留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

整体式桥台后土压力累积效应反分析

徐明 林勇志 周文轩

徐明, 林勇志, 周文轩. 整体式桥台后土压力累积效应反分析[J]. 交通运输工程学报, 2022, 22(5): 163-172. doi: 10.19818/j.cnki.1671-1637.2022.05.009
引用本文: 徐明, 林勇志, 周文轩. 整体式桥台后土压力累积效应反分析[J]. 交通运输工程学报, 2022, 22(5): 163-172. doi: 10.19818/j.cnki.1671-1637.2022.05.009
XU Ming, LIN Yong-zhi, ZHOU Wen-xuan. Back analysis of build-up effect of earth pressure behind integral abutment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 163-172. doi: 10.19818/j.cnki.1671-1637.2022.05.009
Citation: XU Ming, LIN Yong-zhi, ZHOU Wen-xuan. Back analysis of build-up effect of earth pressure behind integral abutment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 163-172. doi: 10.19818/j.cnki.1671-1637.2022.05.009

整体式桥台后土压力累积效应反分析

doi: 10.19818/j.cnki.1671-1637.2022.05.009
基金项目: 

国家自然科学基金项目 51978382

详细信息
    作者简介:

    徐明(1974-),男,湖北孝感人,清华大学副教授,工学博士,从事岩土力学与地下工程研究

  • 中图分类号: U443.36

Back analysis of build-up effect of earth pressure behind integral abutment

Funds: 

National Natural Science Foundation of China 51978382

More Information
  • 摘要: 为了确定整体式桥台后土体在水平方向往复位移作用下的最终土压力,针对5组整体式桥台模型试验进行了有限差分数值模拟反分析;采用能够反映土体在小应变区间上高模量和高度非线性刚度特性的土体本构模型,考虑土体与桥台之间的界面特性,通过在桥台顶部施加水平位移,反分析模型试验中经过不同循环次数的台后土压力测量结果,获得了相应的土体小应变刚度参数,揭示每组试验中桥台后土体小应变刚度在往复加载过程中的演化规律;在此基础上,针对铰支座和扩展基础这2种不同的桥台底部约束条件,分别提出了估算整体式桥台后土体小应变刚度增大倍数的公式,进而提出了考虑桥台与土相互作用的整体式桥台后最终土压力的设计计算方法。研究结果表明:当桥台底部为铰支座时,往复加载前后土体小应变刚度增大倍数随桥台顶部相对位移的增大而增大,随桥台后砂土相对密度的增大而减少;当桥台底部为扩展基础时,土体小应变刚度增大倍数虽然也随桥台顶部相对位移的增大而增大,但增幅明显小于桥台底部为铰支座的工况,并且受桥台后砂土相对密度的影响不大;相比英国设计指南PD 6694-1,提出的公式能够考虑上述多个因素的影响,并能较好地预测出不同模型试验反分析得到的土体小应变刚度增大倍数,可为整体式桥台设计提供依据。

     

  • 图  1  在桥台顶部施加水平位移时土体剪应变分布(Δ=10-3H)

    Figure  1.  Shear strain distribution of soil when horizontal displacement is applied at abutment top (Δ=10-3H)

    图  2  切线剪切刚度随轴向应变的变化曲线

    Figure  2.  Variation curve of tangent shear stiffness with axial strain

    图  3  数值模型1

    Figure  3.  Numerical model 1

    图  4  Δ/H为1.25×10-3时数值模拟与试验得到的土压力和桥台高度之间的关系(第1组模拟)

    Figure  4.  Relationships between earth pressure and abutment height obtained by numerical simulation and experiment when Δ/H is 1.25×10-3 (simulation group 1)

    图  5  Δ/H为2.50×10-3时数值模拟与试验得到土压力和桥台高度之间的关系(第1组模拟)

    Figure  5.  Relationships between earth pressure and abutment height obtained by numerical simulation and experiment when Δ/H is 2.50×10-3 (simulation group 1)

    图  6  Δ/H为3.50×10-2时数值模拟与试验得到的土压力和桥台高度之间的关系(第1组模拟)

    Figure  6.  Relationships between earth pressure and abutment height obtained by numerical simulation and experiment when Δ/H is 3.50×10-2 (simulation group 1)

    图  7  第1组模拟中AN的关系

    Figure  7.  Relationships between A and N in simulation group 1

    图  8  Δ/H为2.00×10-3时数值模拟与试验得到的土压力和桥台高度之间的关系(第2组模拟)

    Figure  8.  Relationships between earth pressure and abutment height obtained by numerical simulation and experiment when Δ/H is 2.00×10-3 (simulation group 2)

    图  9  Δ/H为6.30×10-3时数值模拟与试验得到的土压力和桥台高度之间的关系(第2组模拟)

    Figure  9.  Relationships between earth pressure and abutment height obtained by numerical simulation and experiment when Δ/H is 6.30×10-3 (simulation group 2)

    图  10  第2组模拟中AN的关系

    Figure  10.  Relationships between A and N in simulation group 2

    图  11  Δ/H为5.00×10-4时数值模拟与试验得到的土压力和桥台高度之间的关系(第3组模拟)

    Figure  11.  Relationships between earth pressure and abutment height obtained by numerical simulation and experiment when Δ/H is 5.00×10-4 (simulation group 3)

    图  12  Δ/H为2.00×10-3时数值模拟与试验得到土压力和桥台高度之间的关系(第3组模拟)

    Figure  12.  Relationships between earth pressure and abutment height obtained by numerical simulation and experiment when Δ/H is 2.00×10-3 (simulation group 3)

    图  13  Δ/H为6.30×10-3时数值模拟与试验得到的土压力和桥台高度之间的关系(第3组模拟)

    Figure  13.  Relationships between earth pressure and abutment height obtained by numerical simulation and experiment when Δ/H is 6.30×10-3 (simulation group 3)

    图  14  第3组模拟中AN的关系

    Figure  14.  Relationships between A and N in simulation group 3

    图  15  数值模型2

    Figure  15.  Numerical model 2

    图  16  Δ/H为5.00×10-3时数值模拟与试验得到土压力和桥台高度之间的关系(第4组模拟,松砂)

    Figure  16.  Relationships between earth pressure and abutment height obtained by numerical simulation and experiment when Δ/H is 5.00×10-3 (simulation group 4, loose sand)

    图  17  Δ/H为1.00×10-2时数值模拟与试验得到的土压力和桥台高度之间的关系(第4组模拟,松砂)

    Figure  17.  Relationships between earth pressure and abutment height obtained by numerical simulation and experiment when Δ/H is 1.00×10-2 (simulation group 4, loose sand)

    图  18  Δ/H为5.00×10-3时数值模拟与试验得到土压力和桥台高度之间的关系(第5组模拟,密砂)

    Figure  18.  Relationships between earth pressure and abutment height obtained by numerical simulation and experiment when Δ/H is 5.00×10-3 (simulation group 5, dense sand)

    图  19  Δ/H为1.00×10-2时数值模拟与试验得到土压力和桥台高度之间的关系(第5组模拟,密砂)

    Figure  19.  Relationships between earth pressure and abutment height obtained by numerical simulation and experiment when Δ/H is 1.00×10-2 (simulation group 5, dense sand)

    图  20  第4组模拟中AN的关系(松砂)

    Figure  20.  Relationships between A and N in simulation group 4 (loose sand)

    图  21  第5组模拟中AN的关系(密砂)

    Figure  21.  Relationships between A and N in simulation group 5 (dense sand)

    图  22  不同试验中土体刚度增大倍数与桥台顶部相对位移关系

    Figure  22.  Relationships between increasing multiples of soil stiffness and relative displacement at abutment top in different experiments

    表  1  第1组模拟砂土参数取值

    Table  1.   Values of soil parameters of simulation group 1

    参数 摩擦角/(°) 剪切模量/MPa A n εq(min) εq(max) 泊松比v
    取值 43 按式(1)取值 反分析确定 -0.72 1.0×10-5 5.0×10-2 0.3
    下载: 导出CSV

    表  2  第2组模拟砂土参数取值

    Table  2.   Values of soil parameters of simulation group 2

    参数 摩擦角/(°) 剪切模量/MPa A n εq(min) εq(max) 泊松比v
    取值 33 按式(1)取值 反分析确定 -0.66 1.0×10-5 5.0×10-2 0.3
    下载: 导出CSV

    表  3  第3组模拟砂土参数取值

    Table  3.   Values of soil parameters of simulation group 3

    参数 摩擦角/(°) 剪切模量/MPa A n εq(min) εq(max) 泊松比v
    取值 33 按式(1)取值 反分析确定 -0.65 1.0×10-5 5.0×10-2 0.3
    下载: 导出CSV

    表  4  第4组模拟砂土参数取值(松砂)

    Table  4.   Values of soil parameters of simulation group 4 (loose sand)

    参数 摩擦角/(°) 剪切模量/MPa A n εq(min) εq(max) 泊松比v
    取值 32 按式(1)取值 反分析确定 -0.61 1.0×10-5 5.0×10-2 0.3
    下载: 导出CSV

    表  5  第5组模拟砂土参数取值(密砂)

    Table  5.   Values of soil parameters of simulation group 4 (dense sand)

    参数 摩擦角/(°) 剪切模量/MPa A n εq(min) εq(max) 泊松比v
    取值 40 按式(1)取值 反分析确定 -0.58 1.0×10-5 5.0×10-2 0.3
    下载: 导出CSV

    表  6  不同模型试验的反分析结果

    Table  6.   Back analysis results for different model tests

    模型试验 相对密度/% 桥台顶部相对位移/10-3 刚度参数 土体刚度增大倍数
    N=1 N=100
    England等[14] 94 1.25 1.7 2.5 1.47
    2.50 1.9 3.0* 1.58
    3.50 1.5 3.0** 2.00
    Cosgrove等[15] 22 2.30 0.5 2.1 4.20
    6.30 0.5 2.7 5.40
    Tapper等[18] 50 2.00 0.8 2.2 2.75
    6.30 0.8 3.3 4.12
    Springman等[16](松砂) 14 5.00 1.8 2.7 1.50
    10.00 1.8 3.4 1.90
    Springman等[16](密砂) 75 5.00 2.3 3.6 1.56
    10.00 2.3 5.4 2.35
    下载: 导出CSV
  • [1] BANKS J R, BLOODWORTH A G. Lateral stress profiles on integral bridge abutments[J]. Proceedings of the Institution of Civil Engineers-Bridge Engineering, 2018, 171(3): 155-168. doi: 10.1680/jbren.17.00017
    [2] 朱伟庆, 衡江峰, 刘永健, 等. 采用墙式整体桥台的无缝桥受力特征[J]. 交通运输工程学报, 2017, 17(6): 36-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201706008.htm

    ZHU Wei-qing, HENG Jiang-feng, LIU Yong-jian, et al. Mechanical characteristics of jointless bridge with wall-type integral abutment[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 36-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201706008.htm
    [3] BLOODWORTH A, XU Ming, BANKS J R, et al. Predicting the earth pressure on integral bridge abutments[J]. Journal of Bridge Engineering, 2012, 17(2): 371-381. doi: 10.1061/(ASCE)BE.1943-5592.0000263
    [4] TATSUOKA F, HIRAKAWA D, NOJIRI M, et al. A new type of integral bridge comprising geosynthetic-reinforced soil walls[J]. Geosynthetics International, 2009, 16(4): 301-326. doi: 10.1680/gein.2009.16.4.301
    [5] XU Ming, BLOODWORTH A, CLAYTON C. Behavior of a stiff clay behind embedded integral abutments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 721-730. doi: 10.1061/(ASCE)1090-0241(2007)133:6(721)
    [6] 陈宝春, 王晨辉, 薛俊青, 等. 我国无伸缩缝桥梁调查与分析[J]. 建筑科学与工程学报, 2022, 39(5): 13-21.

    CHEN Bao-chun, WANG Chen-hui, XUE Jun-qing, et al. Investigation and analysis on the application of jointless bridges in China[J]. Journal of Architecture and Civil Engineering, 2022, 39(5): 13-21. (in Chinese).
    [7] OOI P S, LIN Xiao-bin, HAMADA H S, et al. Field behavior of an integral abutment bridge supported on drilled shafts[J]. Journal of Bridge Engineering, 2010, 15(1): 4-18. doi: 10.1061/(ASCE)BE.1943-5592.0000036
    [8] DEJONG J T, HOWEY D S, CIVJAN S A, et al. Influence of daily and annual thermal variations on integral abutment bridge performance[M]//YEGIAN M K, KAVAZANJIAN E. Geotechnical Engineering for Transportation Projects. Reston: ASCE, 2004: 496-505.
    [9] KIM W, LAMAN J. Seven-year field monitoring of four integral abutment bridges[J]. Journal of Performance of Constructed Facilities, 2012, 26(1): 54-64. doi: 10.1061/(ASCE)CF.1943-5509.0000250
    [10] BARKER K J, CARDER D R. The long term monitoring of stresses behind three integral bridge abutments[R]. Berkshire: Transport Research Laboratory, 2006.
    [11] HOPPE E, GÓMEZ J. Field study of an integral backwall bridge[R]. Charlottesville: Virginia Transportation Research Council, 1996.
    [12] HUNTLEYSHELLEY S A, VALSANGKARARUN A J. Field monitoring of earth pressures on integral bridge abutments[J]. Canadian Geotechnical Journal, 2013, 50(8): 841-857. doi: 10.1139/cgj-2012-0440
    [13] DARLEY P, CARDER D R, BARKER K J. Seasonal thermal effects over three years on the shallow abutment of an integral bridge in Glasgow[R]. Berkshire: Transport Research Laboratory, 2000.
    [14] ENGLAND G L, TSANG N C M, BUSH D I. Integral bridges: a fundamental approach to the time-temperature loading problem[R]. London: Thomas Telford, 2000.
    [15] COSGROVE E F, LEHANE B M. Cyclic loading of loose backfill placed adjacent to integral bridge abutments[J]. International Journal of Physical Modelling in Geotechnics, 2003, 3(3): 9-16. doi: 10.1680/ijpmg.2003.030302
    [16] SPRINGMAN S M, NORRISH A R M, NG C W W. Cyclic loading of sand behind integral bridge abutments[R]. Berkshire: Transport Research Laboratory, 1996.
    [17] NG C W W, SPRINGMAN S M, NORRISH A R M. Centrifuge modeling of spread-base integral bridge abutments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(5): 376-388. doi: 10.1061/(ASCE)1090-0241(1998)124:5(376)
    [18] TAPPER L, LEHANE B. Lateral stress development on integral bridge abutments[C]//DEEKS A J, HAO H. Proceedings of Eighteenth Australasian Conference on Mechanics of Structures and Materials. Boca Raton: CRC Press, 2004: 1069-1076.
    [19] LEHANE B M. Lateral soil stiffness adjacent to deep integral bridge abutments[J]. Géotechnique, 2011, 61(7): 593-603. doi: 10.1680/geot.9.P.135
    [20] XU Ming, CLAYTON C R, BLOODWORTH A G, et al. The earth pressure behind full-height frame integral abutments supporting granular fill[J]. Canadian Geotechnical Journal, 2007, 44(3): 284-298. doi: 10.1139/t06-122
    [21] XU Ming, GUO Jin-wu. DEM study on the development of the earth pressure of granular materials subjected to lateral cyclic loading[J]. Computers and Geotechnics, 2021, 130: 103915. doi: 10.1016/j.compgeo.2020.103915
    [22] 徐明, 刘鹏飞. 整体式桥台研究综述[J]. 工程力学, 2016, 33(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201604003.htm

    XU Ming, LIU Peng-fei. Research on integral bridge abutments[J]. Engineering Mechanics, 2016, 33(4): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201604003.htm
    [23] ATKINSON J H. Non-linear soil stiffness in routine design[J]. Géotechnique, 2000, 50(5): 487-508. doi: 10.1680/geot.2000.50.5.487
    [24] SIMPSON B. Retaining structures: displacement and design[J]. Géotechnique, 1992, 42(4): 541-576. doi: 10.1680/geot.1992.42.4.541
    [25] JARDINE R J. Some observations on the kinematic nature of soil stiffness[J]. Soils and Foundations, 1992, 32(2): 111-124. doi: 10.3208/sandf1972.32.2_111
    [26] PUZRIN A M, BURLAND J B. Non-linear model of small-strain behaviour of soils[J]. Géotechnique, 1998, 48(2): 217-233. doi: 10.1680/geot.1998.48.2.217
    [27] XU Ming, SHEN Da-wei, RAKITIN B. The longitudinal response of buried large-diameter reinforced concrete pipeline with gasketed bell-and-spigot joints subjected to traffic loading[J]. Tunnelling and Underground Space Technology, 2017, 64: 117-132. doi: 10.1016/j.tust.2016.12.020
    [28] DASARI G R. Modelling the variation of soil stiffness during sequential construction[D]. Cambridge: University of Cambridge, 1996.
    [29] 邹文浩, 徐明. 隧道开挖对地面房屋影响的三维数值分析与评估[J]. 岩土工程学报, 2015, 37(增2): 202-209. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2040.htm

    ZOU Wen-hao, XU Ming. 3D numerical analysis and evaluation of the influence of tunneling on frame buildings[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 202-209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2040.htm
    [30] OZTOPRAK S, BOLTON M D. Stiffness of sands through a laboratory test database[J]. Géotechnique, 2013, 63(1): 54-70.
  • 加载中
图(22) / 表(6)
计量
  • 文章访问数:  510
  • HTML全文浏览量:  132
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-08
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回