留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从WCEE看国内外韧性抗震梁桥研究进展

贾俊峰 魏博 杜修力 郭彬立 郭河

贾俊峰, 魏博, 杜修力, 郭彬立, 郭河. 从WCEE看国内外韧性抗震梁桥研究进展[J]. 交通运输工程学报, 2022, 22(6): 25-45. doi: 10.19818/j.cnki.1671-1637.2022.06.002
引用本文: 贾俊峰, 魏博, 杜修力, 郭彬立, 郭河. 从WCEE看国内外韧性抗震梁桥研究进展[J]. 交通运输工程学报, 2022, 22(6): 25-45. doi: 10.19818/j.cnki.1671-1637.2022.06.002
JIA Jun-feng, WEI Bo, DU Xiu-li, GUO Bin-li, GUO He. Research progress of seismic resilient girder bridges at home and abroad from WCEE[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 25-45. doi: 10.19818/j.cnki.1671-1637.2022.06.002
Citation: JIA Jun-feng, WEI Bo, DU Xiu-li, GUO Bin-li, GUO He. Research progress of seismic resilient girder bridges at home and abroad from WCEE[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 25-45. doi: 10.19818/j.cnki.1671-1637.2022.06.002

从WCEE看国内外韧性抗震梁桥研究进展

doi: 10.19818/j.cnki.1671-1637.2022.06.002
基金项目: 

国家自然科学基金项目 52178449

详细信息
    作者简介:

    贾俊峰(1982-), 男, 河南扶沟人, 北京工业大学教授, 工学博士, 从事桥梁抗震减震研究

    通讯作者:

    杜修力(1962-), 男, 四川广安人, 中国工程院院士, 北京工业大学教授, 工学博士

  • 中图分类号: U448.21

Research progress of seismic resilient girder bridges at home and abroad from WCEE

Funds: 

National Natural Science Foundation of China 52178449

More Information
    Author Bio:

    JIA Jun-feng (1982–), male, born in Fugou, Henan Province, professor at Beijing University of Technology, PhD in engineering. He is engaged in research on bridge seismic resistance. E-mail: jiajunfeng@bjut.edu.cn

    DU Xiu-li (1962–), male, born in Guang'an, Sichuan Province, academician of the Chinese Academy of Engineering, professor of Beijing University of Technology, PhD in engineering. E-mail: duxiuli@bjut.edu.cn

  • 摘要: 梳理和总结了第16、17届世界地震工程大会(WCEE)中关于韧性抗震梁桥相关的研究进展;分析了后张预应力摇摆自复位梁桥与其他新型韧性抗震梁桥体系的最新研究进展,总结了高性能材料在韧性梁桥中的应用研究,并介绍了国内外自复位梁桥的工程实践;介绍了自复位耗能装置和限位装置等韧性抗震梁桥结构中的可更换装置研究,讨论了附加可更换装置的梁桥结构抗震性能;总结了单体梁桥和桥梁网络的抗震韧性评估方法,探讨了韧性抗震梁桥结构的研究方向和发展趋势。研究结果表明:附加可更换耗能装置的后张预应力自复位梁桥是研究最为广泛的韧性抗震梁桥结构,且已建成了多座示范工程,该类结构在强震中的表现有待实际地震验证;需要结合高性能材料开发可更换装置新结构与新构造,在此基础上研究其与桥梁的合理连接技术及抗震设计方法;考虑性能退化、需求增加等多因素影响的既有梁桥结构抗震韧性评价方法和能力提升技术及其设计理论,是中国已建梁桥面临的突出问题。

     

  • 图  1  学者国家分布

    Figure  1.  National distribution of scholars

    图  2  不同研究方向国内外论文分布

    Figure  2.  Distribution of papers in different research directions at home and abroad

    图  3  摇摆桥墩和自复位桥墩

    Figure  3.  Rocking pier and self-centering pier

    图  4  三种桥墩的滞回曲线

    Figure  4.  Hysteresis curves of three types of piers

    图  5  现浇墩和预制节段桥墩

    Figure  5.  Monolithic and precast segmental bridge columns

    图  6  具有橡胶垫的摇摆桥墩

    Figure  6.  Rocking bridge pier with rubber pad

    图  7  低损伤自复位桥墩及其连接方式

    Figure  7.  Low damage self-centering pier and its connection types

    图  8  仅受拉耗能钢棒

    Figure  8.  Energy-dissipation steel bars in tension only

    图  9  防屈曲耗能钢板

    Figure  9.  Buckling restraining energy dissipation steel plate

    图  10  附加惯容系统的摇摆桥墩

    Figure  10.  Rocking pier with additional inerter system

    图  11  自复位桥墩截面

    Figure  11.  Cross-section of self-centering pier

    图  12  摇摆钢柱及其破坏状态

    Figure  12.  Rocking steel columns and their failure modes

    图  13  负刚度摇摆桥墩

    Figure  13.  Negative stiffness rocking pier

    图  14  预制桥墩连接方式

    Figure  14.  Connection types of prefabricated piers

    图  15  可复位滑移节点

    Figure  15.  Resettable sliding joint

    图  16  可更换塑性铰柱

    Figure  16.  Columns with replaceable plastic hinge

    图  17  自重补偿桥梁

    Figure  17.  Dead weight compensation bridge

    图  18  球面平斜面RC桥墩

    Figure  18.  RC pier with a spherical flat-inclined surface

    图  19  自复位桥面板

    Figure  19.  Self-centering bridge deck

    图  20  摇摆支座

    Figure  20.  Rocking bearings

    图  21  预张拉锚索不同状态

    Figure  21.  Different states of pretensioned anchor cable

    图  22  采用HPFRCC加固损伤的自复位桥墩

    Figure  22.  Strengthening damaged self-centering piers with HPFRCC

    图  23  超高强钢筋表面形状

    Figure  23.  Surface shape of ultra-high strength (UHS) reinforcement

    图  24  基于SMA螺栓的自复位钢柱

    Figure  24.  SMA-bolt-based self-centering steel column

    图  25  SMA改进的桥梁伸缩缝

    Figure  25.  SMA enhanced bridge expansion joint

    图  26  SMA螺旋加固墩柱

    Figure  26.  Reinforced column with SMA spiral

    图  27  带有更换耗能器的Wigram-Magdala自复位桥梁

    Figure  27.  Wigram-Magdala self-centering bridge with replaceable dissipaters

    图  28  黄徐路自复位桥

    Figure  28.  Self-centering bridge of Huangxu Road

    图  29  BRB双向振动台试验

    Figure  29.  Bidirectional shaking table test of BRB

    图  30  基于预压碟簧的自复位耗能支撑

    Figure  30.  SCEB with preloaded disc spring

    图  31  基于SMA丝的自复位耗能支撑

    Figure  31.  SCEB with SMA wires

    图  32  配置棘轮系统的自复位耗能支撑

    Figure  32.  SCEB with ratchet system

    图  33  新型限位拉索

    Figure  33.  Novel cable restrainer

    图  34  基于SMA索的摩擦支座

    Figure  34.  SMA-cable-based pure friction bearing

    图  35  MSBridge桥梁抗震性能分析程序

    Figure  35.  Bridge seismic performance analysis procedure of MSBridge

    图  36  韧性评估框架

    Figure  36.  Framework of resilience evaluation

    图  37  功能恢复过程

    Figure  37.  Functional recovery process

  • [1] 庄卫林, 刘振宇, 蒋劲松. 汶川大地震公路桥梁震害分析及对策[J]. 岩石力学与工程学报, 2009, 28(7): 1377-1387. doi: 10.3321/j.issn:1000-6915.2009.07.011

    ZHUANG Wei-lin, LIU Zhen-yu, JIANG Jin-song. Earthquake-induced damage analysis of highway bridges in Wenchuan earthquake and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1377-1387. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.07.011
    [2] HAN Q, DU X L, LIU J B, et al. Seismic damage of highway bridges during the 2008 Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2): 263-273. doi: 10.1007/s11803-009-8162-0
    [3] KAWASHIMA K, MACRAE G A, HOSHIKUMA J, et al. Residual displacement response spectrum[J]. Journal of Structural Engineering, 1998, 124(5): 523-530. doi: 10.1061/(ASCE)0733-9445(1998)124:5(523)
    [4] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念——可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7): 941-948. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201107002.htm

    LYU Xi-lin, CHEN Yun, MAO Yuan-jun. New concept of structural seismic design: earthquake resilient structures[J]. Journal of Tongji University (Natural Science), 2011, 39(7): 941-948. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201107002.htm
    [5] 袁万城, 王思杰, 李怀峰, 等. 桥梁抗震智能与韧性的发展[J]. 中国公路学报, 2021, 34(2): 98-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202102003.htm

    YUAN Wan-cheng, WANG Si-jie, LI Huai-feng, et al. Development of intelligence and resilience for bridge seismic design[J]. China Journal of Highway and Transport, 2021, 34(2): 98-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202102003.htm
    [6] BRUNEAU M, CHANG S E, EGUCHI R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4): 733-752. doi: 10.1193/1.1623497
    [7] 吕西林, 全柳萌, 蒋欢军. 从16届世界地震工程大会看可恢复功能抗震结构研究趋势[J]. 地震工程与工程振动, 2017, 37(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201703001.htm

    LYU Xi-lin, QUAN Liu-meng, JIANG Huan-jun. Research trend of earthquake resilient structures seen from 16WCEE[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(3): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201703001.htm
    [8] QU Z, TAMURA K, WADA A. Synthetic seismic design strategy for building structures in urban areas[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 1017.
    [9] IKEDA M, ASAI K, GALLARDO R M. Study on residents' disaster prevention awareness for tsunami in Valparaíso, Chile[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 2671.
    [10] MAHIN S. Resilience by design: a structural engineering perspective[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: Keynote-7.
    [11] ROJAHN C, JOHNSON L, O'ROURKE T D, et al. Community resilience of lifeline systems: Societal needs and performance assessment[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 2686.
    [12] CIMELLARO G. New trends on resiliency research[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: Keynote-5.
    [13] AHMADI E, KASHANI M M. Seismic performance of post-tensioned precast segmental columns using incremental dynamic analysis[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0006.
    [14] ALAM M S, TREMBLAY R, ISLAM K, et al. Use of rocking steel piers for enhanced bridge seismic performance[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2g-0247.
    [15] YEN P, AREF A. Development of seismic design details for accelerated bridge constructions[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 4044.
    [16] OU Y C, PRATIWI A Y, BU Z Y, et al. Equivalent viscous damping for self-centering precast concrete segmental bridge columns[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 4907.
    [17] LEE C L. Force-based beam-column element with multispring models for modelling post-tensioned rocking members[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 1284.
    [18] LI C, HAO H, ZHANG X. Cyclic tests of precast segmental concrete columns with unbonded post-tensioned tendons[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 1747.
    [19] LI C, HAO H, ZHANG X. Analysis of precast segmental concrete columns with unbonded post-tensioned tendons under cyclic loading[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 1769.
    [20] TITIRLA M, ZARKADOULAS N, MITOULIS S, et al. Rocking isolation of bridge piers using elastomeric pads[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 4040.
    [21] MASHAL M, PALERMO A. Experimental testing of emulative and post-tensioned earthquake damage resistant technologies for accelerated bridge construction[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 641.
    [22] PANTELIDES C P, THAPA D. Self-centering bent with stretch length anchors for accelerated bridge construction in high seismic regions[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2g-0300.
    [23] JIA J F, WEI B, OU J P, et al. Seismic performance of self-centering precast RC bridge columns with replaceable energy dissipation devices[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0091.
    [24] CHEN X, LI C. Seismic assessment of tall pier bridges using rocking foundation retrofitted with inerter system[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 3c-0004.
    [25] ANDISHEH K, SCOTT A, PALERMO A. Low cycle fatigue behavior of corroded fuse-type dissipaters for post-tensioned rocking bridge piers[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 2605.
    [26] RAHMZADEH A, ALAM M S, TREMBLAY R, et al. Experimental and finite element studies on the cyclic response of post-tensioned rocking steel bridge piers[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0094.
    [27] SHEN Y, LI J, LI Y, et al. Numerical study on the seismic performance of post-tensioned CFST hybrid bridge columns[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0027.
    [28] GUERRINI G, RESTREPO J I, SCHOETTLER M J. Self-centering, low-damage, precast post-tensioned columns for accelerated bridge construction in seismic regions[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 3921.
    [29] DELLA CORTE G, SARRACCO G, LANDOLFO R. Seismic response of compound steel columns with partially-restrained exposed base-plate connections[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 346.
    [30] MANZO REGGIANI N, VASSILIOU M F. Quasi-static tests of negative stiffness columns for resilient seismic design[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2g-0311.
    [31] YANG C, OKUMUS P. Impact of connections on seismic performances of precast concrete bridge piers[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0106.
    [32] ZHANG Q, ALAM M S. Performance-based seismic design of hybrid rocking bridge column[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0001.
    [33] THOMAIDIS I M, KAPPOS A J, CAMARA A. Rocking vs. conventional seismic isolation: comparative assessment of asymmetric bridges in a design context[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0037.
    [34] INOUE T. Vibration control system combining rocking isolation with seismic dampers for bridge structures subjected to strong ground motions[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2g-0081.
    [35] LIU Y Q, YI J, LIANG F, et al. Numerical simulation of partially debonded tendon system in resettable sliding joint under earthquake[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0010.
    [36] LIANG F, LIU Y Q, YUAN Y, et al. Evaluation of non-emulative seismic-resistant precast segmental bridge columns[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0108.
    [37] TAKAHASHI Y, H. MAEDA H, HAYASHI M. Development of metabolic seismic columns to be able to replace plastic hinge under gravity load[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0097.
    [38] DOIT, TOYOOKA A, MURONO Y, et al. Proposal of dead weight compensation structures and application to railway viaduct[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2b-0066.
    [39] BRITO M, AKIYAMA M, YAMAGUCHI H, et al. Improving the seismic resilience of RC bridge piers through the use of a low-cost friction sliding system[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2g-0006.
    [40] CHEGINI Z, PALERMO A. Quasi-static testing of a large-scale bridge with dissipative controlled rocking connections in the superstructure[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 1372.
    [41] LIU R, PALERMO A. Quasi-static testing of a 1/3 scale precast concrete bridge utilising a post-tensioned dissipative controlled rocking[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 806.
    [42] OBARA T, WATANABE H, KONO S, et al. Damage controlling performance of a full scale unbonded post-tensioned precast concrete beam[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 1882.
    [43] CHENG C T, KANG W Z. Seismic performance of rocking base-isolated structures subjected to biaxial earthquake loads[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 248.
    [44] LVDERS C, CRIADO M. A new design philosophy of seismic anchor elements for bridges[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 4562.
    [45] LI J, SHEN Y. Precast self-centering bridge columns: quasi-static and shake table testing[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: SOS-O28B06-4.
    [46] PALACIOS G, LIU X, CHAO S H, et al. Seismic performance of a highly damage-tolerant ultrahigh performance fiber-reinforced concrete column[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 2833.
    [47] CHAO S H, SHAMSHIRI M, KARMACHARYA A. A seismic resilient concrete column using ultra-high-performance fiber-reinforced concrete[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2i-0156.
    [48] NGUYEN W, SHAO Y, BILLINGTON S L, et al. High-performance fiber-reinforced cementitious composites for seismic design: a review of columns[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0012.
    [49] SHIM C S, SONG H H, KOEM C, et al. Cyclic behavior of post-earthquake repaired post_tensioned percast columns with HPFRCC[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 184.
    [50] HAO H, LI C, BI K. Shake table tests of precast columns with geopolymer concrete segments reinforced with BFRP bars[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0023.
    [51] TAKEUCHI T, SUN Y, SHING P B. Seismic behavior of concrete column reinforced with ultra-high strength rebars under dynamic loading[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2c-0084.
    [52] SARGSYAN G, CAI G, TAKEUCHI T, et al. Seismic behavior and assessment of drift-hardening concrete columns[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 664.
    [53] BILLAH A H M M, TODOROV B. Mainshock-aftershock damage assessment of concrete bridge reinforced with shape memory alloy rebar[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0051.
    [54] LI S, WANG J Q, ALAM M S. Seismic performance assessment of an innovative highway bridge using steel-SMA reinforced piers and self-centering restraining devices[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 3b-0009.
    [55] ZHU S Y, WANG B. Towards earthquake resilience: using superelastic SMA for high-performance seismic-resistant structures[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: SOS-O27A06-9.
    [56] MCCARTHY E, PADGETT J E. Fragility modeling and cost benefit analysis of an SMA enhanced bridge expansion joint[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 4329.
    [57] JUNG D, ANDRAWES B. Dyngmic testing on circular RC bridge columns retrofitted and repaired with shape memory alloys[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 976.
    [58] PALERMO A. Resilient technologies and materials for bridges: research and applications in New Zealand[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: SOS-O27A06-4.
    [59] 韩强, 贾振雷, 何维利, 等. 自复位双柱式摇摆桥梁抗震设计方法及工程应用[J]. 中国公路学报, 2017, 30(12): 169-177. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201712019.htm

    HAN Qiang, JIA Zhen-lei, HE Wei-li, et al. Seismic design method and its engineering application of self-centering double-column rocking bridge[J]. China Journal of Highway and Transport, 2017, 30(12): 169-177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201712019.htm
    [60] HAN Q, JIA Z, XU K, et al. Hysteretic behavior investigation of self-centering double-column rocking piers for seismic resilience[J]. Engineering Structures, 2019, 188: 218-232. doi: 10.1016/j.engstruct.2019.03.024
    [61] TAKEUCHI T, MATSUI R, SITLER B, et al. State-of-art stability assessment of buckling-restrained braces including connections[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 602.
    [62] SITLER B, MACRAE G, TAKEUCHI T, et al. Buckling restrained brace connection and stability performance issues[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 1380.
    [63] WEI X, BRUNEAU M. Experimental performance of buckling restrained braces subjected to bidirectional displacement histories[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 819.
    [64] WANG Y, IBARRA L, PANTELIDES C. Seismic assessment for retrofitted skewed reinforced concrete bridges with buckling restrained braces[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 2531.
    [65] BAZAEZ R, DUSICKA P. Seismic retrofitting of reinforced concrete bridge bents utilizing hysteretic dampers[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 2703.
    [66] CHENG X, EROCHKO J, LAU D T. Improving the seismic performance of existing bridge structures using self-centering dampers[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 3465.
    [67] ATASEVER K, INANAGA S, TERAZAWA Y, et al. Experimental study on buckling restrained braces (BRBs) with post-tensioned carbon fiber composite cables[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2g-0025.
    [68] XIE Q, ZHOU Z. Behavior of BFRP tendon systems under cyclic loading and its influence on the dual-tube SC-BRB hysteretic performance[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2c-0202.
    [69] YOUSEF-BEIK M, VEISMORADI S, ZARNANI P, et al. Full scale quasi-static testing of a new self-centering damage-avoidant timber brace[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2i-0123.
    [70] WANG Y, ZHOU Z, ZHAO K. Experimental investigation of hysteretic performance of self-centering variable friction damper brace[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2c-0136.
    [71] XU L H, FAN X W, LI Z X. Hysteretic performance study on a pre-pressed spring self-centering energy dissipation brace[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 4130.
    [72] WANG B, ZHU S Y. Self-centering energy dissipation devices enabled by superelastic SMAs[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: SOS-O27A06-6.
    [73] ASFAW A, OZBULUT O. Development and testing of resilient damping devices for seismic protection of mass-timber structures[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2i-0177.
    [74] KOLAY C, KUMAR A. A shape memory alloy based self-centring damping device for seismic applications[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2g-0251.
    [75] XIAO Y, EBERHARD M O, ZHOU Y, et al. A self-centering energy dissipative brace with low prestressing[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2g-0175.
    [76] YUAN W C, GU Y T, LI H, et al. Shake table test of a cable restrainer for continuous girder bridges[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0021.
    [77] HUBER P, ROOS P, ARRANZ R. Damper, isolator and joint system for seismic protection of Toluca viaduct for Mexico city intercity train[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0022.
    [78] LIANG D, ZHENG Y, FANG C. A novel SMA-cable-based pure friction sliding bearing for seismic resilient improvement of highway bridges[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0052.
    [79] ALMUTAIRI A, LU J, ELGAMAL A. Implementation of a multi-span bridge-ground PBEE framework for seismic and liquefaction scenarios[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0070.
    [80] LAI Z, JIANG L, GVNAY S. Seismic evaluation of the high-speed railway track-bridge system using performance-based engineering[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2b-0154.
    [81] GIDARIS I, PADGETT J E. Probabilistic fragility analysis and resilience assessment of bridges subjected to earthquake mainshocks and aftershocks[C]//IAEE. 16th World Conference on Earthquake Engineering. Tokyo: IAEE, 2017: 4346.
    [82] WU X T, GUO A X. Reliability-based life-cycle cost optimization of bridge piers exposed to earthquake and non-uniform corrosion[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 7j-0001.
    [83] NOLLET M J, FARZAM A, ABO EL EZZ A, et al. A tool for seismic impact assessment on municipal highway bridges network[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 8c-0055.
    [84] CAPACCI L, BIONDINI F, KIREMIDJIAN A S. Damage disaggregation for seismic resilience assessment of aging bridge networks[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 2d-0087.
    [85] ISHIBASHI H, KOJIMA T, AKIYAMA M, et al. Framework to assess risk and resilience of road networks under seismic and subsequent tsunami hazards[C]//IAEE. 17th World Conference on Earthquake Engineering. Tokyo: IAEE, 2021: 7d-0002.
  • 加载中
图(37)
计量
  • 文章访问数:  731
  • HTML全文浏览量:  186
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-28
  • 刊出日期:  2022-12-25

目录

    /

    返回文章
    返回