留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

整体式斜交桥中桥台钢桩地震响应

赵秋红 郭浩猛 董硕 王晴薇 陈宝春 周勇军

赵秋红, 郭浩猛, 董硕, 王晴薇, 陈宝春, 周勇军. 整体式斜交桥中桥台钢桩地震响应[J]. 交通运输工程学报, 2022, 22(5): 119-130. doi: 10.19818/j.cnki.1671-1637.2022.05.006
引用本文: 赵秋红, 郭浩猛, 董硕, 王晴薇, 陈宝春, 周勇军. 整体式斜交桥中桥台钢桩地震响应[J]. 交通运输工程学报, 2022, 22(5): 119-130. doi: 10.19818/j.cnki.1671-1637.2022.05.006
ZHAO Qiu-hong, GUO Hao-meng, DONG Shuo, WANG Qing-wei, CHEN Bao-chun, ZHOU Yong-jun. Seismic responses of abutment steel piles in integral skewed bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 119-130. doi: 10.19818/j.cnki.1671-1637.2022.05.006
Citation: ZHAO Qiu-hong, GUO Hao-meng, DONG Shuo, WANG Qing-wei, CHEN Bao-chun, ZHOU Yong-jun. Seismic responses of abutment steel piles in integral skewed bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 119-130. doi: 10.19818/j.cnki.1671-1637.2022.05.006

整体式斜交桥中桥台钢桩地震响应

doi: 10.19818/j.cnki.1671-1637.2022.05.006
基金项目: 

国家自然科学基金项目 51878447

国家自然科学基金项目 51678406

中央高校基本科研业务费专项资金项目 300102212524

详细信息
    作者简介:

    赵秋红(1975-),女,湖北宜昌人,天津大学副教授,工学博士,从事桥梁抗震、高性能结构及材料研究

    通讯作者:

    周勇军(1978-),男,湖北孝昌人,长安大学教授,工学博士

  • 中图分类号: U443.15

Seismic responses of abutment steel piles in integral skewed bridges

Funds: 

National Natural Science Foundation of China 51878447

National Natural Science Foundation of China 51678406

Fundamental Research Funds for the Central Universities 300102212524

More Information
    Author Bio:

    ZHAO Qiu-hong (1975–), female, born in Yichang, Hubei Province, associate professor at Tianjin University, PhD. She is mainly engaged in research on earthquake resistance and high-performance structures and materials of bridges. E-mail: qzhao@tju.edu.cn

    ZHOU Yong-jun (1978–), male, born in Xiaochang, Hubei Province, PhD, professor at Chang'an University. E-mail: zyj@chd.edu.cn

  • 摘要: 采用有限元分析软件SAP2000建立了某整体式斜交桥的三维结构模型,通过离散非线性弹簧单元模拟桥台-台后土以及H型钢桩-桩周土的土-结构相互作用,通过一系列双向地震作用下的非线性时程分析,研究了桩的朝向、桩周土刚度及桩头转动刚度对整体式斜交桥中H型钢桩地震响应的影响规律。研究结果表明:双向地震作用下,H型钢桩的横桥向位移显著大于纵桥向,且受桩朝向的影响更为明显,强、弱轴弯矩均呈正反双向分布,屈服面函数最大值一般位于桩顶,另一峰值则位于桩身2~4 m埋深处;钢桩绕强轴弯曲布置时,桩顶纵桥向位移相比绕弱轴弯曲时降低18.2%,但横桥向位移增大47.7%,桩顶处绕强轴弯矩增加约3.9倍,桩身反向强轴弯矩峰值降低67.0%,桩顶处绕弱轴弯矩基本不变,桩身反向弱轴弯矩峰值增加约1.0倍;随着桩周土刚度的降低,桩顶纵、横桥向位移增大,桩顶屈服面函数值降低,而桩身屈服面函数峰值增加,桩身更不易保持弹性;当桩头采用柔性连接时,桩顶纵、横桥向位移均增大,桩顶屈服面函数值降低,有利于保护桩头,而桩身屈服面函数峰值增加,当桩头转动刚度过低时甚至可能大于桩顶刚度,导致桩身在罕遇地震作用下先进入塑性。

     

  • 图  1  整体式斜交桥有限元模型

    Figure  1.  Finite element model of integral skewed bridge

    图  2  有限元模型

    Figure  2.  Finite element models

    图  3  台后土弹簧力-位移曲线

    Figure  3.  Force-displacement curves of abutment soil springs

    图  4  桩周土弹簧力-位移曲线

    Figure  4.  Spring force-displacement curves of soil around pile

    图  5  H型钢桩的截面弯矩-曲率曲线

    Figure  5.  Moment-curvature curves of H-shaped steel pile

    图  6  整体式斜交桥H型钢桩朝向

    Figure  6.  Orientations of H-shaped steel pile of integral skewed bridge

    图  7  桩头包裹橡胶板的桥台-H型钢桩柔性连接节点[22]

    Figure  7.  Abutment-H-shaped steel pile flexible joint for pile head with rubber plate

    图  8  桥台-H型钢桩柔性连接节点的有限元模型

    Figure  8.  Finite element model of flexible joint of abutment-H-shaped steel pile

    图  9  骨架曲线的对比

    Figure  9.  Comparison of skeleton curves

    图  10  峰值加速度调整为0.6g的El-Centro、Taft及Lan1地震波记录

    Figure  10.  El-Centro, Taft and Lan1 seismic wave records with peak acceleration adjusted to 0.6g

    图  11  不同H型钢桩朝向的桩顶位移时程曲线

    Figure  11.  Displacement time-history curves of tops of H-shaped steel piles with different orientations

    图  12  不同H型钢桩朝向的桩身位移、弯矩及屈服面函数值分布

    Figure  12.  Distributions of displacements, moments and yield surface function values of H-shaped steel pile bodies with different orientations

    图  13  不同桩周土刚度下H型钢桩的桩身位移、弯矩及屈服面函数值分布

    Figure  13.  Distributions of displacements, moments and yield surface function values of H-shaped steel pile bodies with different soil stiffnesses around piles

    图  14  不同桩头转动刚度下桩身位移分布与桩顶位移曲线

    Figure  14.  Distributions of pile body displacements and curves of pile top displacements with different rotational stiffnesses of pile heads

    图  15  不同桩头转动刚度下H型钢桩的弯矩与屈服面函数值分布

    Figure  15.  Distributions of moments and yield surface function values of H-shaped steel pile with different rotational stiffnesses of pile heads

    表  1  桥梁基本信息

    Table  1.   Basic information of bridge

    上部结构 主梁高/m 1.09
    主梁中心距/m 2.21
    桥面板厚度/m 0.21
    桥台 高×厚/m 2.50×0.76
    台后密实砂土 内摩擦角/(°) 39
    容重/(kN·m-3) 16.20
    桩基础 截面型号 HP 12×84
    桩周密实砂土 内摩擦角/(°) 35
    容重/(kN·m-3) 19.20
    橡胶支座 型号 GJZ 350×600×99
    下载: 导出CSV

    表  2  桥梁有限元分析模型

    Table  2.   Finite element analysis models of bridge

    编号 桩的朝向 桩周土 桩头转动刚度/(kN·m·rad-1)
    强轴 弱轴
    M-1 沿桥梁轴线绕弱轴 密实 0(铰接)
    M-2 1.00×102 2.86×101
    M-3 1.00×103 2.86×102
    M-4 1.00×104 2.86×103
    M-5 8.52×104(贴橡胶板) 2.31×104(贴橡胶板)
    M-6 1.00×105 2.86×104
    M-7 5.00×105 1.43×105
    M-8 1.00×106 2.86×105
    M-9 沿桥梁轴线绕弱轴 密实 ∞(刚接)
    M-10 沿桥台法线绕弱轴
    M-11 沿桥梁轴线绕强轴
    M-12 沿桥台法线绕强轴
    M-13 沿桥梁轴线绕弱轴 松散
    M-14 沿桥台法线绕弱轴
    下载: 导出CSV

    表  3  不同桩朝向时H型钢桩的地震响应

    Table  3.   Seismic response of H-shaped steel piles with different orientations

    模型编号 钢桩朝向 桩顶纵桥向位移/mm 桩顶横桥向位移/mm 强轴弯矩M1/(kN·m) 弱轴弯矩M2/(kN·m) 屈服面函数值φ
    M1+ M1- M2+ M2- φ+ φ
    M-9 沿桥梁轴线绕弱轴 37.4 102.8 73.3 589.3 325.7 136.7 1.15 0.91
    M-11 沿桥梁轴线绕强轴 30.6 151.8 358.2 194.5 313.8 276.4 1.35 1.03
    M-10 沿桥台法线绕弱轴 33.2 100.9 91.0 636.7 325.8 83.9 1.15 0.98
    M-12 沿桥台法线绕强轴 35.1 139.5 269.2 162.8 303.2 270.8 1.16 0.90
    下载: 导出CSV

    表  4  不同桩周土刚度下H型钢桩的地震响应

    Table  4.   Seismic responses of H-shaped steel piles with different soil stiffnesses around piles

    模型编号 钢桩朝向 桩周土 桩顶纵桥向位移/mm 桩顶横桥向位移/mm 强轴弯矩M1/(kN·m) 弱轴弯矩M2/(kN·m) 屈服面函数值φ
    M1+ M1- M2+ M2- φ+ φ
    M-9 沿桥梁轴线绕弱轴 密实 37.4 102.8 73.3 589.3 325.7 136.7 1.15 0.91
    M-13 松散 42.7 123.2 87.6 601.2 319.9 121.1 1.12 0.95
    M-10 沿桥台法线绕弱轴 密实 33.2 100.9 91.0 636.7 325.8 83.9 1.15 0.98
    M-14 松散 40.4 117.0 103.0 660.7 321.0 75.4 1.12 1.00
    下载: 导出CSV

    表  5  不同桩头转动刚度下H型钢桩的地震响应

    Table  5.   Seismic responses of H-shaped steel piles with different rotational stiffnesses of pile heads

    模型编号 桩头强轴转动刚度/(kN·m·rad-1) 桩顶纵桥向位移/mm 桩顶横桥向位移/mm 强轴弯矩M1/(kN·m) 弱轴弯矩M2/(kN·m) 屈服面函数值φ
    M1+ M1- M2+ M2- φ+ φ
    M-1 0(铰接) 43.1 137.8 0 657.8 0 201.4 0.000 0.995
    M-2 1.00×102 43.0 144.1 6.3 666.4 0.6 205.5 0.001 1.022
    M-3 1.00×103 43.2 143.9 57.1 665.8 6.0 194.0 0.020 1.022
    M-4 1.00×104 48.5 135.2 107.6 669.1 113.6 185.3 0.258 1.045
    M-5 8.52×104(贴橡胶板) 44.0 107.9 104.1 606.5 222.1 159.2 0.647 0.929
    M-6 1.00×105 43.2 108.6 104.2 605.0 252.0 166.4 0.781 0.930
    M-7 5.00×105 41.3 106.8 102.7 602.7 313.1 164.1 1.088 0.919
    M-8 1.00×106 37.9 105.9 103.1 600.4 325.7 159.3 1.153 0.925
    M-9 ∞(刚接) 37.4 102.8 102.9 589.3 325.7 152.8 1.153 0.909
    下载: 导出CSV
  • [1] 卢明奇, 杨庆山, 李英勇. 斜度对斜交桥地震作用下的扭转效应影响[J]. 哈尔滨工程大学学报, 2012, 33(2): 155-159. doi: 10.3969/j.issn.1006-7043.201010032

    LU Ming-qi, YANG Qing-shan, LI Ying-yong. Torsion effects of skew angles on skew bridges during earthquakes[J]. Journal of Harbin Engineering University, 2012, 33(2): 155-159. (in Chinese) doi: 10.3969/j.issn.1006-7043.201010032
    [2] 庄卫林, 刘振宇, 蒋劲松. 汶川大地震公路桥梁震害分析及对策[J]. 岩石力学与工程学报, 2009, 28(7): 1377-1387. doi: 10.3321/j.issn:1000-6915.2009.07.011

    ZHUANG Wei-lin, LIU Zhen-yu, JIANG Jin-song. Earthquake-induced damage analysis of highway bridges inWenchuan earthquake and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1377-1387. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.07.011
    [3] MENG J Y, LUI E M, LIU Y. Dynamic response of skew highway bridges[J]. Journal of Earthquake Engineering, 2001, 5(2): 205-223.
    [4] TIRASIT P, KAWASHIMA K. Effect of nonlinear seismic torsion on the performance of skewed bridge piers[J]. Journal of Earthquake Engineering, 2008, 12(6): 980-998. doi: 10.1080/13632460701673019
    [5] YANG C S W, WERNER S D, DESROCHES R. Seismic fragility analysis of skewed bridges in the central southeastern United States[J]. Engineering Structures, 2015, 83(1): 116-128.
    [6] KUNIN J, ALAMPALLI S. Integral abutment bridges: current practice in United States and Canada[J]. Journal of Performance of Constructed Facilities, 2000, 14(3): 104-111. doi: 10.1061/(ASCE)0887-3828(2000)14:3(104)
    [7] 黄福云, 单玉麟, 罗小烨, 等. 基于位移的整体桥混凝土桩基抗震设计准则[J]. 中国公路学报, 2021, 34(5): 99-109. doi: 10.3969/j.issn.1001-7372.2021.05.010

    HUANG Fu-yun, SHAN Yu-lin, LUO Xiao-ye, et al. Displacement-based seismic design criteria of concrete piles in integral abutment jointless bridges[J]. China Journal of Highway and Transport, 2021, 34(5): 99-109. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.05.010
    [8] GOEL R K. Earthquake characteristics of bridges with integral abutments[J]. Journal of Structural Engineering, 1997, 123(11): 1435-1443. doi: 10.1061/(ASCE)0733-9445(1997)123:11(1435)
    [9] DUNKER K F, LIU D J. Foundations for integral abutments[J]. Practice Periodical on Structural Design and Construction, 2007, 12(1): 22-30. doi: 10.1061/(ASCE)1084-0680(2007)12:1(22)
    [10] ERHAN S, DICLELI M. Comparative assessment of the seismic performance of integral and conventional bridges with respect to the differences at the abutments[J]. Bulletin of Earthquake Engineering, 2015, 13(2): 653-677. doi: 10.1007/s10518-014-9635-8
    [11] HASSIOTIS S, ROMAN E. A survey of current issues on the use of integral abutment bridges[J]. Bridge Structures, 2005, 1(2): 81-101. doi: 10.1080/15732480500125635
    [12] XU Ming, LIU Peng-fei. Response of full-height frame integral abutments subjected to seismic motions[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 356-368. doi: 10.1016/j.soildyn.2019.03.024
    [13] SHAMSABADI A, KAPUSKAR M. Nonlinear soil-abutment-foundation-structure interaction analysis of skewed bridges subjected to near-field ground motions[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2202(1): 192-205. doi: 10.3141/2202-23
    [14] ZHAO Qiu-hong, DONG Shuo, WANG Qing-wei. Seismic response of skewed integral abutment bridges under near-fault ground motions, including soil-structure interaction[J]. Applied Sciences, 2021, 11(7): 3217. doi: 10.3390/app11073217
    [15] 赵秋红, 张冀豪, 陈宝春. 整体式斜交桥抗震性能分析[J]. 地震工程与工程振动, 2018, 38(4): 34-40. doi: 10.13197/j.eeev.2018.04.34.zhaoqh.006

    ZHAO Qiu-hong, ZHANG Ji-hao, CHEN Bao-chun. Seismic analysis on skewed integral abutment bridges. [J]. Journal of Earthquake Engineering and Engineering Dynamics, 2018, 38(4): 34-40. (in Chinese) doi: 10.13197/j.eeev.2018.04.34.zhaoqh.006
    [16] 黄福云, 庄一舟, 付毳, 等. 无伸缩缝梁桥抗震性能与设计计算方法研究[J]. 地震工程与工程振动, 2015, 35(5): 15-22. doi: 10.13197/j.eeev.2015.05.15.huangfy.003

    HUANG Fu-yun, ZHUANG Yi-zhou, FU Cui, et al. Review on the seismic performance and simplified design method of jointless bridge[J]. Journal of Earthquake Engineering and Engineering Dynamics, 2015, 35(5): 15-22. (in Chinese) doi: 10.13197/j.eeev.2015.05.15.huangfy.003
    [17] ITANI A M, PEKAN G. Seismic performance of steel plate girder bridges with integral abutments[R]. Reno: University of Nevada, 2011.
    [18] VASHEGHANI-FARAHANI R, ZHAO Q H, BURDETTE E G. Seismic analysis of integral abutment bridge in Tennessee, including soil-structure interaction[J]. Transportation Rese arch Record: Journal of the Transportation Research Board, 2010, 2201(1): 70-79. doi: 10.3141/2201-09
    [19] 赵秋红, 齐朝阳, 安泽宇, 等. 考虑SSI的整体式钢桥抗震性能参数分析[J]. 交通运输工程学报, 2018, 18(5): 35-46. doi: 10.3969/j.issn.1671-1637.2018.05.004

    ZHAO Qiu-hong, QI Zhao-yang, AN Ze-yu, et al. Parametric analysis on seismic behavior of integral abutment steel bridge considering SSI[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 35-46. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.05.004
    [20] SHERAFATI A, AZIZINAMINI A. Flexible pile head in jointless bridges: experimental investigation[J]. Journal of Bridge Engineering, 2015, 20(4): 04014071. doi: 10.1061/(ASCE)BE.1943-5592.0000628
    [21] AZIZINAMINI A, YAKEL A, SHERAFATI A, et al. Flexible Pile head in jointless bridges: design provisions for H-piles in cohesive soils[J]. Journal of Bridge Engineering, 2016, 21(3): 04015064. doi: 10.1061/(ASCE)BE.1943-5592.0000791
    [22] 齐朝阳. 整体式桥台-桩节点抗震性能试验研究[D]. 天津: 天津大学, 2017.

    QI Zhao-yang. Experimental research on seismic behavior of integral abutment-pile joint[D]. Tianjin: Tianjin University, 2017. (in Chinese)
    [23] KOZAK D L, LAFAVE J M, FAHNESTOCK L A. Seismic modeling of integral abutment bridges in Illinois[J]. Engineering Structures, 2018, 165: 170-183. doi: 10.1016/j.engstruct.2018.02.088
    [24] 汤虎, 李建中. 板式橡胶支座桥梁地震位移控制方法[J]. 中国公路学报, 2013, 26(3): 110-116. doi: 10.3969/j.issn.1001-7372.2013.03.012

    TANG Hu, LI Jian-zhong. Displacement control method for continuous bridges on laminated rubber bearings under earthquake excitation[J]. China Journal of Highway and Transport, 2013, 26(3): 110-116. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.03.012
    [25] QUINN B H, CIVJAN S A. Parametric study on effects of pile orientation in integral abutment bridges[J]. Journal of Bridge Engineering, 2017, 22(4): 04016132. doi: 10.1061/(ASCE)BE.1943-5592.0000952
    [26] ZORDAN T, BRISEGHELLA B, LAN C. Parametric and pushover analyses on integral abutment bridge[J]. Engineering Structures, 2011, 33(2): 502-515. doi: 10.1016/j.engstruct.2010.11.009
    [27] SHAMSABADI A, ROLLINS K M, KAPUSKAR M. Nonlinear soil-abutment-bridge structure interaction for seismic performance-based design[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 707-720. doi: 10.1061/(ASCE)1090-0241(2007)133:6(707)
    [28] DICLELI M. Integral abutment-backfill behavior on sand soil—pushover analysis approach[J]. Journal of Bridge Engineering, 2005, 10(3): 354-364. doi: 10.1061/(ASCE)1084-0702(2005)10:3(354)
    [29] 孔令刚, 姜丽红, 陈仁朋, 等. 考虑桩头约束的水平受荷单桩响应分析[J]. 应用力学学报, 2014, 31(3): 393-399, 490-491. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201403017.htm

    KONG Ling-gang, JIANG Li-hong, CHEN Ren-peng, et al. Response of single pile with partial pile head fixity subjected to lateral loading[J]. Chinese Journal of Applied Mechanics, 2014, 31(3): 393-399, 490-491. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201403017.htm
    [30] 李枝军, 葛飞, 徐秀丽, 等. 板式橡胶支座性能有限元模拟与试验研究[J]. 东南大学学报(自然科学版), 2013, 43(6): 1299-1304. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201306031.htm

    LI Zhi-jun, GE Fei, XU Xiu-li, et al. Finite element simulation and experimental study of property for elastomeric pad bearing[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(6): 1299-1304. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201306031.htm
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  115
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回