Fatigue performance of composite girder bridge with corrugated steel webs-concrete filled steel tubular truss chords
-
摘要: 为研究波形钢腹板-钢管混凝土桁式弦杆组合梁的热点应力分布规律、疲劳性能演化和疲劳破坏形式,开展了波形钢腹板-钢管混凝土(CSW-CFST)桁式弦杆组合梁和波形钢腹板-钢管(CSW-ST)桁式弦杆组合梁疲劳性能试验和有限元分析;研究了CSW-CFST和CSW-ST桁式弦杆组合梁疲劳性能的异同,分析了弦杆内混凝土改善组合梁疲劳性能的本质原因,探讨了CSW-CFST桁式弦杆组合梁疲劳寿命的评价方法,并将采用美国石油协会(API)、国际管结构发展与研究委员会(CIDECT)和挪威船级社(DNV)设计标准所得CSW-CFST桁式弦杆组合的梁疲劳寿命分别与试验结果进行了对比。研究结果表明:采用线性外推方式得到的CSW-CFST桁式弦杆组合梁热点应力为二次外推方式所得的1.036倍,偏安全角度考虑,CSW-CFST桁式弦杆组合梁热点应力宜采用线性外推求解;组合梁斜腹板段热点应力明显大于直腹板段,最大热点应力出现在斜腹板与圆弧过渡段相交处,相较于CSW-ST桁式弦杆组合梁,弦杆内混凝土能使CSW-CFST桁式弦杆组合梁热点应力下降26.8%,但热点应力分布规律不变;建议将疲劳裂缝萌生时刻对应的反复加载次数定义为CSW-CFST桁式弦杆组合梁的疲劳寿命;弦杆内混凝土能够延缓疲劳裂缝沿壁厚和长度方向的扩展速度,可使CSW-CFST桁式弦杆组合梁的疲劳寿命提高61.5%,但不改变组合梁的疲劳破坏模式和疲劳裂缝类型;采用DNV所得CSW-CFST桁式弦杆组合的梁疲劳寿命与试验结果间的误差最小,不超过26.4%,建议采用DNV给出的钢管相贯节点疲劳设计应力(S)-疲劳寿命(N)曲线初步计算CSW-CFST桁式弦杆组合梁的疲劳寿命。Abstract: To study the distribution laws of hot-spot stress, fatigue performance evolution, and fatigue failure mode of the composite girder with corrugated steel webs-concrete filled steel tubular (CSW-CFST) truss chords, the fatigue performance test and finite element analysis on the composite girder with CSW-CFST truss chords and the composite girder with corrugated steel webs-steel tubular (CSW-ST) truss chords were carried out separately. The differences and similarites between the fatigue performance between composite girders with CSW-CFST truss chords and CSW-ST truss chords were explored. The essential reason for the improved fatigue performance of the composite girder with concrete-filled chords was analyzed, and the evaluation method for the fatigue life of the composite girder with CSW-CFST truss chords was discussed. Moreover, the test result was compared with the calculated fatigue life for the composite girder with CSW-CFST truss chords according to the design standards of the American Petroleum Institute (API), Comité International pour le Développement et l'Etude de la Construction Tubulaire (CIDECT), and Det Norske Veritas (DNV) separately. Research results show that the hot-spot stress of the composite girder with CSW-CFST truss chords acquired by the linear extrapolation is 1.036 times that acquired by the quadratic extrapolation. Therefore, For safety, the hot-spot stress of the composite girder with CSW-CFST truss chords shall be acquired by the linear extrapolation. The hot-spot stress is significantly larger in the inclined web segment than that in the straight web segment, and the maximum hot-spot stress is distributed near the intersection of the inclined web and the arc transition segment. Compared with the situation of the composite girder with CSW-ST truss chords, the hot-spot stress of the composite girder with CSW-CFST truss chords can be reduced by 26.8% by concrete-filled chords, but the distribution laws of hot-spot stress remain changed. It is recommended that the repeated loading times at the initial moment of the fatigue crack should be defined as the fatigue life of the composite girder with CSW-CFST truss chords. The concrete-filled chords can delay the fatigue crack propagation rate along the directions of the thickness and length of chords, and can improve the fatigue life of the composite girder with CSW-CFST truss chords by 61.5%, with the fatigue failure mode and fatigue crack type of the composite girder unchanged. The minimum difference between the test result and the calculated fatigue life of the composite girder with CSW-CFST truss chords by DNV is achieved, which is less than 26.4%. Thus, it is recommended that the fatigue design stress (S)-fatigue life (N) curve of steel tubular intersecting joints provided by DNV should be adopted to preliminarily calculate the fatigue life of the composite girder with CSW-CFST truss chords.
-
表 1 波形钢腹板规格
Table 1. Detailed dimensions of corrugated steel web
参数 板厚/ mm 弯折角度/ (°) 波长/ mm 波高/ mm 弯折半径/ mm 参数值 4 31 320 44 60 表 2 钢材力学性能参数
Table 2. Mechanical property parameters of steel
类型 fy/MPa fu/MPa Es/GPa μs 弦杆 348 491 204 0.3 K撑 361 457 203 0.3 横撑 349 482 199 0.3 平联 355 468 203 0.3 表 3 混凝土力学性能参数
Table 3. Mechanical property parameters of concrete
参数 fck/MPa fcd/MPa Ec/MPa μc 参数值 34.7 26.2 3.52×104 0.2 表 4 有限元模型校核结果
Table 4. Verified results for finite element model
部位 杆系模型应力/ MPa 文献[20]实测应力/MPa 误差/% 弦杆 173.20 164.50 5.3 波形钢腹板 25.87 27.76 -6.8 混凝土桥面板 -6.86 -6.32 8.5 表 5 插值区间
Table 5. Interpolation intervals
插值区间 弦杆侧/mm 波形钢腹板侧/mm Lr, min 4.0 4.0 Lr, max 10.0 14.0 表 6 疲劳寿命实测值与计算值对比
Table 6. Comparison of fatigue lifes obtained by test and calculation
计算依据 CSW-CFST桁式弦杆组合梁 CSW-ST桁式弦杆组合梁 Ncc/万次 Nct/万次 Ncc/Nct Nsc/万次 Nst/万次 Nsc/Nst CIDECT 756.3 204.5 3.698 274.5 126.6 2.168 API 168.9 0.826 52.6 0.415 DNV 258.4 1.264 101.4 0.801 -
[1] HUANG Wen-jin, FENU L, CHEN Bao-chun, et al. Experimental study on joint resistance and failure modes of concrete filled steel tubular (CFST) truss girders[J]. Journal of Constructional Steel Research, 2018, 141: 241-250. doi: 10.1016/j.jcsr.2017.10.020 [2] CHEN Yi-yan, DONG Ju-can, XU Tian-hua. Composite box girder with corrugated steel webs and trusses—a new type of bridge structure[J]. Engineering Structures, 2018, 166: 354-362. doi: 10.1016/j.engstruct.2018.03.047 [3] CHEN Juan, CHEN Ju, JIN Wei-liang. Experiment investigation of stress concentration factor of concrete-filled tubular T joints[J]. Journal of Constructional Steel Research, 2010, 66(12): 1510-1515. doi: 10.1016/j.jcsr.2010.06.004 [4] TONG Le-wei, XU Guo-wen, ZHAO Xiao-ling, et al. Experimental and theoretical studies on reducing hot spot stress on CHS gap K-joints with CFRP strengthening[J]. Engineering Structures, 2019, 201: 109827. doi: 10.1016/j.engstruct.2019.109827 [5] JIN Deng-yi-ding, HOU Chao, SHEN Lu-ming, et al. Numerical investigation of demountable CFST K-joints using blind bolts[J]. Journal of Constructional Steel Research, 2019, 160: 428-443. doi: 10.1016/j.jcsr.2019.05.046 [6] MUSA I A, MASHIRI F R. Stress concentration factor in concrete-filled steel tubular K-joints under balanced axial load[J]. Thin-Walled Structures, 2019, 139: 186-195. doi: 10.1016/j.tws.2019.03.003 [7] XU Fei, CHEN Ju, JIN Wei-liang. Experimental investigation of SCF distribution for thin-walled concrete-filled CHS joints under axial tension loading[J]. Thin-Walled Structures, 2015, 93: 149-157. doi: 10.1016/j.tws.2015.03.019 [8] MUSA I A, MASHIRI F R, ZHU Xin-qun. Parametric study and equation of the maximum SCF for concrete filled steel tubular T-joints under axial tension[J]. Thin-Walled Structures, 2018, 129: 145-156. doi: 10.1016/j.tws.2018.04.001 [9] 王柯. 圆管-圆管混凝T型焊接节点热点应力和疲劳强度研究[D]. 上海: 同济大学, 2008.WANG Ke. Research on hot spot stress and fatigue strength of welded T-joints with a CHS brace and CFCHS chord[D]. Shanghai: Tongji University, 2008. (in Chinese) [10] WANG Ke, TONG Le-wei, ZHU Jun, et al. Fatigue behavior of welded T-joints with a CHS brace and CFCHS chord under axial loading in the brace[J]. Journal of Bridge Engineering, 2013, 18(2): 142-152. doi: 10.1061/(ASCE)BE.1943-5592.0000331 [11] WEI Xing, WEN Zong-yi, XIAO Lin, et al. Review of fatigue assessment approaches for tubular joints in CFST trusses[J]. International Journal of Fatigue, 2018, 113: 43-53. doi: 10.1016/j.ijfatigue.2018.04.007 [12] ZHENG Jian, NAKAMURA S, OKUMATSU T, et al. Formulation of stress concentration factors for concrete-filled steel tubular (CFST) K-joints under three loading conditions without shear forces[J]. Engineering Structures, 2019, 190: 90-100. doi: 10.1016/j.engstruct.2019.04.017 [13] ZHENG Jian, NAKAMURA S, GE Ya-jing, et al. Extended formulation of stress concentration factors for CFST T-joints[J]. Journal of Bridge Engineering, 2020, 25(1): 06019006. doi: 10.1061/(ASCE)BE.1943-5592.0001502 [14] 吴庆雄, 黄汉辉, 陈康明, 等. 钢管混凝土K形节点足尺模型疲劳性能试验[J]. 建筑结构学报, 2020, 41(10): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202010012.htmWU Qing-xiong, HUANG Han-hui, CHEN Kang-ming, et al. Fatigue performance experiment of full-scale model of concrete-filled steel tubular K-joint[J]. Journal of Building Structures, 2020, 41(10): 102-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202010012.htm [15] 陈康明, 黄汉辉, 吴庆雄, 等. 基于钢管K型节点刚度的应力集中系数计算方法[J]. 建筑结构学报, 2020, 41(4): 42-50, 118. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202004005.htmCHEN Kang-ming, HUANG Han-hui, WU Qing-xiong, et al. Stress concentration factor calculating method based on circular hollow section K-joint stiffness[J]. Journal of Building Structures, 2020, 41(4): 42-50, 118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202004005.htm [16] TONG Le-wei, CHEN Ke-ping, XU Guo-wen, et al. Formulae for hot-spot stress concentration factors of concrete-filled CHS T-joints based on experiments and FE analysis[J]. Thin-Walled Structures, 2019, 136: 113-128. doi: 10.1016/j.tws.2018.12.013 [17] CHEN Yi-yan, DONG Ju-can, XU Tian-hua, et al. The shear- lag effect of composite box girder bridges with corrugated steel webs and trusses[J]. Engineering Structures, 2019, 181: 617-628. doi: 10.1016/j.engstruct.2018.12.048 [18] 王程伟. 波形钢腹板-钢管混凝土桁式弦杆连续梁抗弯性能研究[D]. 福州: 福州大学, 2017.WANG Cheng-wei. Research on the bending behavior of CSW-CFST truss-chord continuous girder[D]. Fuzhou: Fuzhou University, 2017. (in Chinese) [19] 潘应志. 车辆荷载作用下波形钢腹板-钢管混凝土组合梁轻型桥受力性能研究[D]. 福州: 福州大学, 2020.PAN Ying-zhi. Study on mechanical behavior of composite beam bridge with corrugated steel webs and concrete filled steel tube under vehicle load[D]. Fuzhou: Fuzhou University, 2020. (in Chinese) [20] 黄金燕. 波形钢腹板-钢管混凝土组合梁弯扭性能试验研究[D]. 福州: 福州大学, 2019.HUANG Jin-yan. Research on bending and torsion behavior of composite beams with corrugated steel web[D]. Fuzhou: Fuzhou University, 2019. (in Chinese) [21] HUANG Han-hui, CHEN Kang-ming, WU Qing-xiong, et al. Calculation method for the torsional bearing capacity of composite girders with CSW-CFST truss chords[J]. Engineering Structures, 2022, 269: 114830. doi: 10.1016/j.engstruct.2022.114830 [22] 彭鲲, 李立峰, 肖小艳, 等. 波形钢腹板组合箱梁疲劳性能试验与理论分析[J]. 中国公路学报, 2013, 26(4): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201304012.htmPENG Kun, LI Li-feng, XIAO Xiao-yan, et al. Experimental and theoretical analysis on fatigue performance of composite box girder with corrugated steel webs[J]. China Journal of Highway and Transport, 2013, 26(4): 94-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201304012.htm [23] 董桔灿. 波形钢腹板-桁式弦杆组合箱梁桥受力性能研究[D]. 福州: 福州大学, 2017.DONG Ju-can. Research on mechanical performance of composite box-girder bridges with corrugated steel web and truss chords[D]. Fuzhou: Fuzhou University, 2017. (in Chinese) [24] 吴庆雄, 黄汉辉, 陈康明, 等. 钢管K形节点足尺模型疲劳性能试验研究[J]. 建筑结构学报, 2020, 41(5): 157-167. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202010012.htmWU Qing-xiong, HUANG Han-hui, CHEN Kang-ming, et al. Experimental study on fatigue performance of full-scale circular hollow section K-joint[J]. Journal of Building Structures, 2020, 41(5): 157-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202010012.htm [25] CHEN Kang-ming, HUANG Han-hui, WU Qing-xiong, et al. Experimental and finite element analysis research on the fatigue performance of CHS K-joints[J]. Engineering Structures, 2019, 197: 109365. doi: 10.1016/j.engstruct.2019.109365 [26] PACKER J, WARDENIER J, ZHAO Xiao-ling, et al. Design guide for circular and rectangular hollow section joints under fatigue loading[R]. Berlin: Comité International pour le Développement et l'Etude de la Construction Tubulaire, 2009. [27] WANG Zhi-yu, WANG Qing-yuan. Fatigue assessment of welds joining corrugated steel webs to flange plates[J]. Engineering Structures, 2014, 73: 1-12. doi: 10.1016/j.engstruct.2014.04.041 [28] 朱俊. 圆钢管混凝土T型焊接节点疲劳性能研究[D]. 上海: 同济大学, 2007.ZHU Jun. Fatigue behaviour of welded T-joints of concrete filled circular hollow sections[D]. Shanghai: Tongji University, 2007. (in Chinese) [29] DONG Ju-can, CHEN Yi-yan, WU Qing-xiong, et al. Research on flexural behavior of composite box continuous girder with corrugated steel webs and trusses[J]. Advances in Structural Engineering, 2021, 24(15): 3580-3593. doi: 10.1177/13694332211033957 [30] American Petroleum Institute. Recommended practice for planning, designing, and constructing fixed offshore platforms working stress design[R]. Washington DC: American Petroleum Institute, 2002. [31] 董桔灿, 吴庆雄, 陈康明, 等. 波形钢腹板(钢腹杆)-混凝土组合箱抗扭承载力试验与计算[J]. 工程力学, 2016, 33(11): 220-230.DONG Ju-can, WU Qing-xiong, CHEN Kang-ming, et al. Experiment and calculation on torsion bearing capacity of concrete composite box section with corrugated steel webs and steel truss webs[J]. Engineering Mechanics, 2016, 33(11): 220-230. (in Chinese) [32] 尧国皇. 钢管混凝土构件在复杂受力状态下的工作机理研究[D]. 福州: 福州大学, 2006.YAO Guo-huang. Research on behavior of concrete-filled steel tubes under complicated loading states[D]. Fuzhou: Fuzhou University, 2006. (in Chinese) [33] Det Norske Veritas. Recommended practice DNV-RP-C203: fatigue design of offshore steel structures[R]. Oslo: Det Norske Veritas, 2010.