-
摘要: 采用有限元分析软件SAP2000建立了某整体式斜交桥的三维结构模型,通过离散非线性弹簧单元模拟桥台-台后土以及H型钢桩-桩周土的土-结构相互作用,通过一系列双向地震作用下的非线性时程分析,研究了桩的朝向、桩周土刚度及桩头转动刚度对整体式斜交桥中H型钢桩地震响应的影响规律。研究结果表明:双向地震作用下,H型钢桩的横桥向位移显著大于纵桥向,且受桩朝向的影响更为明显,强、弱轴弯矩均呈正反双向分布,屈服面函数最大值一般位于桩顶,另一峰值则位于桩身2~4 m埋深处;钢桩绕强轴弯曲布置时,桩顶纵桥向位移相比绕弱轴弯曲时降低18.2%,但横桥向位移增大47.7%,桩顶处绕强轴弯矩增加约3.9倍,桩身反向强轴弯矩峰值降低67.0%,桩顶处绕弱轴弯矩基本不变,桩身反向弱轴弯矩峰值增加约1.0倍;随着桩周土刚度的降低,桩顶纵、横桥向位移增大,桩顶屈服面函数值降低,而桩身屈服面函数峰值增加,桩身更不易保持弹性;当桩头采用柔性连接时,桩顶纵、横桥向位移均增大,桩顶屈服面函数值降低,有利于保护桩头,而桩身屈服面函数峰值增加,当桩头转动刚度过低时甚至可能大于桩顶刚度,导致桩身在罕遇地震作用下先进入塑性。Abstract: A three-dimensional structural model of a integral skewed bridge was established by using finite element analysis software SAP2000, and the interactions of abutment-soil behind the abutment and H-shaped steel pile-soil around the pile were simulated through a discrete nonlinear spring element. Through nonlinear time-history analysis under a series of bi-directional seismic actions, the influence rules of pile orientation, stiffness of the soil around the pile, and rotational stiffness of pile head on the seismic responses of the H-shaped steel pile in the skewed integral abutment bridge were studied. Research results show that under bi-directional seismic actions, the transverse displacement of the H-shaped steel pile is significantly greater than the longitudinal displacement, and greatly affected by the pile orientation. The bending moments around the strong and weak axes distribute in both positive and negative directions. The maximum values of yield surface function are generally located at the pile top, while the other peak values are located at the 2-4 m where the pile body is buried. When the steel pile is arranged around strong axis bending, the longitudinal displacement at the pile top reduces by 18.2% compared with that around weak axis bending, but the transverse displacement increases by 47.7%. The bending moment around the strong axis at the pile top increases by about 3.9 times, while the bending moment peak value of reverse strong axis of the pile body decreases by about 67.0%. The bending moment around the weak axis at the pile top basically unchanges, while the bending moment peak value around the reverse weak axis of the pile body increases by about 1.0 times. With the decrease in the stiffness of the soil around the pile, the longitudinal and transverse displacements at the pile top improve, and the yield surface function value at the pile top reduces slightly, while the peak value of the yield surface function of the pile body increases. The pile body is difficult to be elastic. When a flexible connection is adopted at the pile head, the longitudinal and transverse displacements at the pile top both rise. The yield surface function value at the pile top decreases, and the pile head can be protected effectively, but the peak value of the yield surface function of the pile body increases. When the rotational stiffness of the pile head is too low, the peak value of the yield surface function of the pile body may be higher than the value at the pile top, and thus the pile body may enter the plastic stage first under rare earthquakes.
-
图 7 桩头包裹橡胶板的桥台-H型钢桩柔性连接节点[22]
Figure 7. Abutment-H-shaped steel pile flexible joint for pile head with rubber plate
表 1 桥梁基本信息
Table 1. Basic information of bridge
上部结构 主梁高/m 1.09 主梁中心距/m 2.21 桥面板厚度/m 0.21 桥台 高×厚/m 2.50×0.76 台后密实砂土 内摩擦角/(°) 39 容重/(kN·m-3) 16.20 桩基础 截面型号 HP 12×84 桩周密实砂土 内摩擦角/(°) 35 容重/(kN·m-3) 19.20 橡胶支座 型号 GJZ 350×600×99 表 2 桥梁有限元分析模型
Table 2. Finite element analysis models of bridge
编号 桩的朝向 桩周土 桩头转动刚度/(kN·m·rad-1) 强轴 弱轴 M-1 沿桥梁轴线绕弱轴 密实 0(铰接) M-2 1.00×102 2.86×101 M-3 1.00×103 2.86×102 M-4 1.00×104 2.86×103 M-5 8.52×104(贴橡胶板) 2.31×104(贴橡胶板) M-6 1.00×105 2.86×104 M-7 5.00×105 1.43×105 M-8 1.00×106 2.86×105 M-9 沿桥梁轴线绕弱轴 密实 ∞(刚接) M-10 沿桥台法线绕弱轴 M-11 沿桥梁轴线绕强轴 M-12 沿桥台法线绕强轴 M-13 沿桥梁轴线绕弱轴 松散 M-14 沿桥台法线绕弱轴 表 3 不同桩朝向时H型钢桩的地震响应
Table 3. Seismic response of H-shaped steel piles with different orientations
模型编号 钢桩朝向 桩顶纵桥向位移/mm 桩顶横桥向位移/mm 强轴弯矩M1/(kN·m) 弱轴弯矩M2/(kN·m) 屈服面函数值φ M1+ M1- M2+ M2- φ+ φ- M-9 沿桥梁轴线绕弱轴 37.4 102.8 73.3 589.3 325.7 136.7 1.15 0.91 M-11 沿桥梁轴线绕强轴 30.6 151.8 358.2 194.5 313.8 276.4 1.35 1.03 M-10 沿桥台法线绕弱轴 33.2 100.9 91.0 636.7 325.8 83.9 1.15 0.98 M-12 沿桥台法线绕强轴 35.1 139.5 269.2 162.8 303.2 270.8 1.16 0.90 表 4 不同桩周土刚度下H型钢桩的地震响应
Table 4. Seismic responses of H-shaped steel piles with different soil stiffnesses around piles
模型编号 钢桩朝向 桩周土 桩顶纵桥向位移/mm 桩顶横桥向位移/mm 强轴弯矩M1/(kN·m) 弱轴弯矩M2/(kN·m) 屈服面函数值φ M1+ M1- M2+ M2- φ+ φ- M-9 沿桥梁轴线绕弱轴 密实 37.4 102.8 73.3 589.3 325.7 136.7 1.15 0.91 M-13 松散 42.7 123.2 87.6 601.2 319.9 121.1 1.12 0.95 M-10 沿桥台法线绕弱轴 密实 33.2 100.9 91.0 636.7 325.8 83.9 1.15 0.98 M-14 松散 40.4 117.0 103.0 660.7 321.0 75.4 1.12 1.00 表 5 不同桩头转动刚度下H型钢桩的地震响应
Table 5. Seismic responses of H-shaped steel piles with different rotational stiffnesses of pile heads
模型编号 桩头强轴转动刚度/(kN·m·rad-1) 桩顶纵桥向位移/mm 桩顶横桥向位移/mm 强轴弯矩M1/(kN·m) 弱轴弯矩M2/(kN·m) 屈服面函数值φ M1+ M1- M2+ M2- φ+ φ- M-1 0(铰接) 43.1 137.8 0 657.8 0 201.4 0.000 0.995 M-2 1.00×102 43.0 144.1 6.3 666.4 0.6 205.5 0.001 1.022 M-3 1.00×103 43.2 143.9 57.1 665.8 6.0 194.0 0.020 1.022 M-4 1.00×104 48.5 135.2 107.6 669.1 113.6 185.3 0.258 1.045 M-5 8.52×104(贴橡胶板) 44.0 107.9 104.1 606.5 222.1 159.2 0.647 0.929 M-6 1.00×105 43.2 108.6 104.2 605.0 252.0 166.4 0.781 0.930 M-7 5.00×105 41.3 106.8 102.7 602.7 313.1 164.1 1.088 0.919 M-8 1.00×106 37.9 105.9 103.1 600.4 325.7 159.3 1.153 0.925 M-9 ∞(刚接) 37.4 102.8 102.9 589.3 325.7 152.8 1.153 0.909 -
[1] 卢明奇, 杨庆山, 李英勇. 斜度对斜交桥地震作用下的扭转效应影响[J]. 哈尔滨工程大学学报, 2012, 33(2): 155-159. doi: 10.3969/j.issn.1006-7043.201010032LU Ming-qi, YANG Qing-shan, LI Ying-yong. Torsion effects of skew angles on skew bridges during earthquakes[J]. Journal of Harbin Engineering University, 2012, 33(2): 155-159. (in Chinese) doi: 10.3969/j.issn.1006-7043.201010032 [2] 庄卫林, 刘振宇, 蒋劲松. 汶川大地震公路桥梁震害分析及对策[J]. 岩石力学与工程学报, 2009, 28(7): 1377-1387. doi: 10.3321/j.issn:1000-6915.2009.07.011ZHUANG Wei-lin, LIU Zhen-yu, JIANG Jin-song. Earthquake-induced damage analysis of highway bridges inWenchuan earthquake and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1377-1387. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.07.011 [3] MENG J Y, LUI E M, LIU Y. Dynamic response of skew highway bridges[J]. Journal of Earthquake Engineering, 2001, 5(2): 205-223. [4] TIRASIT P, KAWASHIMA K. Effect of nonlinear seismic torsion on the performance of skewed bridge piers[J]. Journal of Earthquake Engineering, 2008, 12(6): 980-998. doi: 10.1080/13632460701673019 [5] YANG C S W, WERNER S D, DESROCHES R. Seismic fragility analysis of skewed bridges in the central southeastern United States[J]. Engineering Structures, 2015, 83(1): 116-128. [6] KUNIN J, ALAMPALLI S. Integral abutment bridges: current practice in United States and Canada[J]. Journal of Performance of Constructed Facilities, 2000, 14(3): 104-111. doi: 10.1061/(ASCE)0887-3828(2000)14:3(104) [7] 黄福云, 单玉麟, 罗小烨, 等. 基于位移的整体桥混凝土桩基抗震设计准则[J]. 中国公路学报, 2021, 34(5): 99-109. doi: 10.3969/j.issn.1001-7372.2021.05.010HUANG Fu-yun, SHAN Yu-lin, LUO Xiao-ye, et al. Displacement-based seismic design criteria of concrete piles in integral abutment jointless bridges[J]. China Journal of Highway and Transport, 2021, 34(5): 99-109. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.05.010 [8] GOEL R K. Earthquake characteristics of bridges with integral abutments[J]. Journal of Structural Engineering, 1997, 123(11): 1435-1443. doi: 10.1061/(ASCE)0733-9445(1997)123:11(1435) [9] DUNKER K F, LIU D J. Foundations for integral abutments[J]. Practice Periodical on Structural Design and Construction, 2007, 12(1): 22-30. doi: 10.1061/(ASCE)1084-0680(2007)12:1(22) [10] ERHAN S, DICLELI M. Comparative assessment of the seismic performance of integral and conventional bridges with respect to the differences at the abutments[J]. Bulletin of Earthquake Engineering, 2015, 13(2): 653-677. doi: 10.1007/s10518-014-9635-8 [11] HASSIOTIS S, ROMAN E. A survey of current issues on the use of integral abutment bridges[J]. Bridge Structures, 2005, 1(2): 81-101. doi: 10.1080/15732480500125635 [12] XU Ming, LIU Peng-fei. Response of full-height frame integral abutments subjected to seismic motions[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 356-368. doi: 10.1016/j.soildyn.2019.03.024 [13] SHAMSABADI A, KAPUSKAR M. Nonlinear soil-abutment-foundation-structure interaction analysis of skewed bridges subjected to near-field ground motions[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2202(1): 192-205. doi: 10.3141/2202-23 [14] ZHAO Qiu-hong, DONG Shuo, WANG Qing-wei. Seismic response of skewed integral abutment bridges under near-fault ground motions, including soil-structure interaction[J]. Applied Sciences, 2021, 11(7): 3217. doi: 10.3390/app11073217 [15] 赵秋红, 张冀豪, 陈宝春. 整体式斜交桥抗震性能分析[J]. 地震工程与工程振动, 2018, 38(4): 34-40. doi: 10.13197/j.eeev.2018.04.34.zhaoqh.006ZHAO Qiu-hong, ZHANG Ji-hao, CHEN Bao-chun. Seismic analysis on skewed integral abutment bridges. [J]. Journal of Earthquake Engineering and Engineering Dynamics, 2018, 38(4): 34-40. (in Chinese) doi: 10.13197/j.eeev.2018.04.34.zhaoqh.006 [16] 黄福云, 庄一舟, 付毳, 等. 无伸缩缝梁桥抗震性能与设计计算方法研究[J]. 地震工程与工程振动, 2015, 35(5): 15-22. doi: 10.13197/j.eeev.2015.05.15.huangfy.003HUANG Fu-yun, ZHUANG Yi-zhou, FU Cui, et al. Review on the seismic performance and simplified design method of jointless bridge[J]. Journal of Earthquake Engineering and Engineering Dynamics, 2015, 35(5): 15-22. (in Chinese) doi: 10.13197/j.eeev.2015.05.15.huangfy.003 [17] ITANI A M, PEKAN G. Seismic performance of steel plate girder bridges with integral abutments[R]. Reno: University of Nevada, 2011. [18] VASHEGHANI-FARAHANI R, ZHAO Q H, BURDETTE E G. Seismic analysis of integral abutment bridge in Tennessee, including soil-structure interaction[J]. Transportation Rese arch Record: Journal of the Transportation Research Board, 2010, 2201(1): 70-79. doi: 10.3141/2201-09 [19] 赵秋红, 齐朝阳, 安泽宇, 等. 考虑SSI的整体式钢桥抗震性能参数分析[J]. 交通运输工程学报, 2018, 18(5): 35-46. doi: 10.3969/j.issn.1671-1637.2018.05.004ZHAO Qiu-hong, QI Zhao-yang, AN Ze-yu, et al. Parametric analysis on seismic behavior of integral abutment steel bridge considering SSI[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 35-46. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.05.004 [20] SHERAFATI A, AZIZINAMINI A. Flexible pile head in jointless bridges: experimental investigation[J]. Journal of Bridge Engineering, 2015, 20(4): 04014071. doi: 10.1061/(ASCE)BE.1943-5592.0000628 [21] AZIZINAMINI A, YAKEL A, SHERAFATI A, et al. Flexible Pile head in jointless bridges: design provisions for H-piles in cohesive soils[J]. Journal of Bridge Engineering, 2016, 21(3): 04015064. doi: 10.1061/(ASCE)BE.1943-5592.0000791 [22] 齐朝阳. 整体式桥台-桩节点抗震性能试验研究[D]. 天津: 天津大学, 2017.QI Zhao-yang. Experimental research on seismic behavior of integral abutment-pile joint[D]. Tianjin: Tianjin University, 2017. (in Chinese) [23] KOZAK D L, LAFAVE J M, FAHNESTOCK L A. Seismic modeling of integral abutment bridges in Illinois[J]. Engineering Structures, 2018, 165: 170-183. doi: 10.1016/j.engstruct.2018.02.088 [24] 汤虎, 李建中. 板式橡胶支座桥梁地震位移控制方法[J]. 中国公路学报, 2013, 26(3): 110-116. doi: 10.3969/j.issn.1001-7372.2013.03.012TANG Hu, LI Jian-zhong. Displacement control method for continuous bridges on laminated rubber bearings under earthquake excitation[J]. China Journal of Highway and Transport, 2013, 26(3): 110-116. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.03.012 [25] QUINN B H, CIVJAN S A. Parametric study on effects of pile orientation in integral abutment bridges[J]. Journal of Bridge Engineering, 2017, 22(4): 04016132. doi: 10.1061/(ASCE)BE.1943-5592.0000952 [26] ZORDAN T, BRISEGHELLA B, LAN C. Parametric and pushover analyses on integral abutment bridge[J]. Engineering Structures, 2011, 33(2): 502-515. doi: 10.1016/j.engstruct.2010.11.009 [27] SHAMSABADI A, ROLLINS K M, KAPUSKAR M. Nonlinear soil-abutment-bridge structure interaction for seismic performance-based design[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 707-720. doi: 10.1061/(ASCE)1090-0241(2007)133:6(707) [28] DICLELI M. Integral abutment-backfill behavior on sand soil—pushover analysis approach[J]. Journal of Bridge Engineering, 2005, 10(3): 354-364. doi: 10.1061/(ASCE)1084-0702(2005)10:3(354) [29] 孔令刚, 姜丽红, 陈仁朋, 等. 考虑桩头约束的水平受荷单桩响应分析[J]. 应用力学学报, 2014, 31(3): 393-399, 490-491. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201403017.htmKONG Ling-gang, JIANG Li-hong, CHEN Ren-peng, et al. Response of single pile with partial pile head fixity subjected to lateral loading[J]. Chinese Journal of Applied Mechanics, 2014, 31(3): 393-399, 490-491. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201403017.htm [30] 李枝军, 葛飞, 徐秀丽, 等. 板式橡胶支座性能有限元模拟与试验研究[J]. 东南大学学报(自然科学版), 2013, 43(6): 1299-1304. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201306031.htmLI Zhi-jun, GE Fei, XU Xiu-li, et al. Finite element simulation and experimental study of property for elastomeric pad bearing[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(6): 1299-1304. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201306031.htm