留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

埋入式H型钢桩-桥台节点受弯性能与承载力

朱伟庆 时豪辉 张冠华 刘永健 刘佳桐

朱伟庆, 时豪辉, 张冠华, 刘永健, 刘佳桐. 埋入式H型钢桩-桥台节点受弯性能与承载力[J]. 交通运输工程学报, 2022, 22(5): 184-199. doi: 10.19818/j.cnki.1671-1637.2022.05.011
引用本文: 朱伟庆, 时豪辉, 张冠华, 刘永健, 刘佳桐. 埋入式H型钢桩-桥台节点受弯性能与承载力[J]. 交通运输工程学报, 2022, 22(5): 184-199. doi: 10.19818/j.cnki.1671-1637.2022.05.011
ZHU Wei-qing, SHI Hao-hui, ZHANG Guan-hua, LIU Yong-jian, LIU Jia-tong. Flexural performance and capacity of embedded H-shaped steel pile-abutment joint[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 184-199. doi: 10.19818/j.cnki.1671-1637.2022.05.011
Citation: ZHU Wei-qing, SHI Hao-hui, ZHANG Guan-hua, LIU Yong-jian, LIU Jia-tong. Flexural performance and capacity of embedded H-shaped steel pile-abutment joint[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 184-199. doi: 10.19818/j.cnki.1671-1637.2022.05.011

埋入式H型钢桩-桥台节点受弯性能与承载力

doi: 10.19818/j.cnki.1671-1637.2022.05.011
基金项目: 

国家重点研发计划 2021YFB2601000

陕西省高校科协青年人才托举计划 20180409

公路桥梁诊治技术交通运输行业研发中心开放课题 2018KFKT-02

中央高校基本科研业务费专项资金项目 300102212912

详细信息
    作者简介:

    朱伟庆(1987-),男,湖南娄底人,长安大学副教授,工学博士,从事桥梁工程研究

    通讯作者:

    刘永健(1966-),男,江西玉山人,长安大学教授,工学博士

  • 中图分类号: U441.4

Flexural performance and capacity of embedded H-shaped steel pile-abutment joint

Funds: 

National Key Research and Development Program of China 2021YFB2601000

Young Talent Foundation of University Association for Science and Technology in Shaanxi 20180409

Opening Foundation of Research and Development Center on Road and Bridge Diagnosis and Maintenance Technology of Ministry of Transport 2018KFKT-02

Fundamental Research Funds for the Central Universities 300102212912

More Information
  • 摘要: 为研究整体式桥台无缝桥中埋入式H型钢桩-桥台节点的受弯性能,通过建立节点的有限元模型,分析了桥台厚度、混凝土强度、钢桩朝向、埋深比、钢材强度和轴压比6个参数对节点受弯承载力和破坏模式的影响,并在此基础上,针对不同的破坏模式提出了节点受弯模型与承载力计算公式。研究结果表明:绕钢桩强轴弯曲的节点在埋深比小于2.0时发生桥台混凝土承压破坏,增大钢桩埋深比和混凝土强度等级可有效提高节点受弯承载力;绕钢桩强轴弯曲的节点在埋深比大于2.0时,或绕钢桩弱轴弯曲的节点在埋深比大于1.0时,发生钢桩屈服破坏,提高钢桩的钢材强度等级可提高节点受弯承载力;随着轴压比的增大,发生绕钢桩强轴屈服破坏的节点的受弯承载力明显降低,但轴压比对发生桥台混凝土承压破坏或冲切破坏的节点的受弯承载力的影响可以忽略;提出的节点受弯承载力计算方法能较为准确地预测不同破坏模式的埋入式H型钢桩-混凝土桥台节点的受弯承载力,计算值与有限元结果比值的均值和计算值与试验结果比值的均值为分别为0.981和0.941,因此,可用于该类型节点的受弯承载力计算和破坏模式分析;建议钢桩埋深不少于2.0倍桩宽与混凝土桥台厚度大于2.4倍桩宽,这样可有效避免桥台混凝土的承压破坏和桥台边缘混凝土的冲切破坏。

     

  • 图  1  钢桩(单位:m)

    Figure  1.  Steel pile (unit: m)

    图  2  节点构造(单位:mm)

    Figure  2.  Details of joint (unit: mm)

    图  3  有限元模型

    Figure  3.  Finite element model

    图  4  有限元结果与文献[8]试验结果对比

    Figure  4.  Comparison between finite element result and experimental result in reference[8]

    图  5  有限元结果与文献[24]试验结果对比

    Figure  5.  Comparison between finite element results and experimental results in reference [24]

    图  6  不同埋深比下强轴节点的荷载-位移曲线(S1~S8)

    Figure  6.  Load-displacement curves of joints bending around strong axis under different buried depth ratios(S1-S8)

    图  7  埋深比对强轴节点承载力的影响(S1~S8)

    Figure  7.  Effect of buried depth ratio on bearing capacities of joints bending around strong axis(S1-S8)

    图  8  不同埋深比下弱轴节点的荷载-位移曲线(W1~W5)

    Figure  8.  Load-displacement curves of joints bending around weak axis under different buried depth ratios (W1-W5)

    图  9  埋深比对弱轴节点承载力的影响(W1~W5)

    Figure  9.  Effect of buried depth ratio on bearing capacities of joints bending around weak axis (W1-W5)

    图  10  桥台厚度对强轴节点承载力的影响(S2、S9~S11)

    Figure  10.  Effect of abutment thickness on bearing capacities of joints bending around strong axis (S2, S9-S11)

    图  11  混凝土强度等级对节点承载力的影响

    Figure  11.  Effect of concrete strength grade on bearing capacities of joints

    图  12  钢材强度对节点承载力的影响

    Figure  12.  Effect of steel strength on bearing capacities of joints

    图  13  轴压比对节点承载力的影响

    Figure  13.  Effect of axial load ratios on bearing capacities of joints

    图  14  钢桩和混凝土接触面应力云图

    Figure  14.  Stress nephogram of interface between steel pile and abutment concrete

    图  15  节点受弯力学模型

    Figure  15.  Bending mechanical models of joint

    图  16  下侧受压区高度系数的确定

    Figure  16.  Determination of coefficient of downside compression height

    图  17  桥台混凝土受拉损伤云图

    Figure  17.  Tensile damage nephogram of abutment concrete

    图  18  假定的冲切体模型

    Figure  18.  Suggested model of concrete block rupture

    图  19  承载力计算方法验证

    Figure  19.  Verification of bearing capacity calculating method

    表  1  计算结果与试验结果对比

    Table  1.   Comparison of calculating results and experimental results

    对比项目 屈服位移/mm 屈服荷载/kN 极限荷载/kN
    文献[8]试件1试验值/有限元值 22.05/17.75 25.96/25.62 31.70/32.36
    文献[24]试件S试验值/有限元值 16.32/18.33 13.66/13.92 15.82/16.18
    文献[24]试件MW试验值/有限元值 28.20/32.22 12.16/11.49 15.05/15.55
    下载: 导出CSV

    表  2  节点参数设计

    Table  2.   Parameter design of joints

    节点编号 桥台混凝土 桥台厚度/mm 钢桩钢材 埋深比 轴压比
    S1~S8 C30 400 Q345 1.0/1.2/1.4/1.5/1.6/2.0/2.5/3.0 0
    S9~S11 C30 250/300/350 Q345 1.5 0
    S12~S17 C35/C40/C45 400 Q345 1.0/2.5 0
    S18~S21 C30 400 Q390/Q420 1.0/2.5 0
    S22~S33 C30 250/400 Q345 1.0/1.5/2.5 0.1/0.2/0.3/0.4
    W1~W5 C30 400 Q345 1.0/1.5/2.0/2.5/3.0 0
    W6~W11 C35/C40/C45 400 Q345 1.0/2.5 0
    W12~W15 C30 400 Q390/Q420 1.0/2.5 0
    W16~W19 C30 400 Q345 2.5 0.1/0.2/0.3/0.4
    下载: 导出CSV

    表  3  不同埋深比下绕强轴弯曲节点破坏模式对比(S1、S4、S6~S8)

    Table  3.   Comparison of failure modes of joints bending around strong axis under different buried depth ratios (S1, S4, S6-S8)

    表  4  不同埋深比下绕弱轴弯曲节点破坏模式对比(W1~W5)

    Table  4.   Comparison of failure modes of joints bending around weak axis under different buried depth ratios (W1-W5)

    表  5  绕强轴弯曲节点不同桥台厚度时破坏模式对比(S2、S9~S11)

    Table  5.   Comparison of failure modes of joints bending around strong axis under different abutment thicknesses(S2, S9-S11)

    表  6  等效系数取值

    Table  6.   Values of equivalent coefficients

    混凝土强度等级 C50及以下 C55 C60 C65 C70 C75 C80
    β1 0.824 0.821 0.819 0.817 0.814 0.812 0.810
    β2 0.808 0.806 0.804 0.801 0.799 0.796 0.794
    γ1 0.969 0.968 0.967 0.965 0.964 0.962 0.961
    γ2 0.960 0.958 0.957 0.955 0.953 0.951 0.949
    下载: 导出CSV
  • [1] 黄福云, 庄一舟, 付毳, 等. 无伸缩缝梁桥抗震性能与设计计算方法研究[J]. 地震工程与工程振动, 2015, 35(5): 15-22. doi: 10.13197/j.eeev.2015.05.15.huangfy.003

    HUANG Fu-yun, ZHUANG Yi-zhou, FU Cui, et al. Review on the seismic performance and simplified design method of jointless bridge[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(5): 15-22. (in Chinese) doi: 10.13197/j.eeev.2015.05.15.huangfy.003
    [2] DICLELI M, ERHAN S. Low cycle fatigue effects in integral bridge steel H-piles under seismic displacement reversals[J]. Bridge Structures, 2013, 9(4): 185-190. doi: 10.3233/BRS-130064
    [3] WHITE H L. Integral abutment bridges: comparison of current practice between European countries and the United States of America[R]. New York: New York State Department of Transportation, 2007.
    [4] HOLLOWAY K P. Illinois integral abutment bridges: behavior under extreme thermal loading and design recommendations[D]. Urbana: University of Illinois at Urbana-Champaign, 2012.
    [5] TEGUH M, DUFFIELD C F, MENDIS P, et al. Seismic performance of pile-to-pile cap connections: an investigation of design issues[J]. Electronic Journal of Structural Engineering, 2006, 6(1): 8-18.
    [6] IEKEL P P, PHARES B, NOP M. Performance investigation and design of pile-to-pile cap connections subject to uplift[J]. Transportation Research Record, 2018, 2672(52): 278-290. doi: 10.1177/0361198118796733
    [7] AHN J H, YOON J H, KIM J H, et al. Evaluation on the behavior of abutment-pile connection in integral abutment bridge[J]. Journal of Constructional Steel Research, 2011, 67(7): 1134-1148. doi: 10.1016/j.jcsr.2011.02.007
    [8] MIRREZAEI S S, BARGHIAN M, GHAFFARZADEH H, et al. Retrofitting of steel pile-abutment connections of integral bridges using CFRP[J]. Structural Engineering and Mechanics, 2016, 59(2): 209-226. doi: 10.12989/sem.2016.59.2.209
    [9] 齐朝阳. 整体式桥台-桩节点抗震性能试验研究[D]. 天津: 天津大学, 2017.

    QI Zhao-yang. Experimental research on seismic behavior of integral abutment-pile joint[D]. Tianjin: Tianjin University, 2017. (in Chinese)
    [10] LEE J, KIM W S, KIM K, et al. Strengthened and flexible pile-to-pile cap connections for integral abutment bridges[J]. Steel and Composite Structures, 2016, 20(4): 731-748. doi: 10.12989/scs.2016.20.4.731
    [11] 黄福云, 陈伟, 徐普, 等. 整体式桥台-H形钢桩-土体系抗震性能试验[J]. 中国公路学报, 2020, 33(9): 180-192. doi: 10.3969/j.issn.1001-7372.2020.09.018

    HUANG Fu-yun, CHEN Wei, XU Pu, et al. Experimental on seismic performance of integral abutment-steel H-pile-soil system[J]. China Journal of Highway and Transport, 2020, 33(9): 180-192. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.09.018
    [12] HUANG Fu-yun, SHAN Yu-lin, CHEN Guo-dong, et al. Experiment on interaction of abutment, steel H-pile and soil in integral abutment jointless bridges (IAJBs) under low-cycle pseudo-static displacement loads[J]. Applied Sciences, 2020, 10(4): 1358. doi: 10.3390/app10041358
    [13] 黄福云, 林友炜, 程俊峰, 等. 整体式桥台-H形钢桩-土相互作用低周往复拟静力试验[J]. 中国公路学报, 2019, 32(5): 100-114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905011.htm

    HUANG Fu-yun, LIN You-wei, CHENG Jun-feng, et al. Interaction of integral abutment-H-shaped steel pile-soil under reciprocating low-cycle pseudo-static test[J]. China Journal of Highway and Transport, 2019, 32(5): 100-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905011.htm
    [14] 黄福云, 单玉麟, 薛俊青, 等. 整体式桥台H形钢桩基受力性能试验研究[J]. 东南大学学报(自然科学版), 2021, 51(6): 949-957. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202106005.htm

    HUANG Fu-yun, SHAN Yu-lin, XUE Jun-qing, et al. Experimental study on mechanical behaviors of steel H-pile in integral abutment jointless bridges[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(6): 949-957. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202106005.htm
    [15] 黄福云, 张峰, 单玉麟, 等. 整体式桥台-桩基-土相互作用内力计算方法研究[J]. 中国公路学报, 2021, 34(6): 69-79. doi: 10.3969/j.issn.1001-7372.2021.06.008

    HUANG Fu-yun, ZHANG Feng, SHAN Yu-lin, et al. Calculation method of internal force of integral abutment pile foundation-soil interaction[J]. China Journal of Highway and Transport, 2021, 34(6): 69-79. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.06.008
    [16] 黄福云, 单玉麟, 何凌峰, 等. 整体式桥台-H形钢桩基-土相互作用水平变形机理研究[J]. 中国公路学报, 2022, 35(5): 84-94. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202205008.htm

    HUANG Fu-yun, SHAN Yu-lin, HE Ling-feng, et al. Horizontal deformation mechanism of soil-steel H-pile interaction in integral abutment jointless bridges (IAJBs)[J]. China Journal of Highway and Transport, 2022, 35(5): 84-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202205008.htm
    [17] SALMAN N N, ISSA M A. Displacement capacities of H-piles in integral abutment bridges[J]. Journal of Bridge Engineering, 2019, 24(12): 04019122. doi: 10.1061/(ASCE)BE.1943-5592.0001482
    [18] VASHEGHANI-FARAHANI R, ZHAO Q, BURDETTE E G. Seismic analysis of integral abutment bridge in Tennessee, including soil-structure interaction[J]. Transportation Research Record, 2010, 2201(1): 70-79. doi: 10.3141/2201-09
    [19] 王威. 冲刷裸露H型钢桩—混凝土承台边节点抗震性能研究[D]. 徐州: 中国矿业大学, 2016.

    WANG Wei. Seismic performance of scoured steel H-pile to concrete cap edge connections[D]. Xuzhou: China University of Mining and Technology, 2016. (in Chinese)
    [20] XIAO Y, WU H, YAPRAK T T, et al. Experimental studies on seismic behavior of steel pile-to-pile-cap connections[J]. Journal of Bridge Engineering, 2006, 11(2): 151-159. doi: 10.1061/(ASCE)1084-0702(2006)11:2(151)
    [21] SHAMA A A, MANDER J B, AREF A J. Seismic performance and retrofit of steel pile to concrete cap connections[J]. ACI Structural Journal, 2002, 99(1): 51-61.
    [22] SHAMA A A, MANDER J B, CHEN S S. Seismic investigation of steel pile bents: Ⅱ. Retrofit and vulnerability analysis[J]. Earthquake Spectra, 2002, 18(1): 143-160.
    [23] 陈林. H型钢桩与桩承台连接性能研究[D]. 长沙: 湖南大学, 2010.

    CHEN Lin. Experimentalresearch on steel H-pile-to-pile-cap connections[D]. Changsha: Hunan University, 2010. (in Chinese)
    [24] XIAO Y, CHEN L. Behavior of model steel H-pile-to-pile-cap connections[J]. Journal of Constructional Steel Research, 2013, 80: 153-162.
    [25] GUNER S, CHILUWAL S. Cyclic load behavior of helical pile-to-pile cap connections subjected to uplift loads[J]. Engineering Structures, 2021, 243(1): 112667.
    [26] ABENDROTH R E, GREIMANN L F. Field testing of integral abutments[R]. Ames: Iowa Department of Transportation, 2005.
    [27] QUINN B H, CIVJAN S A. Parametric study on effects of pile orientation in integral abutment bridges[J]. Journal of Bridge Engineering, 2017, 22(4): 04016132.
    [28] KENT D C, PARK R. Flexural members with confined concrete[J]. Journal of the Structural Division, 1971, 97(7): 1969-1990.
    [29] MATTOCK A H, GAAFAR G H. Strength of embedded steel sections as brackets[J]. Journal Proceedings, 1982, 79(2): 83-93.
    [30] HAWKINS N M. The bearing strength of concrete for strip loadings[J]. Magazine of Concrete Research, 1970, 22(71): 87-98.
  • 加载中
图(19) / 表(6)
计量
  • 文章访问数:  510
  • HTML全文浏览量:  187
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-09
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回