Bulletin, 2017, 26(12A): 7967-7973.
    [52] ZHOU Chang-lin, ZHU Zhe-ming, ZHU Ai-jun, et al. Deterioration of mode Ⅱ fracture toughness, compressive strength and elastic modulus of concrete under the environment of acid rain and cyclic wetting-drying[J]. Construction and Building Materials, 2019, 228: 116809. doi: 10.1016/j.conbuildmat.2019.116809
    [53] 姜军, 王军阳, 金武俊, 等. 带肋钢腐蚀及其防腐蚀技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 439-449. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF202104003.htm

    JIANG Jun, WANG Jun-yang, JIN Wu-jun, et al. Research progress on corrosion of ribbed steel and its anti-corrosion technology of ribbed steel[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(4): 439-449. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF202104003.htm
    [54] JARRAH N R, AL-AMOUDI O S B, MASLEHUDDIN M, et al. Electrochemical behaviour of steel in plain and blended cement concretes in sulphate and/or chloride environments[J]. Construction and Building Materials, 1995, 9(2): 97-103. doi: 10.1016/0950-0618(95)00002-W
    [55] 邱林峰. 硫酸盐-氯盐环境下钢筋混凝土腐蚀过程的实验研究[D]. 南京: 南京理工大学, 2017.

    QIU Lin-feng. Experimental study on corrosion process of reinforced concrete in sulfate-chloride environment[D]. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese)
    [56] AL-TAYYIB A J, SOMUAH S K, BOAH J K, et al. Laboratory study on the effect of sulfate ions on rebar corrosion[J]. Cement and Concrete Research, 1988, 18(5): 774-782. doi: 10.1016/0008-8846(88)90102-0
    [57] SHAHEEN F, PRADHAN B. Effect of chloride and conjoint chloride-sulfate ions on corrosion of reinforcing steel in electrolytic concrete powder solution (ECPS)[J]. Construction and Building Materials, 2015, 101: 99-112. doi: 10.1016/j.conbuildmat.2015.10.028
    [58] 乔宏霞, 张占武, 高升, 等. 硫酸盐和氯盐耦合环境中钢筋的电化学腐蚀行为[J]. 兰州理工大学学报, 2017, 43(4): 132-136. doi: 10.3969/j.issn.1673-5196.2017.04.027

    QIAO Hong-xia, ZHANG Zhan-wu, GAO Sheng, et al. Electrochemical corrosion behavior of reinforcing steel in coupling environment of sulphate with chloride[J]. Journal of Lanzhou University of Technology, 2017, 43(4): 132-136. (in Chinese) doi: 10.3969/j.issn.1673-5196.2017.04.027
    [59] 左晓宝, 邱林峰, 汤玉娟, 等. 氯盐和硫酸盐侵蚀下水泥净浆中钢筋锈蚀过程[J]. 建筑材料学报, 2017, 20(3): 352-358, 372. doi: 10.3969/j.issn.1007-9629.2017.03.006

    ZUO Xiao-bao, QIU Lin-feng, TANG Yu-juan, et al. Corrosion process of steel bar in cement pastes under combined action of chloride and sulfate attacks[J]. Journal of Building Materials, 2017, 20(3): 352-358, 372. (in Chinese) doi: 10.3969/j.issn.1007-9629.2017.03.006
    [60] ABUBAKAR A F, ZUO Xiao-bao, ZUO Shuai, et al. Electrochemical investigation on the influence of sulfates on chloride-induced corrosion of steel bar in cement-based materials[J]. Journal of Sustainable Cement-Based Materials, 2020, 9(2): 112-126. doi: 10.1080/21650373.2019.1709998
    [61] 陈文. 混凝土钢筋酸雨腐蚀行为研究[D]. 重庆: 重庆大学, 2009.

    CHEN Wen. Study on corrosion behavior of steel rebar of reinforce concrete under acid-rain environment[D]. Chongqing: Chongqing University, 2009. (in Chinese)
    [62] 张学元, 安百刚, 韩恩厚, 等. 酸雨对材料的腐蚀/冲刷研究现状[J]. 腐蚀科学与防护技术, 2002, 14(3): 157-160. doi: 10.3969/j.issn.1002-6495.2002.03.009

    ZHANG Xue-yuan, AN Bai-gang, HAN En-hou, et al. Runoff and corrosion of material due to acid rain[J]. Corrosion Science and Protection Technology, 2002, 14(3): 157-160. (in Chinese) doi: 10.3969/j.issn.1002-6495.2002.03.009
    [63] 安百刚. 酸雨/雨水环境中典型金属材料的腐蚀行为研究[D]. 天津: 天津大学, 2003.

    AN Bai-gang. Study on corrosion behavior of the typical metals in rain/acid rain[D]. Tianjin: Tianjin University, 2003. (in Chinese)
    [64] SUN Xiao-yan, KONG Hang-ting, WANG Hai-long, et al. Evaluation of corrosion characteristics and corrosion effects on the mechanical properties of reinforcing steel bars based on three-dimensional scanning[J]. Corrosion Science, 2018, 142: 284-294. doi: 10.1016/j.corsci.2018.07.030
    [65] 喻宣瑞, 姚国文, 蒋一星, 等. 基于三维Copula函数的蚀坑预测模型[J]. 建筑材料学报, 2021, 24(5): 1082-1088. doi: 10.3969/j.issn.1007-9629.2021.05.025

    YU Xuan-rui, YAO Guo-wen, JIANG Yi-xing, et al. Pit prediction model based on three-dimensional copula function[J]. Journal of Building Materials, 2021, 24(5): 1082-1088. (in Chinese) doi: 10.3969/j.issn.1007-9629.2021.05.025
    [66] FU Chuang-qing, JIN Nan-guo, YE Hai-long, et al. Non-uniform corrosion of steel in mortar induced by impressed current method: an experimental and numerical investigation[J]. Construction and Building Materials, 2018, 183: 429-438. doi: 10.1016/j.conbuildmat.2018.06.183
    [67] 刘浩, 巴光忠, 苗吉军, 等. 锈蚀钢筋横截面积分布规律统计分析[J]. 土木与环境工程学报(中英文), 2022, 44(5): 205-216. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202205022.htm

    LIU Hao, BA Guang-zhong, MIAO Ji-jun, et al. Statistical analysis of cross-sectional area distribution of corroded steel bars[J]. Journal of Civil and Environmental Engineering, 2022, 44(5): 205-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202205022.htm
    [68] KIOUMARSI M M, HENDRIKS M A N, KOHLER J, et al. The effect of interference of corrosion pits on the failure probability of a reinforced concrete beam[J]. Engineering Structures, 2016, 114: 113-121. doi: 10.1016/j.engstruct.2016.01.058
    [69] 郭超. 两种锈蚀方法对锈后钢筋力学性能的影响研究[D]. 武汉: 湖北工业大学, 2015.

    GUO Chao. Study on influence of the mechanical properties of the steel bars after rust with two kinds of corrosion methods[D]. Wuhan: Hubei University of Technology, 2015. (in Chinese)
    [70] 何家豪. 钢筋通电加速非均匀锈蚀与自然锈蚀相似性研究[D]. 杭州: 浙江大学, 2020.

    HE Jia-hao. Similarity of non-uniform corrosion between electrified corrosion and natural corrosion[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
    [71] ZUO Xiu-li, XIANG Bin, LI Xing, et al. Corrosion behavior of 35CrMn and Q235 steel in simulated acid rain conditions[J]. Journal of Materials Engineering and Performance, 2012, 21(4): 524-529. doi: 10.1007/s11665-011-9931-2
    [72] LEBAN M B, MIKYŠKA Č, KOSEC T, et al. The effect of surface roughness on the corrosion properties of type AISI 304 stainless steel in diluted NaCl and urban rain solution[J]. Journal of Materials Engineering and Performance, 2014, 23(5): 1695-1702. doi: 10.1007/s11665-014-0940-9
    [73] LI Xie, CHEN Meng-cheng, SUN Wei, et al. Behaviour of concrete-filled steel tubular members under pure bending and acid rain attack: test simulation[J]. Advances in Structural Engineering, 2018, 22(7): 1-14.
    [74] 许开成, 曹艳明陈子超, 等. 模拟酸雨腐蚀下预应力混凝土梁的抗弯性能研究[J]. 计算力学学报, 2019, 36 (1): 124-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201901018.htm

    XU Kai-cheng, CAO Yan-ming, CHEN Zi-chao, et al. Study on flexural behavior of prestressed concrete beams under simulated acid rain corrosion[J]. Chinese Journal of Computational Mechanics, 2019, 36(1): 124-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201901018.htm
    [75] 付斌. 模拟酸雨环境下预应力混凝土梁抗弯性能研究[D]. 南昌: 华东交通大学, 2017.

    FU Bin. Study on bending performance of prestressed beams in simulated acid rain environment[D]. Nanchang: East China Jiaotong University, 2017. (in Chinese)
    [76] ZHANG Tong, LYU Xue-tao, LIU Hai-qing, et al. Axial performance degradation of squared CFST stubs in severe cold and acid rain area[J]. Construction and Building Materials, 2020, 262: 120612. doi: 10.1016/j.conbuildmat.2020.120612
    [77] 朱尔玉, 王冰伟, 周勇政, 等. 酸雨对预应力体系腐蚀的试验研究[J]. 水利学报, 2012, 43(11): 1365-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201211016.htm

    ZHU Er-yu, WANG Bing-wei, ZHOU Yong-zheng, et al. Experimental study of acid rain corrosion to the prestressed system[J]. Journal of Hydraulic Engineering, 2012, 43(11): 1365-1372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201211016.htm
    [78] YUAN Fang, CHEN Meng-cheng, HUANG Hong, et al. Circular concrete filled steel tubular (CFST) columns under cyclic load and acid rain attack: test simulation[J]. Thin-Walled Structures, 2018, 122: 90-101. doi: 10.1016/j.tws.2017.10.005
    [79] 陈梦成, 林博洋, 黄宏. 锈蚀方钢管混凝土短柱轴压承载力研究[J]. 钢结构, 2017, 32(5): 110-116. https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201705024.htm

    CHEN Meng-cheng, LIN Bo-yang, HUANG Hong. Research on the bearing capacity of corroded square concrete filled steel tubular short column[J]. Steel Construction, 2017, 32(5): 110-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201705024.htm
    [80] 陈梦成, 林博洋, 黄宏. 锈蚀圆钢管混凝土短柱轴压承载力研究[J]. 建筑钢结构进展, 2018, 20(1): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJZ201801010.htm

    CHEN Meng-cheng, LIN Bo-yang, HUANG Hong. Research on the bearing capacity of corroded circular concrete filled steel tubular short columns[J]. Progress in Steel Building Structures, 2018, 20(1): 73-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJZ201801010.htm
    [81] ZHANG Tong, LYU Xue-tao, YU Yang. Prediction and analysis of the residual capacity of concrete-filled steel tube stub columns under axial compression subjected to combined freeze-thaw cycles and acid rain corrosion[J]. Materials, 2019, 12: 3070.
    [82] 孙杨, 乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(2): 116-125. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202003013.htm

    SUN Yang, QIAO Guo-fu. Research on the bond properties between corroded reinforcing steel bar and concrete: a review[J]. Materials Reports, 2020, 34(2): 116-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202003013.htm
    [83] ZHOU Ji-kai, CHEN Xu-dong, Chen Shi-xue. Durability and service life prediction of GFRP bars embedded in concrete under acid environment[J]. Nuclear Engineering and Design, 2011, 241(10): 4095-4102.
    [84] 陈梦成, 张凡孟, 黄宏, 等. 模拟酸雨锈蚀下钢筋混凝土黏结性能研究[J]. 混凝土, 2016(5): 5-8.

    CHEN Meng-cheng, ZHANG Fan-meng, HUANG Hong, et al. Study of bond in reinforced concrete under simulating acid rain attack[J]. Concrete, 2016(5): 5-8. (in Chinese)
    [85] 郑山锁, 杨建军, 郑跃, 等. 锈蚀钢筋混凝土粘结滑移性能综述[J]. 材料导报, 2020, 34(增2): 221-226. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2020S2046.htm

    ZHENG Shan-suo, YANG Jian-jun, ZHENG Yue, et al. Review of research on bond-slip of corroded reinforced concrete[J]. Materials Reports, 2020, 34(S2): 221-226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2020S2046.htm
    [86] LIN Hong-we, ZHAO Yu-xi. Effects of confinements on the bond strength between concrete and corroded steel bars[J]. Construction and Building Materials, 2016, 118: 127-138.
    [87] KIVELL A, PALERMO A, SCOTT A. Effects of bond deterioration due to corrosion in reinforced concrete[C]//Building an Earthquake-Resilient Society. Proceedings of the Ninth Pacific Conference on Earthquake Engineering. Auckland: Building an Earthquake-Resilient Society, 2011: 081.
    [88] 王大为. 模拟酸雨环境下钢筋混凝土梁抗弯性能试验研究[D]. 大连: 大连海事大学, 2011.

    WANG Da-wei. Experimental study on bending property of reinforced concrete beam exposed to simulated acid rain environment[D]. Dalian: Dalian Maritime University, 2011. (in Chinese)
    [89] FAN Ying-fang, Hu Zhi-qiang, LUAN Hai-yang, et al. A study of deterioration of reinforced concrete beams under various forms of simulated acid rain attack in the laboratory[J]. Structural Engineering and Mechanics, 2014, 52(1): 35-49.
    [90] 刘金升. 侵蚀条件下T形混凝土梁受弯性能研究[D]. 沈阳: 沈阳建筑大学, 2015.

    LIU Jin-sheng. Study on the bending resistance of T-shaped concrete beams under corrosion condition[D]. Shenyang: Shenyang Jianzhu University, 2015. (in Chinese)
    [91] 聂行. 模拟酸雨环境下掺锂渣钢筋混凝土梁纯弯性能研究[D]. 南昌: 华东交通大学, 2016.

    NIE Xing. Study on pure bending performance of reinforced concrete beams mixed with lithium slag in simulated acid rain environment[D]. Nanchang: East China Jiaotong University, 2016. (in Chinese)
    [92] 孙微. 酸雨腐蚀后方钢管再生混凝土纯弯力学性能研究[D]. 南昌: 华东交通大学, 2016.

    SUN Wei. Study on mechanical behavior of recycled concrete filled square steel tubes subjected to pure bending under the environment of acid rain[D]. Nanchang: East China Jiaotong University, 2016. (in Chinese)
    [93] HOU Chuan-chuan, HAN Lin-hai, WANG Qing-li, et al. Flexural behavior of circular concrete filled steel tubes (CFST) under sustained load and chloride corrosion[J]. Thin-Walled Structures, 2016, 107: 182-196.
    [94] 黄宏, 孙薇, 陈梦成, 等. 酸雨环境下方钢管再生混凝土纯弯力学性能试验研究[J]. 建筑结构, 2018, 48(2): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201802013.htm

    HUANG Hong, SUN Wei, CHEN Meng-cheng, et al. Experimental study on pure bending mechanical behavior of recycled concrete-filled square steel tube under acid rain environment[J]. Building Structure, 2018, 48(2): 66-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201802013.htm
    [95] 黄宏, 胡志慧, 杨超, 等. 模拟酸雨腐蚀后圆钢管再生混凝土抗弯承载力计算方法研究[J]. 混凝土, 2018, 342(4): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201804003.htm

    HUANG Hong, HU Zhi-hui, YANG Chao, et al. Calculation method of flexural capacity of recycled concrete-filled circular steel tubes after simulating acid rain corrosion[J]. Concrete, 2018, 342(4): 8-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201804003.htm
    [96] 黄宏, 胡志慧, 杨超, 等. 模拟酸雨环境下圆钢管再生混凝土纯弯试验研究[J]. 应用力学学报, 2019, 36(1): 97-103, 256. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201901014.htm

    HUANG Hong, HU Zhi-hui, YANG Chao, et al. Experimental study of recycled concrete-filled circle steel tubes subjected to pure bending under the environment of acid rain[J]. Chinese Journal of Applied Mechanics, 2019, 36(1): 97-103, 256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201901014.htm
    [97] 陈梦成, 方苇, 黄宏. 模拟酸雨腐蚀钢管混凝土构件静力性能研究[J]. 工程力学, 2020, 37(2): 34-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202002006.htm

    CHEN Meng-cheng, FANG Wei, HUANG Hong. Static behavior of corroded concrete-filled steel tubular members by simulating acid rain solution[J]. Engineering Mechanics, 2020, 37(2): 34-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202002006.htm
    [98] 许开成, 张智星, 阳翌舒, 等. 模拟酸雨腐蚀环境下锂渣钢筋混凝土轴压短柱试验研究[J]. 建筑结构, 2019, 49(4): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201904013.htm

    XU Kai-cheng, ZHANG Zhi-xing, YANG Yi-xu, et al. Experimental research on lithium slag reinforced concrete short columns under axial compression and simulated acid rain corrosion[J]. Building Structure, 2019, 49(4): 64-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201904013.htm
    [99] 许开成, 易彬, 张立卿, 等. 酸雨环境下掺锂渣钢筋混凝土柱有限元分析[J]. 华东交通大学学报, 2021, 38(3): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT202103002.htm

    XU Kai-cheng, YI Bin, ZHANG Li-qing, et al. Finite element analysis of reinforced concrete columns column mixed with lithium slag under acid rain environment[J]. Journal of East China Jiaotong University, 2021, 38(3): 7-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT202103002.htm
    [100] 许开成, 陈博群, 陈梦成, 等. 模拟酸雨腐蚀环境下掺锂渣钢筋混凝土偏心受压柱试验研究[J]. 实验力学, 2018, 33(4): 641-648. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201804018.htm

    XU Kai-cheng, CHEN Bo-qun, CHEN Meng-cheng, et al. Experimental investigation on lithium slag doped eccentrically loaded reinforced concrete column in a simulated acid rain corrosion environment[J]. Journal of Experimental Mechanics, 2018, 33(4): 641-648. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201804018.htm
    [101] 王凯, 李启发, 余洛凝, 等. 钢筋混凝土偏心受压柱承载力酸雨侵蚀的损伤退化[J]. 沈阳建筑大学学报(自然科学版), 2016, 32(4): 591-597. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201604004.htm

    WANG Kai, LI Qi-fa, YU Luo-ning, et al. Damage degradation of bearing capacity of reinforced concrete eccentric compression columns under acid rain attack[J]. Journal of Shenyang Jianzhu University (Natural Science Edition), 2016, 32(4): 591-597. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201604004.htm
    [102] 余洛凝. 酸雨环境下钢筋混凝土偏心受压柱承载力试验研究[D]. 南昌: 华东交通大学, 2014.

    YU Luo-ning. Experimental research about bearing capacity of reinfofced concrete eccentric compression column in acid rain environment[D]. Nanchang: East China Jiaotong University, 2014. (in Chinese)
    [103] 林博洋. 酸雨腐蚀后钢管混凝土柱抗震性能及轴压承载力研究[D]. 南昌: 华东交通大学, 2016.

    LIN Bo-yang. Study of seismic performance and axial load bearing capacity for acid rain environmental corroded concrete filled steel tubular columns[D]. Nanchang: East China Jiaotong University, 2016. (in Chinese)
    [104] 陈梦成, 王超, 黄宏, 等. 酸雨环境下方钢管再生混凝土短柱轴压力学性能试验研究[J]. 建筑结构, 2017, 47(6): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201706007.htm

    CHEN Meng-cheng, WANG Chao, HUANG Hong, et al. Experimental study on mechanical properties of the recycled concrete filled steel square tube short column under acid rain environment[J]. Building Structure, 2017, 47(6): 35-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201706007.htm
    [105] 陈梦成, 王超, 黄宏, 等. 酸雨环境下方钢管再生混凝土轴压力学性能有限元研究[J]. 混凝土, 2016(12): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201612001.htm

    CHEN Meng-cheng, WANG Chao, HUANG Hong, et al. Study on mechanical properties of recycled concrete filled steel square tube under acid rain environment[J]. Concrete, 2016(12): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201612001.htm
    [106] 周璐. 模拟酸雨腐蚀后圆钢管再生混凝土柱偏压力学性能研究[D]. 南昌: 华东交通大学, 2018.

    ZHOU Lu. Behavior of recycled concrete-filled circular steel tube column subjected to eccentric compression under the environment of acid rain[D]. Nanchang: East China Jiaotong University, 2018. (in Chinese)
    [107] 黄宏, 周璐, 陈梦成, 等. 酸雨腐蚀后圆钢管再生混凝土柱偏压试验研究[J]. 实验力学, 2018, 33(2): 290-298. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201802015.htm

    HUANG Hong, ZHOU Lu, CHEN Meng-cheng, et al. Experimental study of recycled concrete filled circular steel tube column subjected to eccentric compression after acid rain corrosion[J]. Journal of Experimental Mechanics, 2018, 33(2): 290-298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201802015.htm
    [108] 黄宏, 周璐, 陈梦成, 等. 酸雨腐蚀圆钢管再生混凝土柱偏压承载力计算[J]. 混凝土, 2018(9): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201809004.htm

    HUANG Hong, ZHOU Lu, CHEN Meng-cheng, et al. Load carrying capacity of recycled concrete-filled circular steel tubes subjected to compression-bending under acid rain[J]. Concrete, 2018(9): 14-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201809004.htm
    [109] 黄宏, 胡志慧, 朱琪, 等. 酸雨环境下方钢管再生混凝土偏心受压试验研究[J]. 铁道学报, 2018, 40(4): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201804013.htm

    HUANG Hong, HU Zhi-hui, ZHU Qi, et al. Mechanical study of recycled concrete-filled square steel tubes subjected to compression-bending under acid rain[J]. Journal of the China Railway Society, 2018, 40(4): 90-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201804013.htm
    [110] 张智星. 模拟酸雨环境下预应力混凝土梁抗震性能试验研究[D]. 南昌: 华东交通大学, 2018.

    ZHANG Zhi-xing. Experiment study on seismic performance of prestressed concrete beams in simulated acid rain environment[D]. Nanchang: East China Jiaotong University, 2018. (in Chinese)
    [111] 郑山锁, 张艺欣, 黄鹰歌, 等. 酸雨环境下钢筋混凝土框架梁抗震性能试验研究[J]. 建筑结构学报, 2017, 38(9): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201709003.htm

    ZHENG Shan-suo, ZHANG Yi-xin, HUANG Ying-ge, et al. Experimental study on seismic behaviors of reinforced concrete frame beams in simulated acid environment[J]. Journal of Building Structures, 2017, 38(9): 20-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201709003.htm
    [112] 郑山锁, 左河山, 刘巍, 等. 一般大气环境下低剪跨比RC框架梁抗震性能试验研究[J]. 工程力学, 2017, 34(7): 186-194. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201707020.htm

    ZHENG Shan-suo, ZUO He-shan, LIU Wei, et al. Experimental research on aseismic behaviors of RC frame beams of low shear span ration in general atmospheric environment[J]. Engineering Mechanics, 2017, 34(7): 186-194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201707020.htm
    [113] 郑山锁, 郑跃, 董立国, 等. 酸雨环境下锈蚀RC剪力墙恢复力模型研究[J]. 工程力学, 2019, 36(10): 75-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201910010.htm

    ZHENG Shan-suo, ZHENG Yue, DONG Li-guo, et al. A restoring force model of RC shear walls in a simulated acid environment[J]. Engineering Mechanics, 2019, 36(10): 75-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201910010.htm
    [114] 郑跃, 郑山锁, 董立国, 等. 酸雨环境下腐蚀RC剪力墙抗震性能试验研究[J]. 工程力学, 2020, 37(5): 190-198, 227. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202005021.htm

    ZHENG Yue, ZHENG Shan-suo, DONG Li-guo, et al. Experimental study on the seismic behavior of RC shear walls in a simulated acid environment[J]. Engineering Mechanics, 2020, 37(5): 190-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202005021.htm
    [115] 郑山锁, 王晓飞, 孙龙飞, 等. 酸性大气环境下多龄期钢框架节点抗震性能试验研究[J]. 建筑结构学报, 2015, 36(10): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201510004.htm

    ZHENG Shan-suo, WANG Xiao-fei, SUN Long-fei, et al. Experimental research on seismic behavior of multi-aged steel frame joint under acidic atmospheric environment[J]. Journal of Building Structures, 2015, 36(10): 20-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201510004.htm
    [116] ZHENG Hao, ZHENG Shan-suo, ZHANG Yi-xin, et al. Experimental investigation on seismic behaviours of reinforced concrete columns under simulated acid rain environment[J]. Advances in Civil Engineering, 2020, 2020: 3826062.
    [117] 郑淏, 郑山锁, 贺金川, 等. 酸雨环境下RC短柱抗震性能试验研究[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202102007.htm

    ZHENG Hao, ZHENG Shan-suo, HE Jin-chuan, et al. Experimental study of seismic behavior of RC short columns under acid rain environment[J]. Journal of Tianjin University (Science and Technology), 2021, 54(2): 171-178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202102007.htm
    [118] 王超. 模拟酸雨腐蚀后圆钢管混凝土柱低周往复荷载试验研究[D]. 南昌: 华东交通大学, 2016.

    WANG-Chao. Low cyclic loading test of concrete filled steel tube colimn under acid rain corrosion environment[D]. Nanchang: East China Jiaotong University, 2016. (in Chinese)
    [119] 张凡孟. 模拟酸雨腐蚀后方钢管混凝土构件抗震性能试验研究[D]. 南昌: 华东交通大学, 2016.

    ZHANG Fan-meng. An seismic performance research on components of square concrete filled steel tubes after the simulated acid rain corrosion[D]. Nanchang: East China Jiaotong University, 2016. (in Chinese)
    [120] 陈梦成, 张凡孟, 黄宏, 等. 模拟酸雨腐蚀下方钢管混凝土抗震性能研究[J]. 铁道学报, 2018, 40(6): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201806015.htm

    CHEN Meng-cheng, ZHANG Fan-meng, HUANG Hong, et al. Study on seismic performance of concrete filled square steel tubes subjected to simulated acid rain attack[J]. Railway Journal, 2018, 40(6): 106-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201806015.htm
    [121] 陈梦成, 林博洋, 黄宏. 酸雨腐蚀后圆钢管混凝土柱抗震性能研究[J]. 铁道科学与工程学报, 2017, 14(1): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201701021.htm

    CHEN Meng-cheng, LIN Bo-yang, HUANG Hong. A study of seismic performance for circular concrete filled steel tubular column under acid rain attack[J]. Railway Science and Engineering Journal, 2017, 14(1): 142-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201701021.htm
    [122] 郑山锁, 王晓飞, 韩言召, 等. 酸性大气环境下多龄期钢框架柱抗震性能试验研究[J]. 土木工程学报, 2015, 48(8): 47-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201508009.htm

    ZHENG Shan-suo, WANG Xiao-fei, HAN Yan-zhao, et al. Experimental study on seismic behavior of multi-aged steel frame columns in acidic atmospheric environment[J]. China Civil Engineering Journal, 2015, 48 (8): 47-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201508009.htm
    [123] 郑山锁, 左英, 张晓辉, 等. 酸性大气环境下多龄期平面钢框架结构抗震性能试验研究[J]. 工程力学, 2017, 34(9)73-82. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201709010.htm

    ZHENG Shan-suo, ZUO Ying, ZHANG Xiao-hui, et al. Experimental research on the seismic behavior of multi-aged planar steel frames under acidic atmospheric environment[J]. Engineering Mechanics, 2017, 34(9): 73 -82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201709010.htm
    [124] 郑山锁, 石磊, 张晓辉, 等. 酸性大气环境下锈蚀钢框架结构振动台试验研究[J]. 工程力学, 2017, 34(11): 77 -88, 108. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201711011.htm

    ZHENG Shan-suo, SHI Lei, ZHANG Xiao-hui, et al. Shaking table test of corroded steel frame structure under acidic atmosphere environment[J]. Engineering Mechanics, 2017, 34(11): 77-88, 108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201711011.htm
  • 加载中
图(31) / 表(2)
计量
  • 文章访问数:  1497
  • HTML全文浏览量:  377
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回