-
摘要: 系统研究了强腐后Q345钢表面形貌和腐蚀时间对其力学性能退化的影响;采用浓度36%工业盐酸在室温环境下快速腐蚀的方法,设计了腐蚀时间分别为0、1、2、4、8、12、24、48、72 h的9组钢试件;采用三维非接触激光扫描仪和扫描电镜扫描腐蚀钢,测量了最大蚀坑宽度、高度和腐蚀试件厚度,计算了最大蚀坑影响系数;开展了拉伸试验,结合扫描形貌与微观组织形态解释了强腐后Q345钢的力学性能退化机理;建立了浓度36%工业盐酸在室温环境强腐后Q345钢的腐蚀动力学曲线和本构关系模型,揭示了强腐后Q345钢的力学性能退化规律。研究结果表明:随着腐蚀时间的增加,Q345钢的腐蚀动力学曲线展示了腐蚀率的变化规律;腐蚀时间在1 h以内,最大蚀坑影响系数增大最为明显,钢的名义屈服强度、名义抗拉强度、名义弹性模量和伸长率退化较大,分别达到未腐蚀钢的3.00%、0.69%、1.99%和4.88%;当腐蚀时间超过12 h,最大蚀坑影响系数增加缓慢,钢的名义屈服强度、名义抗拉强度、名义弹性模量和伸长率退化较为缓慢,分别达到未腐蚀钢的7.58%、4.02%、10.27%和26.64%;随着最大蚀坑影响系数和腐蚀时间的增加,屈强比变化较小;在腐蚀试件的应力-应变本构关系曲线中,随着腐蚀时间的增加,钢材的屈服平台逐渐缩短甚至消失,钢材由延性破坏转变为脆性破坏。Abstract: The influences of surface morphology and corrosion time of Q345 steel after strong corrosion on its mechanical property degradation were systematically studied. A rapid corrosion method based on the industrial hydrochloric acid with a concentration of 36% at room temperature was adopted, and nine groups of steel specimens with the corrosion time of 0, 1, 2, 4, 8, 12, 24, 48, and 72 h respectively were designed. A 3D non-contact laser scanner and an electron microscope were adopted to scan the corroded steel, and the width and height of the largest corrosion pit and the thicknesses of corroded specimens were measured. The influence coefficient of the largest corrosion pit was calculated. A tensile test was carried out, and the mechanical property degradation mechanism of Q345 steel after strong corrosion was explained according to the scanning morphology and microstructure morphology. The corrosion kinetics curve and constitutive relation model of Q345 steel after strong corrosion by the industrial hydrochloric acid with a concentration of 36% were established at room temperature, and the mechanical property degradation law of Q345 steel after strong corrosion was revealed. Research results show that as the corrosion time increases, the corrosion kinetics curve of Q345 steel demonstrates the change law of corrosion rate. When the corrosion time is less than 1 h, the influence coefficient of the largest corrosion pit increases obviously, and the nominal yield strength, nominal tensile strength, nominal elastic modulus and elongation of the steel degrade significantly, reaching 3.00%, 0.69%, 1.99%, and 4.88% of the uncorroded steel respectively. When the corrosion time exceeds 12 h, the influence coefficient of the largest corrosion pit increases slowly, and the nominal yield strength, nominal tensile strength, nominal elastic modulus and elongation of steel degrade slowly, reaching 7.58%, 4.02%, 10.27%, and 26.64% of the uncorroded steel respectively. The change of the yield-strength ratio is slight as the influence coefficient of the largest corrosion pit and the corrosion time increase. In the stress-strain constitutive relation curves of the corroded specimens, as the corrosion time increases, the yield platform of steel gradually shortens or even disappears, and the steel changes from ductile failure to brittle failure.
-
表 1 最大蚀坑影响系数
Table 1. Influence coefficients of largest corrosion pit
试件编号 腐蚀时间/h h/mm h均值/mm Δdmax/μm Δdmax均值/μm ωmax/μm ωmax均值/μm ζmax/10-3 ζmax均值/10-3 1-1 1 7.98 8.00 25.600 27.607 103.417 102.755 0.784 0.922 1-2 8.01 29.515 99.551 1.082 1-3 7.99 27.705 105.297 0.900 2-1 2 7.95 7.96 36.655 35.870 118.184 119.650 1.424 1.350 2-2 7.98 35.239 123.449 1.258 2-3 7.95 35.715 117.318 1.367 3-1 4 7.94 7.92 44.170 44.850 140.257 140.752 1.752 1.806 3-2 7.91 45.152 143.911 1.791 3-3 7.90 45.228 138.089 1.875 4-1 8 7.89 7.87 55.895 57.589 156.381 159.833 2.531 2.637 4-2 7.85 57.754 162.033 2.623 4-3 7.87 59.117 161.084 2.756 5-1 12 7.82 7.82 67.880 68.037 185.357 187.518 3.177 3.157 5-2 7.83 69.170 186.941 3.268 5-3 7.81 67.061 190.255 3.027 6-1 24 7.79 7.78 72.965 74.020 205.289 209.490 3.331 3.361 6-2 7.78 74.198 210.308 3.366 6-3 7.78 74.897 212.873 3.387 7-1 48 7.76 7.76 83.065 84.060 246.017 247.053 3.614 3.686 7-2 7.76 85.117 244.199 3.823 7-3 7.77 83.999 250.942 3.620 8-1 72 7.65 7.64 97.250 97.044 326.452 327.166 3.788 3.769 8-2 7.65 94.872 331.058 3.556 8-3 7.64 99.011 323.987 3.961 表 2 腐蚀钢板本构模型参数
Table 2. Constitutive model parameters of corroded steel plate
x/h 0 1 2 4 8 12 24 48 72 Es/GPa 218.34 213.99 209.17 202.15 197.24 195.93 190.15 184.82 175.66 fy/MPa 469.81 455.71 450.32 445.62 437.91 434.21 432.02 426.29 421.07 fu/MPa 596.16 592.04 586.92 580.70 576.19 572.18 568.08 563.14 556.80 εy/% 0.360 4 0.342 8 0.311 2 0.302 2 0.280 4 0.264 4 0.246 6 0.231 6 0.212 2 K1 13.34 13.68 12.04 13.58 10.22 11.59 10.50 7.54 5.82 K2 120.44 123.46 116.58 99.45 101.76 103.02 78.25 88.70 70.19 K3 1.27 1.30 1.30 1.30 1.32 1.32 1.31 1.32 1.32 -
[1] ZHANG Gang, ZHAO Xiao-cui, LU Ze-lei, et al. Review and discussion on fire behavior of bridge girders[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(3): 422-446. doi: 10.1016/j.jtte.2022.05.002 [2] 张岗, 贺拴海, 宋超杰, 等. 钢结构桥梁抗火研究综述[J]. 中国公路学报, 2021, 34(1): 1-10. doi: 10.3969/j.issn.1001-7372.2021.01.001ZHANG Gang, HE Shuan-hai, SONG Chao-jie, et al. Review on fire resistance of steel structural bridge girders[J]. China Journal of Highway and Transport, 2021, 34(1): 1-10. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.01.001 [3] 王春生, 张静雯, 段兰, 等. 长寿命高性能耐候钢桥研究进展与工程应用[J]. 交通运输工程学报, 2020, 20(1): 1-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001004.htmWANG Chun-sheng, ZHANG Jing-wen, DUAN Lan, et al. Research progress and engineering application of long lasting high performance weathering steel bridges[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 1-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001004.htm [4] 郑凯锋, 张宇, 衡俊霖, 等. 高强度耐候钢及其在桥梁中的应用与前景[J]. 哈尔滨工业大学学报, 2020, 52(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202003001.htmZHENG Kai-feng, ZHANG Yu, HENG Jun-lin, et al. High strength weathering steel and its application and prospect in bridge engineering[J]. Journal of Harbin Institute of Institute of Technology, 2020, 52(3): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202003001.htm [5] 史炜洲, 童乐为, 陈以一, 等. 腐蚀对钢材和钢梁受力性能影响的试验研究[J]. 建筑结构学报, 2012, 33(7): 53-60.SHI Wei-zhou, TONG Le-wei, CHEN Yi-yi, et al. Experimental study on influence of corrosion on behavior of steel material and steel beams[J]. Journal of Building Structures, 2012, 33(7): 53-60. (in Chinese) [6] 邓露, 宁莎丽, 王维. 腐蚀环境下钢-混凝土组合梁桥疲劳寿命计算[J]. 公路工程, 2019, 44(2): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201902018.htmDENG Lu, NING Sha-li, WANG Wei. Calculation of the fatigue life of steel-concrete composite girder bridges under corrosive environment[J]. Highway Engineering, 2019, 44(2): 97-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201902018.htm [7] 朱劲松, 郭晓宇, 亢景付, 等. 耐候桥梁钢腐蚀力学行为研究及其应用进展[J]. 中国公路学报, 2019, 32(5): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905002.htmZHU Jin-song, GUO Xiao-yu, KANG Jing-fu, et al. Research on corrosion behavior, mechanical property and application of weathering steel in bridges[J]. China Journal of Highway and Transport, 2019, 32(5): 1-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905002.htm [8] 张浩. 强腐作用下桥梁钢力学性能退化试验研究[D]. 西安: 西安工业大学, 2022.ZHANG Hao. Experimental study on degradation of mechanical properties of bridge steel under strong corrosion[D]. Xi'an: Xi'an Technological University, 2022. (in Chinese) [9] 彭建新, 阳逸鸣, 唐皇, 等. 锈蚀钢筋蚀坑特征分析及其对力学性能的影响[J]. 长沙理工大学学报(自然科学版), 2015, 12(3): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG201503008.htmPENG Jian-xin, YANG Yi-ming, TANG Huang, et al. Characteristics of pitting corrosion for steel reinforcement and its effect on mechanical properties[J]. Journal of Changsha University of Science and technology (Natural Science Edition), 2015, 12(3): 50-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG201503008.htm [10] 徐善华, 张宗星, 秦广冲. 考虑腐蚀钢板表面形貌的三维逆向重建及力学性能退化分析[J]. 材料科学与工程学报, 2017, 35(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201701016.htmXU Shan-hua, ZHANG Zong-xing, QIN Guang-chong. Three- dimensional reconstruction and degradation of mechanical properties based on real surface of corrosion steel[J]. Journal of Materials Science and Engineering, 2017, 35(1): 81-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201701016.htm [11] 徐善华, 张宗星, 何羽玲, 等. 考虑蚀坑影响的腐蚀钢板力学性能退化试验研究[J]. 西安建筑科技大学学报(自然科学版), 2017, 49(2): 164-171. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201702002.htmXU Shan-hua, ZHANG Zong-xing, HE Yu-ling, et al. Experimental study on monotonic tensile behavior of corroded steel in neutral salt spray environment[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2017, 49(2): 164-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201702002.htm [12] 彭建新, 张伟, 阳逸鸣, 等. 腐蚀对高性能钢Q550E力学指标影响的试验研究[J]. 公路交通科技, 2018, 35(10): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201810008.htmPENG Jian-xin, ZHANG Wei, YANG Yi-ming, et al. Experimental study on influence of corrosion on mechanical index of high performance steel Q550E[J]. Journal of Highway and Transportation Research and Development, 2018, 35(10): 56-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201810008.htm [13] QIN Guang-chong, XU Shan-hua, YAO Dao-qiang, et al. Study on the degradation of mechanical properties of corroded steel plates based on surface topography[J]. Journal of Constructional Steel Research, 2016, 125: 205-217. [14] KHEDMATI M R, NOURI Z H M E. Analytical simulation of nonlinear elastic-plastic average stress-average strain relationships for un-corroded/both-sides randomly corroded steel plates under uniaxial compression[J]. Thin-Walled Structures, 2015, 86: 132-141. [15] TOHIDI S, SHARIFI Y. Load-carrying capacity of locally corroded steel plate girder ends using artificial neural network[J]. Thin-Walled Structures, 2016, 100: 48-61. [16] BAJRACHARYA S, SASAKI E, TAMURA H. Numerical study on corrosion profile estimation of a corroded steel plate using eddy current[J]. Structure and Infrastructure Engineering, 2019, 15(9): 1151-1164. [17] KARINA C N, CHUN P J, OKUBO K. Tensile strength prediction of corroded steel plates by using machine learning approach[J]. Steel and Composite Structures, 2017, 25: 635-641. [18] RAIPUT A, PAIK J K. Effects of naturally-progressed corrosion on the chemical and mechanical properties of structural steels[J]. Structures, 2021, 29: 2120-2138. [19] 王友德, 徐善华, 李晗, 等. 一般大气环境下锈蚀结构钢表面特征与随机模型[J]. 金属学报, 2020, 56(2): 148-160. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB202002003.htmWANG You-de, XU Shan-hua, LI Han, et al. Surface characteristics and stochastic model of corroded structural steel under general atmospheric environment[J]. Acta Metallurgica Sinica, 2020, 56(2): 148-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB202002003.htm [20] WANG You-de, XU Shan-hua, WANG Hao, et al. Predicting the residual strength and deformability of corroded steel plate based on the corrosion morphology[J]. Construction and Building Materials, 2017, 152: 777-793. [21] XU Shan-hua, ZHANG Hai-jiang, WANG You-de. Estimation of the properties of corroded steel plates exposed to salt-spray atmosphere[J]. Corrosion Engineering Science and Technology, 2019, 54(5): 431-443. [22] KAINUMA S, JEONG Y S, AHN J H. Investigation on the stress concentration effect at the corroded surface achieved by atmospheric exposure test[J]. Materials Science and Engineering: A, 2014, 602: 89-97. [23] YU Qiang, DONG Chao-fang, FANG Yue-hua, et al. Atmospheric corrosion of Q235 carbon steel and Q450 weathering steel in Turpan, China[J]. Journal of Iron and Steel Research International, 2016, 23(10): 1061-1070. [24] RAJPUT A, PAIK J K. Effects of naturally-progressed corrosion on the chemical and mechanical properties of structural steels[J]. Structures, 2021, 29: 2120-2138. [25] 乔文靖, 朱浩云, 张岗, 等. 强腐作用下钢板组合梁的力学性能及失效机理[J]. 长安大学学报(自然科学版), 2021, 41(2): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202102005.htmQIAO Wen-jing, ZHU Hao-yun, ZHANG Gang, et al. Mechanical properties and failure mechanism of steel plate composite beams under strong corrosion[J]. Journal of Chang'an University (Natural Science Edition), 2021, 41(2): 46-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202102005.htm [26] CHEN Jun-ling, LI Jin-wei, LI Zhe-xu. Experiment research on rate-dependent constitutive model of Q420[J]. Construction and Building Materials, 2017, 153: 816-823. [27] WOLOSZY K K, GARBATOV Y. Random field modelling of mechanical behaviour of corroded thin steel plate specimens[J]. Engineering Structures, 2020, 212: 1-12. [28] QIAO Wen-jing, ZHANG Hao, YANG Fan, et al. Ductility degradation of weathering steel Q345 after exposure to hydrochloric-acid corrosion dependent on pitting damage[J]. Journal of Materials in Civil Engineering, 2022, 34(11): 04022304. [29] O'BRIEN C, MCBRIDE A, ZAGHI A E, et al. Mechanical behavior of stainless steel fiber-reinforced composites exposed to accelerated corrosion[J]. Materials, 2017, DOI: 10.3390/ma10070772. [30] YANG F, YUAN M M, QIAO W J, et al. Mechanical investigation of carbon steel under strong corrosion effected by corrosion pits[J]. Mathematical Problems in Engineering, 2022, 1719196: 1-18. [31] REN Song-bo, GU Ying, KONG Chao, et al. Effects of the corrosion pitting parameters on the mechanical properties of corroded steel[J]. Construction and Building Materials, 2021, 272: 121941. [32] 冯大帅. 中性盐雾腐蚀后Q345B钢材疲劳性能研究[D]. 徐州: 中国矿业大学, 2019.FENG Da-shuai. Study on fatigue properties of Q345B steel after neutral salt spray corrosion[D]. Xuzhou: China University of Mining and Technology, 2019. (in Chinese)