Tensile performance and application of LEM-SHCC road-bridge link slab mixed with rubber powder for fully jointless bridge
-
摘要: 为了解决全无缝桥梁路桥连接板裂缝宽度与板内力过大等问题,将橡胶粉等体积部分替代细砂掺入应变硬化水泥基复合(SHCC)材料可制备低弹性模量的SHCC材料(LEM-SHCC),用于全无缝桥梁路桥连接板;进行了5种不同体积橡胶粉掺量(0、5%、10%、15%和20%)LEM-SHCC基本材性(密度、抗压强度和弹性模量)及拉伸性能试验,分析了橡胶粉掺量对LEM-SHCC的强度和变形性能的影响,并采用拉、压应变比差评价了橡胶粉掺量对SHCC材料的影响,获得了LEM-SHCC的最优配合比;针对橡胶粉掺量为15%的LEM-SHCC路桥连接板,研究了最不利荷载作用下(温降荷载)其吸纳变形能力、拉伸变形性能及开裂后裂缝分布规律,并与同尺寸SHCC路桥连接板的各项性能进行了比对;进行了LEM-SHCC路桥连接板的敏感参数(橡胶粉掺量、板底摩擦因数和板长等主要影响因素)有限元对比分析。研究结果表明:橡胶粉的掺入降低了SHCC的弹性模量,提升了SHCC的延性,当橡胶粉掺量达15%时,SHCC的弹性模量降低了40%,而延性却提升了近50%,且裂缝宽度有效地控制在60 μm以内;LEM-SHCC路桥连接板吸纳纵向变形达到10 mm时,LEM-SHCC路桥连接板表面微裂缝多(近180条),裂缝间距小(15~80 mm),且开裂后裂缝宽度控制在60 μm以内,此时张拉端板应力为2.1 MPa,锚固端锚固力为150.5 kN,卸载后裂缝闭合,无纤维被拉出或拉断;吸纳同样的纵向变形10 mm时,LEM-SHCC板的内力比同尺寸的SHCC板小;LEM-SHCC板的内力受橡胶粉掺量的影响较大,当其掺量为15%时,LEM-SHCC板性能最优,LEM-SHCC板的内力受板底摩擦因数的影响不大,板长的增加能有效地改善LEM-SHCC板的受力性能,推荐LEM-SHCC路桥连接板的设计长度为8.5 m。Abstract: In order to solve the problems of excessive crack width and excessive internal force of the road-bridge link slab for a fully jointless bridge, the isopyknic rubber powder was added to a strain-hardening cementitious composite (SHCC) material to partly replace the fine sand, then the SHCC material with a low elastic modulus (LEM-SHCC) was made, which was used for the road-bridge link slab for a fully jointless bridge. The basic material properties (density, compressive strength, and elastic modulus) and tensile property of LEM-SHCC with five different rubber powder contents (0, 5%, 10%, 15%, and 20%) were tested. The effect of rubber powder content on the strength and deformation performance of LEM-SHCC was analyzed. Meantime, the difference of ratio of tensile strain to compressive strain was used to evaluate the effect of rubber powder content on the SHCC material, and an optimal mix proportion of LEM-SHCC was obtained. For a LEM-SHCC road-bridge link slab with a rubber powder content of 15%, its absorptive deformation capacity, tensile deformation performance, and crack distribution law after cracking under the most unfavorable load (temperature drop load) were studied and compared with all the performance of the SHCC road-bridge link slab with the same size. A finite element comparative analysis for the sensitive parameters of the LEM-SHCC road-bridge link slab (the main influencing factors such as the rubber powder content, friction coefficient at the slab bottom, slab length, and so on) was carried out. Research results show that when the rubber powder is added, the elastic modulus of SHCC decreases, and the ductility of SHCC increases. When the rubber powder content reaches 15%, the elastic modulus of SHCC decreases by 40%, while the ductility increases by nearly 50%, with the crack width effectively controlled within 60 μm. When the absorptive longitudinal deformation of the LEM-SHCC road-bridge link slab reaches 10 mm, the micro-cracks on the surface of the LEM-SHCC road-bridge link slab are dense (nearly 180 micro-cracks), and the crack spacing is small (15-80 mm). The crack width after cracking is controlled within 60 μm. At the same time, the slab stress of the tension end is 2.1 MPa, and the anchoring force of the anchorage end is 150.5 kN. After unloading, the cracks are closed, and no fibers are pulled out or broken. The internal force of the LEM-SHCC slab which absorbs the same longitudinal deformation of 10 mm is smaller than that of the SHCC slab with the same size. The internal force of the LEM-SHCC slab is greatly affected by the rubber powder content, and the LEM-SHCC slab has optimal performance when the content is 15%. The internal force of the LEM-SHCC slab is slightly affected by the friction coefficient at the slab bottom. In addition, the mechanical performance of the LEM-SHCC slab can be effectively improved by an increase in the slab length. It is recommended that the design length of the LEM-SHCC slab should be 8.5 m.
-
表 1 LEM-SHCC材料配合比
Table 1. Material mix ratios of LEM-SHCC
编号 水泥含量/(kg·m-3) 粉煤灰含量/(kg·m-3) 砂子含量/(kg·m-3) 橡胶粉掺量/% 水含量/(kg·m-3) 减水剂体积含量/% PVA纤维体积含量/% J1 390 780 527 0 363 1 2 J2 390 780 500 5 363 1 2 J3 390 780 474 10 363 1 2 J4 390 780 448 15 363 1 2 J5 390 780 421 20 363 1 2 表 2 粉煤灰化学成分试验结果
Table 2. Test results of chemical compositions of fly ash
成分 SiO2 Al2O3 Fe2O3 CaO MgO SO3 烧失量 f-CaO 质量百分比/% 47.60 27.24 7.71 9.75 5.20 1.00 1.25 0.25 表 3 拉、压应变比r
Table 3. Ratios of tensile strain to compressive strain
橡胶粉掺量/% 0 5 10 15 20 拉伸极限应变st 0.015 0 0.016 7 0.018 1 0.023 9 0.010 2 压缩极限应变sc 0.002 17 0.002 79 0.002 95 0.003 16 0.003 27 拉、压应变比r 6.910 5.980 6.140 7.560 3.120 拉、压应变比差h 0.000 -0.937 -0.776 0.651 -3.790 表 4 试验模型参数
Table 4. Parameters of experimental model
参数 SHCC纵向钢筋根数 纵向钢筋直径/mm 接线路面的纵向配筋率 钢筋抗拉强度标准值/MPa LEM-SHCC的抗拉强度/MPa LEM-SHCC的重度/(kN·m-3) LEM-SHCC的弹性模量/MPa 层间摩擦因数 取值 3 12 0.45% 335 3.5 16.2 1.35×104 1.25 表 5 裂缝宽度与裂缝间距实测值与理论值的比较
Table 5. Comparison between experimental and theoretical values of crack width and crack spacing
板类型 裂缝数量 裂缝平均宽度/ μm 裂缝最大宽度/ μm 裂缝最小宽度/ μm 裂缝平均间距/mm 裂缝最大间距/mm 裂缝最小间距/mm 实测值 理论值 实测值 理论值 实测值 理论值 实测值 实测值 理论值 实测值 实测值 LEM-SHCC路桥连接板 181 ≥167 50 60 65 40 30 33 80 15 SHCC路桥连接板 154 ≥125 65 80 80 40 36 44 100 20 表 6 LEM-SHCC板与SHCC板内力对比
Table 6. Comparison of internal forces of LEM-SHCC slab and SHCC slab
板类型 板的应变/10-6 板的应力/MPa 张拉端钢筋应变/10-6 张拉端钢筋应力/MPa LEM-SHCC板 155.0 2.1 148.0 29.6 SHCC板 152.0 2.8 162.0 32.4 表 7 LEM-SHCC板与SHCC板锚固力对比
Table 7. Comparison of anchor forces between LEM-SHCC slab and SHCC slab
板类型 张拉力/kN 锚固力/kN 力差/kN 力差/张拉力/% LEM-SHCC板 157.3 150.5 6.8 4.3 SHCC板 210.2 196.6 13.6 6.5 -
[1] 占雪芳. 半整体式全无缝桥合理结构体系研究[D]. 长沙: 湖南大学, 2011.ZHAN Xue-fang. The research on the rational structural forms of the semi-integral abutment jointless bridge[D]. Changsha: Hunan University, 2011. (in Chinese) [2] 陈宝春, 付毳, 庄一舟, 等. 中国无伸缩缝桥梁应用现状与发展对策[J]. 中外公路, 2018, 38(1): 87-95. doi: 10.14048/j.issn.1671-2579.2018.01.020CHEN Bao-chun, FU Cui, ZHUANG Yi-zhou, et al. The application status and development strategy of jointless bridges in China[J]. Journal of China and Foreign Highway, 2018, 38(1): 87-95. (in Chinese) doi: 10.14048/j.issn.1671-2579.2018.01.020 [3] 占雪芳, 邵旭东. 半整体式全无缝桥接线路面裂缝宽度计算[J]. 中外公路, 2015, 35(3): 58-62. doi: 10.14048/j.issn.1671-2579.2015.03.015ZHAN Xue-fang, SHAO Xu-dong. Calculation of crack width of approach pavement of the semi-integral abutment jointless bridge[J]. Journal of China and Foreign Highway, 2015, 35(3): 58-62. (in Chinese) doi: 10.14048/j.issn.1671-2579.2015.03.015 [4] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97. doi: 10.3969/j.issn.1001-7372.2021.02.002Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.02.002 [5] LI V C, HORⅡ H, KABELE P, et al. Repair and retrofit with engineered cementitious composites[J]. Engineering Fracture Mechanics, 2000, 65(2/3): 317-334. [6] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6): 45-60. doi: 10.3321/j.issn:1000-131X.2008.06.008XU Shi-lang, LI He-dong. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008, 41(6): 45-60. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.06.008 [7] ROKUGO K, KANDA T, YOKOTA H, et al. Applications and recommendations of high performance fiber reinforced cement composites with multiple fine cracking (HPFRCC) in Japan[J]. Materials and Structures, 2009, 42(9): 1197-1208. doi: 10.1617/s11527-009-9541-8 [8] BOSHOFF W P, VAN ZIJL G. Time-dependent response of ECC: characterisation of creep and rate dependence[J]. Cement and Concrete Research, 2007, 37(5): 725-734. doi: 10.1016/j.cemconres.2007.02.001 [9] ZHAN Xue-fang, LIU Kai-le, ZHAO Yi-bin, et al. Tensile performance of SHCC road-bridge link slabs in fully jointless bridges[J]. Advances in Civil Engineering, 2021, 2021: 6643643. [10] 祁学智, 周洪, 刘家宏. 废橡胶综合利用应分类处置、梯次利用[J]. 中国橡胶, 2021, 37(11): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-XJZG202111019.htmQI Xue-zhi, ZHOU Hong, LIU Jia-hong. Comprehensive utilization of waste rubber should be classified and treated in echelon[J]. China Rubber, 2021, 37(11): 35-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJZG202111019.htm [11] THOMAS B S, GUPTA R C, MEHRA P, et al. Performance of high strength rubberized concrete in aggressive environment[J]. Construction and Building Materials, 2015, 83: 320-326. doi: 10.1016/j.conbuildmat.2015.03.012 [12] SIDDIKA A, MAMUN M A A, ALYOUSEF R, et al. Properties and utilizations of waste tire rubber in concrete: a review[J]. Construction and Building Materials, 2019, 224: 711-731. doi: 10.1016/j.conbuildmat.2019.07.108 [13] SOFI A. Effect of waste tyre rubber on mechanical and durability properties of concrete—a review[J]. Ain Shams Engineering Journal, 2018, 9: 2691-2700. doi: 10.1016/j.asej.2017.08.007 [14] 付传清, 彭兆雄, 屠一军, 等. 掺废旧橡胶颗粒纤维混凝土在路面工程中应用的可行性分析[J]. 混凝土, 2015(5): 149-153. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201505043.htmFU Chuan-qing, PENG Zhao-xiong, TU Yi-jun, et al. Feasibility analysis on application of waste rubber particle and fibre mixed concrete in pavement[J]. Concrete, 2015(5): 149-153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201505043.htm [15] 莫金旭, 曾磊, 郭帆, 等. 橡胶粉对聚丙烯纤维混凝土力学性能和微观结构的影响[J]. 建筑材料学报, 2020, 23(5): 1222-1229. doi: 10.3969/j.issn.1007-9629.2020.05.031MO Jin-xu, ZENG Lei, GUO Fan, et al. Effect of rubber powder on mechanical properties and microstructure of polypropylene fiber reinforced concrete[J]. Journal of Building Materials, 2020, 23(5): 1222-1229. (in Chinese) doi: 10.3969/j.issn.1007-9629.2020.05.031 [16] 何智海, 李增, 詹培敏, 等. 橡胶粉对水泥基材料性能影响的研究进展[J]. 混凝土, 2020(6): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF202006021.htmHE Zhi-hai, LI Zeng, ZHAN Pei-min, et al. Research progress of effect of rubber powder on the properties of cement-based materials[J]. Concrete, 2020(6): 73-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF202006021.htm [17] 张志刚. 钢桥面高延性水泥基材料铺装层自愈合机理与疲劳损伤研究[D]. 南京: 东南大学, 2016.ZHANG Zhi-gang. Research on the self-healing mechanism and fatigue damage of ECC applying on steel bridge deck overlay[D]. Nanjing: Southeast University, 2016. (in Chinese) [18] ZHANG Zhi-gang, MA Hui, QIAN Shun-zhi. Investigation on properties of ECC incorporating crumb rubber of different sizes[J]. Journal of Advanced Concrete Technology, 2015, 13(5): 241-251. [19] HUANG Xiao-yan, RANDE R, NI Wen, et al. On the use of recycled tire rubber to develop low E-modulus ECC for durable concrete repairs[J]. Construction and Building Materials, 2013, 46: 134-141. [20] LI V C, YANG En-hua, LI Mo. Field demonstration of durable link slabs for jointless bridge decks based on strain-hardening cementitious composites—phase 3: shrinkage control[R]. Ann Arbor: Michigan Department of Transportation, 2005. [21] Al-FAKIH A, MOHAMMED B S, LIEW M S. On rubberized engineered cementitious composites (R-ECC): a review of the constituent material[J]. Case Studies in Construction Materials, 2021, 14: e00536. [22] ABDELALEEM B H, ISMAIL M K, HASSAN A A A. Structural behavior of rubberized engineered cementitious composite beam-column joints under cyclic loading[J]. ACI Structural Journal, 2020, 117(2): 55-66. [23] LEPECH M D, LI V C. Application of ECC for bridge deck link slabs[J]. Materials and Structures, 2009, 42(9): 1185-1195. [24] LI Nai-yi. Performance of link slab using ECC and UHPC[D]. College Park: University of Maryland, 2019. [25] 丰元飞. SHCC材料在桥面无缝连续化中的应用研究[D]. 福州: 福州大学, 2013.FENG Yuan-fei. Research of SHCC link slab in jointless bridge[D]. Fuzhou: Fuzhou University, 2013. (in Chinese) [26] 姚丽萍. 应变硬化水泥基复合材料配合比设计及性能优化[D]. 武汉: 湖北工业大学, 2018.YAO Li-ping. Mix design and performance optimization of strain hardening cementitious composites[D]. Wuhan: Hubei University of Technology, 2018. (in Chinese) [27] CHAIKAEW C, SUKONTASUKKUL P, CHAISAKULKIET U, et al. Properties of concrete pedestrian blocks containing crumb rubber from recycle waste tyres reinforced with steel fibres[J]. Case Studies in Construction Materials, 2019, 11: e00304. [28] 何壮彬, 覃峰. 基于等效夹杂理论的橡胶粉水泥混凝土总体有效弹性常数预报[J]. 新型建筑材料, 2016, 43(6): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201606009.htmHE Zhuang-bin, QIN Feng. Overall effective properties prediction of rubberized concrete based on equivalent inclusion theory[J]. New Building Materials, 2016, 43(6): 25-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201606009.htm [29] MAALEJ M, LI V C. Flexural/tensile-strength ratio in engineered cementitious composites[J]. Journal of Materials in Civil Engineering, 1994, 6(4): 513-528. [30] 吴畅, 潘钻峰, 孟少平. 应变硬化水泥基复合材料单轴滞回本构模型[J]. 东南大学学报(自然科学版), 2015, 45(5): 969-974. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201505026.htmWU Chang, PAN Zuan-feng, MENG Shao-ping. Uniaxial cyclic constitutive model for strain hardening cementitious composites[J]. Journal of Southeast University(Natural Science Edition), 2015, 45(5): 969-974. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201505026.htm