留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于中长期环境温度变形效应的半整体桥台-土相互作用试验

黄福云 刘征峰 宋大好 林志平 陈宝春

黄福云, 刘征峰, 宋大好, 林志平, 陈宝春. 基于中长期环境温度变形效应的半整体桥台-土相互作用试验[J]. 交通运输工程学报, 2022, 22(5): 131-144. doi: 10.19818/j.cnki.1671-1637.2022.05.007
引用本文: 黄福云, 刘征峰, 宋大好, 林志平, 陈宝春. 基于中长期环境温度变形效应的半整体桥台-土相互作用试验[J]. 交通运输工程学报, 2022, 22(5): 131-144. doi: 10.19818/j.cnki.1671-1637.2022.05.007
HUANG Fu-yun, LIU Zheng-feng, SONG Da-hao, LIN Zhi-ping, CHEN Bao-chun. Test on interaction of semi-integral abutment and soil based on displacement effect of medium-long-term ambient temperature[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 131-144. doi: 10.19818/j.cnki.1671-1637.2022.05.007
Citation: HUANG Fu-yun, LIU Zheng-feng, SONG Da-hao, LIN Zhi-ping, CHEN Bao-chun. Test on interaction of semi-integral abutment and soil based on displacement effect of medium-long-term ambient temperature[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 131-144. doi: 10.19818/j.cnki.1671-1637.2022.05.007

基于中长期环境温度变形效应的半整体桥台-土相互作用试验

doi: 10.19818/j.cnki.1671-1637.2022.05.007
基金项目: 

国家自然科学基金项目 51578161

国家自然科学基金项目 51778148

中国博士后科学基金项目 2020M682074

四川省交通科技项目 2020-A-05

详细信息
    作者简介:

    黄福云(1979-),男,江西丰城人,福州大学研究员,工学博士,从事无伸缩缝桥梁结构-土相互作用研究

  • 中图分类号: U443.2

Test on interaction of semi-integral abutment and soil based on displacement effect of medium-long-term ambient temperature

Funds: 

National Natural Science Foundation of China 51578161

National Natural Science Foundation of China 51778148

China Postdoctoral Science Foundation 2020M682074

Transportation Science and Technology Project of Sichuan Province 2020-A-05

More Information
    Author Bio:

    HUANG Fu-yun (1979–), male, born in Fengcheng, Jiangxi Province, research fellow at Fuzhou University, doctor of engineering. Research interests: interaction of jointless bridge structures and soil. E-mail: Huangfuyun@fzu.edu.cn

  • 摘要: 为研究环境温度作用对半整体桥台与台后土之间相互作用机理的影响,以简化半整体桥台-土结构模型为研究对象,进行了基于位移的环境温度作用下半整体桥台-土相互作用拟静力试验。研究结果表明:半整体桥台的滞回曲线随季节性温度变化而变化,季节性升温和降温转化段对桥台-土相互作用的影响非常显著,而持续增加或减小段对其影响较小;一年中的第1个升温段对桥台-土相互作用影响更大,随着几个季度的温度加载,台后土逐渐被压实,土压力变化趋于稳定,增加趋势减缓;不同季节昼夜温度变化对桥台-土相互作用的影响不同,夏季白天升温对桥台-土相互作用的影响小,而夜晚降温的影响大,冬季则反之;随着季节性温度的逐渐升高,桥台-土相互作用滞回曲线由凹形向凸形发展,呈现出更加饱满的梭形;中长期环境温度对台-土相互作用影响较大,经过一整年的温度作用后,台后土压力显著增大,产生棘轮效应;桥台转角与加载位移存在较大相关性,随着循环次序的增加,桥台转角先逐渐增大后趋于稳定;在中长期环境温度作用下,半整体桥台逐渐表现出往台后方向偏转的趋势;昼夜温度变化对桥台转角的影响不可忽视,在相同加载位移下,考虑季节性温度和昼夜温度叠加作用情况的桥台转角试验结果比仅考虑季节性温度作用时增大了94%。

     

  • 图  1  福建某半整体桥

    Figure  1.  A semi-integral bridge in Fujian

    图  2  桥台上半部分

    Figure  2.  Upper half of abutment

    图  3  桥台配筋(单位:mm)

    Figure  3.  Reinforcement of abutment (unit: mm)

    图  4  位移计与倾角仪布置(单位:mm)

    Figure  4.  Arrangements of displacement meters and inclinometers (unit: mm)

    图  5  OW桥位移变化

    Figure  5.  Displacement change of OW Bridge

    图  6  试验加载全历程

    Figure  6.  Whole test loading process

    图  7  各季节第1中周期加载历程

    Figure  7.  First mid-cycle loading process of each season

    图  8  试验加载照片

    Figure  8.  Photo of test loadings

    图  9  季节性温度作用下荷载-位移关系曲线

    Figure  9.  Relationship curves of load-displacement under effect of seasonal temperature

    图  10  各季度第1中周期昼夜温度作用下试件荷载-位移滞回曲线

    Figure  10.  Hysteresis curves of load-displacement of specimen under effect of day-nitht temperature in first mid-cycle of each quarter

    图  11  各季度第1中周期季节与昼夜温度作用下试件的滞回曲线

    Figure  11.  Hysteresis curves of specimen under effects of seasonal and day-night temperature in first mid-cycle of each quarter

    图  12  各季度滞回曲线与骨架曲线

    Figure  12.  Hysteresis curves and skeleton curves of different quarters

    图  13  全年滞回曲线与骨架曲线

    Figure  13.  Annual hysteresis curves and skeleton curves

    图  14  相邻2年滞回曲线

    Figure  14.  Hysteretic curves of two consecutive years

    图  15  全年转角变化

    Figure  15.  Annual changes of rotation angle

    图  16  位移-转角曲线

    Figure  16.  Displacement-rotation angle curves

    图  17  不同温度变化时桥台转角对比

    Figure  17.  Comparison of abutment rotation angles under different temperature changes

    表  1  砂土的物理力学参数

    Table  1.   Physical and mechanical parameters of sand

    参数名称 含水率/% 密度/(g·cm3) 孔隙比 黏聚力/kPa 内摩擦角/(°)
    参数值 1.3 1.52 0.80 0 35
    下载: 导出CSV
  • [1] RUSSO G, BERGAMO O, DAMIANI L. Retrofitting a short span bridge with a semi-integral abutment bridge: the Treviso Bridge[J]. Structural Engineering International, 2009, 19(2): 137-141. doi: 10.2749/101686609788220051
    [2] 陈宝春, 付毳, 庄一舟, 等. 中国无伸缩缝桥梁应用现状与发展对策[J]. 中外公路, 2018, 38(1): 87-95. doi: 10.14048/j.issn.1671-2579.2018.01.020

    CHEN Bao-chun, FU Cui, ZHUANG Yi-zhou, et al. The application status and development strategy of jointless bridges in China[J]. Journal of China and Foreign Highway, 2018, 38(1): 87-95. (in Chinese) doi: 10.14048/j.issn.1671-2579.2018.01.020
    [3] ASHWORTH T, YOUNG C. Design and construction of Loughor Railway Viaduct with semi-integral abutments[J]. Proceedings of the Institution of Civil Engineers—Bridge Engineering, 2018, 171(3): 191-200. doi: 10.1680/jbren.17.00012
    [4] 陈宝春, 王晨辉, 薛俊青, 等. 中国无伸缩缝桥梁调查与分析[J]. 建筑科学与工程学报, 2022, 39(5): 13-21. doi: 10.19815/j.jace.2022.05064

    CHEN Bao-chun, WANG Chen-hui, XUE Jun-qing, et al. Investigation and analysis of jointless bridges in China[J]. Journal of Architecture and Civil Engineering, 2022, 39(5): 13-21. (in Chinese) doi: 10.19815/j.jace.2022.05064
    [5] 金晓勤, 邵旭东. 半整体式全无缝桥梁研究[J]. 土木工程学报, 2009, 42(9): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200909012.htm

    JIN Xiao-qin, SHAO Xu-dong. A study of fully jointless bridge-approach system with semi-integral abutment[J]. China Civil Engineering Journal, 2009, 42(9): 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200909012.htm
    [6] JIN Xiao-qin, SHAO Xu-dong, PENG Wang-hu, et al. A new category of semi-integral abutment in China[J]. Structural Engineering International, 2005, 15(3): 186-188. doi: 10.2749/101686605777963071
    [7] 王天利. 半整体式桥台无缝桥梁研究[D]. 西安: 长安大学, 2003.

    WANG Tian-li. Research on semi-integral abutment jointless bridge[D]. Xi'an: Chang'an University, 2003. (in Chinese)
    [8] 占雪芳. 半整体式全无缝桥合理结构体系研究[D]. 长沙: 湖南大学, 2011.

    ZHAN Xue-fang. The research on the rational structural forms of the semi-integral abutment jointless bridge[D]. Changsha: Hunan University, 2011. (in Chinese)
    [9] WANG Tian-li, LI Qing-ning, HU Da-lin. The review about a new type of bridge structure—semi-integral abutment jointless bridge[J]. Advanced Materials Research, 2011, 368-373: 547-550.
    [10] 黄福云, 周志明, 宋大东, 等. 环境温度作用下半整体桥台后土抗力试验[J]. 铁道工程学报, 2022, 39(1): 47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202201008.htm

    HUANG Fu-yun, ZHOU Zhi-ming, SONG Da-dong, et al. Experiment on the soil resistance behind abutment of semi- integral abutment jointless bridge under ambient temperature[J]. Journal of Railway Engineering Society, 2022, 39(1): 47-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202201008.htm
    [11] 邵旭东, 占雪芳, 金晓勤, 等. 带地梁的新型半整体式无缝桥梁温度效应研究[J]. 中国公路学报, 2010, 23(1): 43-48, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201001011.htm

    SHAO Xu-dong, ZHAN Xue-fang, JIN Xiao-qin, et al. Temperature effect of innovative semi-integral abutment jointless bridge with ground beam[J]. China Journal of Highway and Transport, 2010, 23(1): 43-48, 57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201001011.htm
    [12] AZIZINAMINI A, YAKEL A, SHERAFATI A, et al. Flexible pile head in jointless bridges: design provisions for H-piles in cohesive soils[J]. Journal of Bridge Engineering, 2016, 21(3): 04015064. doi: 10.1061/(ASCE)BE.1943-5592.0000791
    [13] SIGDEL L D, AL-QARAWI A, LEO C J, et al. Geotechnical design practices and soil-structure interaction effects of an integral bridge system: a review[J]. Applied Sciences, 2021, 11(15): 7131. doi: 10.3390/app11157131
    [14] ABDEL-FATTAH M T, ABDEL-FATTAH T T. Behavior of integral frame abutment bridges due to cyclic thermal loading: nonlinear finite-element analysis[J]. Journal of Bridge Engineering, 2019, 24(5): 04019031. doi: 10.1061/(ASCE)BE.1943-5592.0001394
    [15] HUNTLEY S A, VALSANGKAR A J. Nine-year field- monitoring data from an integral-abutment bridge[C]// ASCE. Innovations in Geotechnical Engineering. Reston: ASCE, 2018: 101-111.
    [16] SILVA P H D S. Numerical analysis of a semi-integral bridge abutment undergoing cyclic lateral displacements[D]. Rio Grande do Norte: Universidade Federal do Rio Grande do Norte, 2020.
    [17] KA H, CHOI J W, KIM Y H, et al. Structural performance evaluation on ended block of wide flange PSC girder for the semi-integral bridges[J]. KSCE Journal of Civil and Environmental Engineering Research, 2022, 42(1): 1-9.
    [18] 于天来, 周田, 姜立东, 等. 升温作用下整体桥台台后土压力计算方法的探讨[J]. 桥梁建设, 2010, 40(1): 29-31, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201001009.htm

    YU Tian-lai, ZHOU Tian, JIANG Li-dong, et al. Study of calculating methods for earth pressure behind abutment of integral abutment bridge under action of rising temperatures[J]. Bridge Construction, 2010, 40(1): 29-31, 35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201001009.htm
    [19] KIM W S, LAMAN J A. Seven-year field monitoring of four integral abutment bridges[J]. Journal of Performance of Constructed Facilities, 2012, 26(1): 54-64.
    [20] FARAJI S, TING J M, CROVO D S. Nonlinear analysis of integral bridges: finite-element model[J]. Journal of Geotechnical and Geo-environmental Engineering, 2001, 127: 454-461.
    [21] CLAYTON C, XU M, BLOODWORTH A. A laboratory study of the development of earth pressure behind integral bridge abutments[J]. Géotechnique, 2006, 56: 561-571.
    [22] TSINIDIS G, PAPANTOU M, MITOULIS S A. Response of integral abutment bridges under a sequence of thermal loading and seismic shaking[J]. Earthquakes and Structures, 2019, 16: 11-28.
    [23] AL-QARAWI A, LEO C, LIYANAPATHIRANA D S. Effects of wall movements on performance of integral abutment bridges[J]. International Journal of Geomechanics, 2020, 20(2): 04019157.
    [24] KIM S H, AHN J H, JUNG C Y, et al. Behaviour of steel-box semi-integral abutment bridge considering temperature-earth pressure change[J]. International Journal of Steel Structures, 2014, 14(1): 117-140.
    [25] HUNTLEY S A, VALSANGKAR A J. Field monitoring of earth pressures on integral bridge abutments[J]. Canadian Geotechnical Journal, 2013, 50: 841-857.
    [26] ZHENG Xiao-tao, PENG Hong-yu, YU Jiu-yang, et al. Analytical ratchet limit for pressurized pipeline under cyclic nonproportional loadings[J]. Journal of Pipeline Systems Engineering and Practice, 2017, 8(3): 04017002.
    [27] ENGLAND G L, DUNSTAN T, TSANG C M, et al. Ratcheting flow of granular materials[C]//ASCE. Proceedings of 2014 ASCE Conference on ASCE Static and Dynamic Properties of Gravelly Soils. Reston: ASCE, 2014: 1-10.
    [28] 黄福云, 林友炜, 程俊峰, 等. 整体式桥台-H形钢桩-土相互作用低周往复拟静力试验[J]. 中国公路学报, 2019, 32(5): 100-114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905011.htm

    HUANG Fu-yun, LIN You-wei, CHENG Jun-feng, et al. Interaction of integral abutment-H-shaped steel pile-soil under reciprocating low-cycle pseudo-static test[J]. China Journal of Highway and Transport, 2019, 32(5): 100-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905011.htm
    [29] BREÑA S F, BONCZAR C H, CIVJAN S A, et al. Evaluation of seasonal and yearly behavior of an integral abutment bridge[J]. Journal of Bridge Engineering, 2007, 12(3): 296-305.
    [30] 郑爽. 考虑季节温度效应的半整体桥台后土压力试验研究[D]. 福州: 福建农林大学, 2019.

    ZHENG Shuang. Experimental study on soil pressure behind the semi-integral abutment considering seasonal temperature effect[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019. (in Chinese)
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  89
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-20
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回