留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波形钢腹板-钢管混凝土桁式弦杆组合梁桥疲劳性能

陈康明 黄汉辉 吴庆雄 陈宝春

陈康明, 黄汉辉, 吴庆雄, 陈宝春. 波形钢腹板-钢管混凝土桁式弦杆组合梁桥疲劳性能[J]. 交通运输工程学报, 2022, 22(5): 200-216. doi: 10.19818/j.cnki.1671-1637.2022.05.012
引用本文: 陈康明, 黄汉辉, 吴庆雄, 陈宝春. 波形钢腹板-钢管混凝土桁式弦杆组合梁桥疲劳性能[J]. 交通运输工程学报, 2022, 22(5): 200-216. doi: 10.19818/j.cnki.1671-1637.2022.05.012
CHEN Kang-ming, HUANG Han-hui, WU Qing-xiong, CHEN Bao-chun. Fatigue performance of composite girder bridge with corrugated steel webs-concrete filled steel tubular truss chords[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 200-216. doi: 10.19818/j.cnki.1671-1637.2022.05.012
Citation: CHEN Kang-ming, HUANG Han-hui, WU Qing-xiong, CHEN Bao-chun. Fatigue performance of composite girder bridge with corrugated steel webs-concrete filled steel tubular truss chords[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 200-216. doi: 10.19818/j.cnki.1671-1637.2022.05.012

波形钢腹板-钢管混凝土桁式弦杆组合梁桥疲劳性能

doi: 10.19818/j.cnki.1671-1637.2022.05.012
基金项目: 

国家重点研发计划 2017YFE0130300

国家自然科学基金项目 52078137

福建省自然科学基金项目 2019J06009

详细信息
    作者简介:

    陈康明(1985-),男,福建霞浦人,福州大学副研究员,工学博士,从事组合结构与钢结构桥梁研究

    通讯作者:

    吴庆雄(1973-),男,福建南靖人,福州大学研究员,工学博士

  • 中图分类号: U441.4

Fatigue performance of composite girder bridge with corrugated steel webs-concrete filled steel tubular truss chords

Funds: 

National Key Research and Development Program of China 2017YFE0130300

National Natural Science Foundation of China 52078137

Natural Science Foundation of Fujian Province 2019J06009

More Information
  • 摘要: 为研究波形钢腹板-钢管混凝土桁式弦杆组合梁的热点应力分布规律、疲劳性能演化和疲劳破坏形式,开展了波形钢腹板-钢管混凝土(CSW-CFST)桁式弦杆组合梁和波形钢腹板-钢管(CSW-ST)桁式弦杆组合梁疲劳性能试验和有限元分析;研究了CSW-CFST和CSW-ST桁式弦杆组合梁疲劳性能的异同,分析了弦杆内混凝土改善组合梁疲劳性能的本质原因,探讨了CSW-CFST桁式弦杆组合梁疲劳寿命的评价方法,并将采用美国石油协会(API)、国际管结构发展与研究委员会(CIDECT)和挪威船级社(DNV)设计标准所得CSW-CFST桁式弦杆组合的梁疲劳寿命分别与试验结果进行了对比。研究结果表明:采用线性外推方式得到的CSW-CFST桁式弦杆组合梁热点应力为二次外推方式所得的1.036倍,偏安全角度考虑,CSW-CFST桁式弦杆组合梁热点应力宜采用线性外推求解;组合梁斜腹板段热点应力明显大于直腹板段,最大热点应力出现在斜腹板与圆弧过渡段相交处,相较于CSW-ST桁式弦杆组合梁,弦杆内混凝土能使CSW-CFST桁式弦杆组合梁热点应力下降26.8%,但热点应力分布规律不变;建议将疲劳裂缝萌生时刻对应的反复加载次数定义为CSW-CFST桁式弦杆组合梁的疲劳寿命;弦杆内混凝土能够延缓疲劳裂缝沿壁厚和长度方向的扩展速度,可使CSW-CFST桁式弦杆组合梁的疲劳寿命提高61.5%,但不改变组合梁的疲劳破坏模式和疲劳裂缝类型;采用DNV所得CSW-CFST桁式弦杆组合的梁疲劳寿命与试验结果间的误差最小,不超过26.4%,建议采用DNV给出的钢管相贯节点疲劳设计应力(S)-疲劳寿命(N)曲线初步计算CSW-CFST桁式弦杆组合梁的疲劳寿命。

     

  • 图  1  试验模型总体布置(单位:mm)

    Figure  1.  General layout of test model (unit: mm)

    图  2  疲劳性能试验加载

    Figure  2.  Loading of fatigue performance test

    图  3  实桥有限元模型

    Figure  3.  Finite element model of actual bridge

    图  4  梯度应变片

    Figure  4.  Gradient strain gauges

    图  5  测点布设

    Figure  5.  Layout of measuring points

    图  6  初始缺陷检测结果

    Figure  6.  Initial imperfection detection results

    图  7  热点应力外推方式对比

    Figure  7.  Comparison of extrapolation methods for hot-spot stress

    图  8  热点应力分布规律对比

    Figure  8.  Comparison of hot-spot stress distribution laws

    图  9  相同位置热点应力对比

    Figure  9.  Comparison of hot-spot stresses in same position

    图  10  测点XL3疲劳加载次数-应变曲线

    Figure  10.  Fatigue loading number-strain curves of measuring point XL3

    图  11  测点XR3疲劳加载次数-应变曲线

    Figure  11.  Fatigue loading number-strain curves of measuring point XR3

    图  12  疲劳加载次数-位移曲线

    Figure  12.  Fatigue loading number-displacement curves

    图  13  测点XL3疲劳加载次数-动应变曲线

    Figure  13.  Fatigue loading number-dynamic strain curves of measuring point XL3

    图  14  测点XR3疲劳加载次数-动应变曲线

    Figure  14.  Fatigue loading number-dynamic strain curves of measuring point XR3

    图  15  疲劳裂缝扩展过程曲线

    Figure  15.  Curves of fatigue crack propagation process

    图  16  疲劳裂缝扩展示意

    Figure  16.  Schematics of fatigue crack propagations

    图  17  疲劳破坏模式对比

    Figure  17.  Comparison of fatigue failure modes

    图  18  网格划分

    Figure  18.  Mesh generation

    图  19  接触方式对比

    Figure  19.  Comparison of contact methods

    图  20  网格无关性分析

    Figure  20.  Mesh independence check

    图  21  荷载-位移曲线对比

    Figure  21.  Comparison of load-displacement curves

    图  22  热点应力对比

    Figure  22.  Comparison of hot-spot stresses

    图  23  特征位置示意

    Figure  23.  Schematics of feature positions

    图  24  焊缝区域热点应力分布规律

    Figure  24.  Hot-spot stress distribution laws in welding area

    图  25  波形钢腹板变形示意

    Figure  25.  Schematic of deformation of corrugated steel web

    图  26  焊缝区域热点应力包络

    Figure  26.  Envelopes of hot-spot stress in welding area

    图  27  弦杆内混凝土作用机理

    Figure  27.  Working mechanism of concrete filled in chord

    图  28  热点应力云图对比

    Figure  28.  Comparison of hot-spot stress nephograms

    图  29  弦杆与波形钢腹板焊接疲劳细节

    Figure  29.  Welding fatigue details between chord and corrugated steel web

    图  30  钢管节点焊接疲劳细节

    Figure  30.  Welding fatigue details between joint of steel tubes

    图  31  S-N曲线对比

    Figure  31.  Comparison of S-N curves

    表  1  波形钢腹板规格

    Table  1.   Detailed dimensions of corrugated steel web

    参数 板厚/ mm 弯折角度/ (°) 波长/ mm 波高/ mm 弯折半径/ mm
    参数值 4 31 320 44 60
    下载: 导出CSV

    表  2  钢材力学性能参数

    Table  2.   Mechanical property parameters of steel

    类型 fy/MPa fu/MPa Es/GPa μs
    弦杆 348 491 204 0.3
    K撑 361 457 203 0.3
    横撑 349 482 199 0.3
    平联 355 468 203 0.3
    下载: 导出CSV

    表  3  混凝土力学性能参数

    Table  3.   Mechanical property parameters of concrete

    参数 fck/MPa fcd/MPa Ec/MPa μc
    参数值 34.7 26.2 3.52×104 0.2
    下载: 导出CSV

    表  4  有限元模型校核结果

    Table  4.   Verified results for finite element model

    部位 杆系模型应力/ MPa 文献[20]实测应力/MPa 误差/%
    弦杆 173.20 164.50 5.3
    波形钢腹板 25.87 27.76 -6.8
    混凝土桥面板 -6.86 -6.32 8.5
    下载: 导出CSV

    表  5  插值区间

    Table  5.   Interpolation intervals

    插值区间 弦杆侧/mm 波形钢腹板侧/mm
    Lr, min 4.0 4.0
    Lr, max 10.0 14.0
    下载: 导出CSV

    表  6  疲劳寿命实测值与计算值对比

    Table  6.   Comparison of fatigue lifes obtained by test and calculation

    计算依据 CSW-CFST桁式弦杆组合梁 CSW-ST桁式弦杆组合梁
    Ncc/万次 Nct/万次 Ncc/Nct Nsc/万次 Nst/万次 Nsc/Nst
    CIDECT 756.3 204.5 3.698 274.5 126.6 2.168
    API 168.9 0.826 52.6 0.415
    DNV 258.4 1.264 101.4 0.801
    下载: 导出CSV
  • [1] HUANG Wen-jin, FENU L, CHEN Bao-chun, et al. Experimental study on joint resistance and failure modes of concrete filled steel tubular (CFST) truss girders[J]. Journal of Constructional Steel Research, 2018, 141: 241-250. doi: 10.1016/j.jcsr.2017.10.020
    [2] CHEN Yi-yan, DONG Ju-can, XU Tian-hua. Composite box girder with corrugated steel webs and trusses—a new type of bridge structure[J]. Engineering Structures, 2018, 166: 354-362. doi: 10.1016/j.engstruct.2018.03.047
    [3] CHEN Juan, CHEN Ju, JIN Wei-liang. Experiment investigation of stress concentration factor of concrete-filled tubular T joints[J]. Journal of Constructional Steel Research, 2010, 66(12): 1510-1515. doi: 10.1016/j.jcsr.2010.06.004
    [4] TONG Le-wei, XU Guo-wen, ZHAO Xiao-ling, et al. Experimental and theoretical studies on reducing hot spot stress on CHS gap K-joints with CFRP strengthening[J]. Engineering Structures, 2019, 201: 109827. doi: 10.1016/j.engstruct.2019.109827
    [5] JIN Deng-yi-ding, HOU Chao, SHEN Lu-ming, et al. Numerical investigation of demountable CFST K-joints using blind bolts[J]. Journal of Constructional Steel Research, 2019, 160: 428-443. doi: 10.1016/j.jcsr.2019.05.046
    [6] MUSA I A, MASHIRI F R. Stress concentration factor in concrete-filled steel tubular K-joints under balanced axial load[J]. Thin-Walled Structures, 2019, 139: 186-195. doi: 10.1016/j.tws.2019.03.003
    [7] XU Fei, CHEN Ju, JIN Wei-liang. Experimental investigation of SCF distribution for thin-walled concrete-filled CHS joints under axial tension loading[J]. Thin-Walled Structures, 2015, 93: 149-157. doi: 10.1016/j.tws.2015.03.019
    [8] MUSA I A, MASHIRI F R, ZHU Xin-qun. Parametric study and equation of the maximum SCF for concrete filled steel tubular T-joints under axial tension[J]. Thin-Walled Structures, 2018, 129: 145-156. doi: 10.1016/j.tws.2018.04.001
    [9] 王柯. 圆管-圆管混凝T型焊接节点热点应力和疲劳强度研究[D]. 上海: 同济大学, 2008.

    WANG Ke. Research on hot spot stress and fatigue strength of welded T-joints with a CHS brace and CFCHS chord[D]. Shanghai: Tongji University, 2008. (in Chinese)
    [10] WANG Ke, TONG Le-wei, ZHU Jun, et al. Fatigue behavior of welded T-joints with a CHS brace and CFCHS chord under axial loading in the brace[J]. Journal of Bridge Engineering, 2013, 18(2): 142-152. doi: 10.1061/(ASCE)BE.1943-5592.0000331
    [11] WEI Xing, WEN Zong-yi, XIAO Lin, et al. Review of fatigue assessment approaches for tubular joints in CFST trusses[J]. International Journal of Fatigue, 2018, 113: 43-53. doi: 10.1016/j.ijfatigue.2018.04.007
    [12] ZHENG Jian, NAKAMURA S, OKUMATSU T, et al. Formulation of stress concentration factors for concrete-filled steel tubular (CFST) K-joints under three loading conditions without shear forces[J]. Engineering Structures, 2019, 190: 90-100. doi: 10.1016/j.engstruct.2019.04.017
    [13] ZHENG Jian, NAKAMURA S, GE Ya-jing, et al. Extended formulation of stress concentration factors for CFST T-joints[J]. Journal of Bridge Engineering, 2020, 25(1): 06019006. doi: 10.1061/(ASCE)BE.1943-5592.0001502
    [14] 吴庆雄, 黄汉辉, 陈康明, 等. 钢管混凝土K形节点足尺模型疲劳性能试验[J]. 建筑结构学报, 2020, 41(10): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202010012.htm

    WU Qing-xiong, HUANG Han-hui, CHEN Kang-ming, et al. Fatigue performance experiment of full-scale model of concrete-filled steel tubular K-joint[J]. Journal of Building Structures, 2020, 41(10): 102-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202010012.htm
    [15] 陈康明, 黄汉辉, 吴庆雄, 等. 基于钢管K型节点刚度的应力集中系数计算方法[J]. 建筑结构学报, 2020, 41(4): 42-50, 118. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202004005.htm

    CHEN Kang-ming, HUANG Han-hui, WU Qing-xiong, et al. Stress concentration factor calculating method based on circular hollow section K-joint stiffness[J]. Journal of Building Structures, 2020, 41(4): 42-50, 118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202004005.htm
    [16] TONG Le-wei, CHEN Ke-ping, XU Guo-wen, et al. Formulae for hot-spot stress concentration factors of concrete-filled CHS T-joints based on experiments and FE analysis[J]. Thin-Walled Structures, 2019, 136: 113-128. doi: 10.1016/j.tws.2018.12.013
    [17] CHEN Yi-yan, DONG Ju-can, XU Tian-hua, et al. The shear- lag effect of composite box girder bridges with corrugated steel webs and trusses[J]. Engineering Structures, 2019, 181: 617-628. doi: 10.1016/j.engstruct.2018.12.048
    [18] 王程伟. 波形钢腹板-钢管混凝土桁式弦杆连续梁抗弯性能研究[D]. 福州: 福州大学, 2017.

    WANG Cheng-wei. Research on the bending behavior of CSW-CFST truss-chord continuous girder[D]. Fuzhou: Fuzhou University, 2017. (in Chinese)
    [19] 潘应志. 车辆荷载作用下波形钢腹板-钢管混凝土组合梁轻型桥受力性能研究[D]. 福州: 福州大学, 2020.

    PAN Ying-zhi. Study on mechanical behavior of composite beam bridge with corrugated steel webs and concrete filled steel tube under vehicle load[D]. Fuzhou: Fuzhou University, 2020. (in Chinese)
    [20] 黄金燕. 波形钢腹板-钢管混凝土组合梁弯扭性能试验研究[D]. 福州: 福州大学, 2019.

    HUANG Jin-yan. Research on bending and torsion behavior of composite beams with corrugated steel web[D]. Fuzhou: Fuzhou University, 2019. (in Chinese)
    [21] HUANG Han-hui, CHEN Kang-ming, WU Qing-xiong, et al. Calculation method for the torsional bearing capacity of composite girders with CSW-CFST truss chords[J]. Engineering Structures, 2022, 269: 114830. doi: 10.1016/j.engstruct.2022.114830
    [22] 彭鲲, 李立峰, 肖小艳, 等. 波形钢腹板组合箱梁疲劳性能试验与理论分析[J]. 中国公路学报, 2013, 26(4): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201304012.htm

    PENG Kun, LI Li-feng, XIAO Xiao-yan, et al. Experimental and theoretical analysis on fatigue performance of composite box girder with corrugated steel webs[J]. China Journal of Highway and Transport, 2013, 26(4): 94-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201304012.htm
    [23] 董桔灿. 波形钢腹板-桁式弦杆组合箱梁桥受力性能研究[D]. 福州: 福州大学, 2017.

    DONG Ju-can. Research on mechanical performance of composite box-girder bridges with corrugated steel web and truss chords[D]. Fuzhou: Fuzhou University, 2017. (in Chinese)
    [24] 吴庆雄, 黄汉辉, 陈康明, 等. 钢管K形节点足尺模型疲劳性能试验研究[J]. 建筑结构学报, 2020, 41(5): 157-167. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202010012.htm

    WU Qing-xiong, HUANG Han-hui, CHEN Kang-ming, et al. Experimental study on fatigue performance of full-scale circular hollow section K-joint[J]. Journal of Building Structures, 2020, 41(5): 157-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202010012.htm
    [25] CHEN Kang-ming, HUANG Han-hui, WU Qing-xiong, et al. Experimental and finite element analysis research on the fatigue performance of CHS K-joints[J]. Engineering Structures, 2019, 197: 109365. doi: 10.1016/j.engstruct.2019.109365
    [26] PACKER J, WARDENIER J, ZHAO Xiao-ling, et al. Design guide for circular and rectangular hollow section joints under fatigue loading[R]. Berlin: Comité International pour le Développement et l'Etude de la Construction Tubulaire, 2009.
    [27] WANG Zhi-yu, WANG Qing-yuan. Fatigue assessment of welds joining corrugated steel webs to flange plates[J]. Engineering Structures, 2014, 73: 1-12. doi: 10.1016/j.engstruct.2014.04.041
    [28] 朱俊. 圆钢管混凝土T型焊接节点疲劳性能研究[D]. 上海: 同济大学, 2007.

    ZHU Jun. Fatigue behaviour of welded T-joints of concrete filled circular hollow sections[D]. Shanghai: Tongji University, 2007. (in Chinese)
    [29] DONG Ju-can, CHEN Yi-yan, WU Qing-xiong, et al. Research on flexural behavior of composite box continuous girder with corrugated steel webs and trusses[J]. Advances in Structural Engineering, 2021, 24(15): 3580-3593. doi: 10.1177/13694332211033957
    [30] American Petroleum Institute. Recommended practice for planning, designing, and constructing fixed offshore platforms working stress design[R]. Washington DC: American Petroleum Institute, 2002.
    [31] 董桔灿, 吴庆雄, 陈康明, 等. 波形钢腹板(钢腹杆)-混凝土组合箱抗扭承载力试验与计算[J]. 工程力学, 2016, 33(11): 220-230.

    DONG Ju-can, WU Qing-xiong, CHEN Kang-ming, et al. Experiment and calculation on torsion bearing capacity of concrete composite box section with corrugated steel webs and steel truss webs[J]. Engineering Mechanics, 2016, 33(11): 220-230. (in Chinese)
    [32] 尧国皇. 钢管混凝土构件在复杂受力状态下的工作机理研究[D]. 福州: 福州大学, 2006.

    YAO Guo-huang. Research on behavior of concrete-filled steel tubes under complicated loading states[D]. Fuzhou: Fuzhou University, 2006. (in Chinese)
    [33] Det Norske Veritas. Recommended practice DNV-RP-C203: fatigue design of offshore steel structures[R]. Oslo: Det Norske Veritas, 2010.
  • 加载中
图(31) / 表(6)
计量
  • 文章访问数:  484
  • HTML全文浏览量:  142
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回