留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Fe-SMA的钢桥面板疲劳裂纹装配式主动加固方法

卜一之 安朗 崔闯 胡继丹 张清华 朱金柱

卜一之, 安朗, 崔闯, 胡继丹, 张清华, 朱金柱. 基于Fe-SMA的钢桥面板疲劳裂纹装配式主动加固方法[J]. 交通运输工程学报, 2022, 22(6): 84-94. doi: 10.19818/j.cnki.1671-1637.2022.06.005
引用本文: 卜一之, 安朗, 崔闯, 胡继丹, 张清华, 朱金柱. 基于Fe-SMA的钢桥面板疲劳裂纹装配式主动加固方法[J]. 交通运输工程学报, 2022, 22(6): 84-94. doi: 10.19818/j.cnki.1671-1637.2022.06.005
BU Yi-zhi, AN Lang, CUI Chuang, HU Ji-dan, ZHANG Qing-hua, ZHU Jin-zhu. A Fe-SMA-based fabricated active reinforcement method for fatigue cracks in steel bridge decks[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 84-94. doi: 10.19818/j.cnki.1671-1637.2022.06.005
Citation: BU Yi-zhi, AN Lang, CUI Chuang, HU Ji-dan, ZHANG Qing-hua, ZHU Jin-zhu. A Fe-SMA-based fabricated active reinforcement method for fatigue cracks in steel bridge decks[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 84-94. doi: 10.19818/j.cnki.1671-1637.2022.06.005

基于Fe-SMA的钢桥面板疲劳裂纹装配式主动加固方法

doi: 10.19818/j.cnki.1671-1637.2022.06.005
基金项目: 

国家自然科学基金项目 51878561

国家自然科学基金项目 51978579

国家自然科学基金项目 52108176

桥梁结构健康与安全国家重点实验室开放课题 BHSKL19-06-KF

四川省交通科技项目 2019-ZL-12

四川省科技计划项目 2021YJ0037

详细信息
    作者简介:

    卜一之(1961-),男,北京人,西南交通大学教授,工学博士,从事高性能钢与组合结构桥梁研究

    通讯作者:

    崔闯(1989-),男,湖北江陵人,西南交通大学副教授,工学博士

  • 中图分类号: U445.72

A Fe-SMA-based fabricated active reinforcement method for fatigue cracks in steel bridge decks

Funds: 

National Natural Science Foundation of China 51878561

National Natural Science Foundation of China 51978579

National Natural Science Foundation of China 52108176

Open Projects of State Key Laboratory for Health and Safety of Bridge Structures BHSKL19-06-KF

Transportation Science and Technology Project of Sichuan Province 2019-ZL-12

Science and Technology Project of Sichuan Province 2021YJ0037

More Information
  • 摘要: 为实现对钢桥面板的快速加固,提出了基于铁基形状记忆合金(Fe-SMA)的钢桥面板疲劳裂纹新型装配式主动加固的方法;通过精细化双面加固有限元模型计算结果及对初步激活与加载试验的观察,验证了加固系统安全性与可靠性;在此基础上以U肋对接焊缝的疲劳裂纹为研究对象,根据线弹性断裂力学,结合该疲劳细节受力与开裂特征,采用循环荷载作用下表面裂纹和中裂纹尖端的Ⅰ型裂纹应力强度因子幅值对加固系统的加固效果进行评价,确定了针对不同长度裂纹的具体加固方案。研究结果表明:基于Fe-SMA的钢桥面板疲劳裂纹主动加固方法可将裂纹尖端应力强因子幅值降低至扩展阈值以下,能有效遏制疲劳裂纹的进一步扩展;对于长度在50 mm以下的未贯穿型疲劳裂纹可采用宽度为60 mm的Fe-SMA进行加固,裂纹前缘关注点应力强度因子降幅达90%以上;当贯穿型疲劳裂纹长度为50~120 mm时,可采用宽度为120 mm的Fe-SMA进行加固;当疲劳裂纹长度为120~350 mm时,需采用底板、腹板同时加固的方法来对疲劳裂纹进行加固,均能达到理想的止裂状态。

     

  • 图  1  SMA装配式加固系统

    Figure  1.  SMA assembly reinforcement system

    图  2  Fe-SMA加固原理

    Figure  2.  Principle of Fe-SMA reinforcement

    图  3  Fe-SMA加固系统加固步骤

    Figure  3.  Reinforcement steps of Fe-SMA reinforcement system

    图  4  双面加固钢板有限元模型

    Figure  4.  Finite element model of double-sided reinforced steel plate

    图  5  Mises应力分布

    Figure  5.  Distributions of Mises stress

    图  6  初步激活与加载试验

    Figure  6.  Experiment of preliminary activation and loading

    图  7  Fe-SMA恢复应力

    Figure  7.  Recovery stresses of Fe-SMA

    图  8  激活与静力加载过程Fe-SMA温度与钢板应变

    Figure  8.  Fe-SMA temperature and steel plate strain during activation and static loading

    图  9  U肋对接焊缝疲劳开裂模式

    Figure  9.  Fatigue cracking mode of longitudinal rib butt weld

    图  10  测点布置

    Figure  10.  Arrangement of measuring points

    图  11  U肋对接焊缝细节疲劳裂纹有限元模型

    Figure  11.  Finite element model of fatigue crack at U-rib butt weld

    图  12  Fe-SMA加固系统设计方案

    Figure  12.  Designing schemes of Fe-SMA reinforcement system

    图  13  加固方案Ⅰ有限元模型

    Figure  13.  Finite element model of reinforcement scheme 1

    图  14  疲劳荷载施加位置

    Figure  14.  Fatigue loading position

    图  15  裂纹扩展前缘关注点

    Figure  15.  Front concerns of fatigue crack

    图  16  未贯穿型裂纹方案Ⅰ加固前后应力强度因子幅值

    Figure  16.  Stress intensity factor amplitudes of non-penetrating crack before and after reinforced by scheme Ⅰ

    图  17  贯穿型裂纹方案Ⅰ加固前后应力强度因子幅值

    Figure  17.  Stress intensity factor amplitudes of penetrating crack before and after reinforced by scheme Ⅰ

    图  18  方案Ⅱ加固前后应力强度因子幅值

    Figure  18.  Stress intensity factor amplitudes before and after reinforced by scheme Ⅱ

    图  19  方案Ⅲ加固前后应力强度因子幅值

    Figure  19.  Stress intensity factor amplitudes before and after reinforced by scheme Ⅲ

    表  1  关键测点的试验值与理论值对比

    Table  1.   Comparison between experimental and theoretical values of key measuring points

    参数 测点 试验值 有限元理论值
    位移/mm d1 -1.35 -1.36
    d2 -1.33 -1.36
    应力/MPa s3 100.3 101.0
    s4 82.7 85.1
    s5 75.9 82.9
    s7 104.3 107.2
    下载: 导出CSV

    表  2  Fe-SMA加固件设计参数

    Table  2.   Design parameters of Fe-SMA reinforcing members

    加固方案 Fe-SMA加固件参数/mm
    长度 宽度 厚度
    440 60 4
    120
    60
    下载: 导出CSV
  • [1] 张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14-30, 39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703002.htm

    ZHANG Qing-hua, BU Yi-zhi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 14-30, 39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703002.htm
    [2] 张清华, 李俊, 郭亚文, 等. 正交异性钢桥面板结构体系的疲劳破坏模式和抗力评估[J]. 土木工程学报, 2019, 52(1): 71-81. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201901009.htm

    ZHANG Qing-hua, LI Jun, GUO Ya-wen, et al. Fatigue failure modes and resistance evaluation of orthotropic steel bridge deck structural system[J]. China Civil Engineering Journal, 2019, 52(1): 71-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201901009.htm
    [3] 黄传海, 刘志平. 止裂孔与CFRP复合修复含裂纹钢结构的疲劳性能[J]. 机械强度, 2021, 43(2): 418-424. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD202102024.htm

    HUANG Chuan-hai, LIU Zhi-ping. Study on fatigue performance of cracked steel structure repaired with stop-hole and CFRP[J]. Journal of Mechanical Strength, 2021, 43(2): 418-424. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD202102024.htm
    [4] YAMADA K, ISHIKAWA T, KAKIICHI T. Rehabilitation and improvement of fatigue life of welded joints by ICR treatment[J]. Advanced Steel Construction, 2015, 11(3): 294-304.
    [5] 曾志斌. 正交异性钢桥面板疲劳裂纹的维修加固方法[J]. 钢结构, 2013, 28(4): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201304008.htm

    ZENG Zhi-bin. Repair and reinforcement methods of fatigue cracks in orthotropic steel bridge deck[J]. Steel Construction, 2013, 28(4): 20-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201304008.htm
    [6] 王春生, 翟慕赛, HOUANKPO T N O. 正交异性钢桥面板冷维护技术及评价方法[J]. 中国公路学报, 2016, 29(8): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201608007.htm

    WANG Chun-sheng, ZHAI Mu-sai, HOUANKPO T N O. Cold maintenance technique and assessment method for orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29(8): 50-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201608007.htm
    [7] HAO W, IMAD A, BENSEDDIQ N, et al. On the prediction of the residual fatigue life of cracked structures repaired by the stop-hole method[J]. International Journal of Fatigue, 2010, 32(4): 670-677. doi: 10.1016/j.ijfatigue.2009.09.011
    [8] 姜旭, 吕志林, 强旭红, 等. 高强螺栓止裂法修复含裂纹钢板疲劳受力性能[J]. 同济大学学报(自然科学版), 2021, 49(4): 476-486. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202104002.htm

    JIANG Xu, LYU Zhi-lin, QIANG Xu-hong, et al. Fatigue performance of cracked steel plates repaired by high strength bolt stop-hole method[J]. Journal of Tongji University (Natural Science), 2021, 49(4): 476-486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202104002.htm
    [9] 于超凡. 基于钢箱梁正交异性板的疲劳损伤加固技术试验研究[D]. 南京: 南京航空航天大学, 2016.

    YU Chao-fan. Experimental research of the reinforcement technology based on orthotropic plate of steel box girder with fatigue damage[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [10] 郭耀华. 正交异性钢桥面板疲劳裂纹扩展过程数值模拟及其修复方法研究[D]. 天津: 天津大学, 2014.

    GUO Yao-hua. Numerical simulation and repair methods of fatigue cracks on steel orthotropic highway bridge deck[D]. Tianjin: Tianjin University, 2014. (in Chinese)
    [11] 周家刚, 徐志民. 粘贴钢板技术修复钢箱梁疲劳裂纹[J]. 公路, 2020, 65(11): 224-230. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202011043.htm

    ZHOU Jia-gang, XU Zhi-ming. Repairing fatigue crack of steel box girder by sticking steel plate technology[J]. Highway, 2020, 65(11): 224-230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202011043.htm
    [12] 叶华文, 李新舜, 帅淳, 等. 无粘结预应力CFRP板加固受损钢梁疲劳试验研究[J]. 西南交通大学学报, 2019, 54(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201901017.htm

    YE Hua-wen, LI Xin-shun, SHUAI Chun, et al. Fatigue experimental analysis of damaged steel beams strengthened with prestressed unbonded CFRP plates[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 129-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201901017.htm
    [13] 叶华文, 唐诗晴, 段智超, 等. 预应力纤维增强复合材料(FRP)桥梁结构加固应用2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(S1): 185-189. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2021S1019.htm

    YE Hua-wen, TANG Shi-qing, DUAN Zhi-chao, et al. State-of-the-art review of the application of fiber reinforced polymer in bridge structures reinforcement in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 185-189. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2021S1019.htm
    [14] SHAHVERDI M, CZADERSKI C, MOTAVALLI M. Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams[J]. Construction and Building Materials, 2016, 112: 28-38.
    [15] 陈振宇, 余倩倩, 顾祥林. 形状记忆合金补强损伤钢板疲劳性能研究[J]. 建筑结构学报, 2021, 42(S1): 411-417. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2021S1046.htm

    CHEN Zhen-yu, YU Qian-qian, GU Xiang-lin. Theoretical analysis on fatigue behavior of cracked steel plates retrofitted with shape memory alloy[J]. Journal of Building Structures, 2021, 42(S1): 411-417. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2021S1046.htm
    [16] EL-TAHAN M, DAWOOD M, SONG G. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch[J]. Smart Materials and Structures, 2015, 24(6): 065035.
    [17] EL-TAHAN M, DAWOOD M. Bond behavior of NiTiNb SMA wires embedded in CFRP composites[J]. Polymer Composites, 2018, 39(10): 3780-3791.
    [18] CLADERA A, WEBER B, LEINENBACH C, et al. Iron-based shape memory alloys for civil engineering structures: an overview[J]. Construction and Building Materials, 2014, 63: 281-293.
    [19] IZADI M R, GHAFOORI E, SHAHVERDI M, et al. Development of an Iron-based shape memory alloy (Fe-SMA) strengthening system for steel plates[J]. Engineering Structures, 2018, 174: 433-446.
    [20] IZADI M, MOTAVALLI M, GHAFOORI E. Iron-based shape memory alloy (Fe-SMA) for fatigue strengthening of cracked steel bridge connections[J]. Construction and Building Materials, 2019, 227: 116800.
    [21] 张清华, 李俊, 卜一之, 等. 正交异性钢桥面板纵肋与横隔板交叉构造细节疲劳开裂快速加固方法[J]. 中国公路学报, 2018, 31(12): 124-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201812013.htm

    ZHANG Qing-hua, LI Jun, BU Yi-zhi, et al. Rapid reinforcement approach for the fatigue cracking of longitudinal rib-to-diaphragm detail in orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2018, 31(12): 124-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201812013.htm
    [22] 卜一之, 金通, 李俊, 等. 纵肋与横隔板交叉构造细节穿透型疲劳裂纹扩展特性及其加固方法研究[J]. 工程力学, 2019, 36(6): 211-218. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201906023.htm

    BU Yi-zhi, JIN Tong, LI Jun, et al. Research on propagation characteristics and reinforcement method of penetrating crack at rib-to-diaphragm welded joints in steel bridge deck[J]. Engineering Mechanics, 2019, 36(6): 211-218. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201906023.htm
    [23] 刘飞. 单面螺栓连接及装配式钢结构节点理论与试验研究[D]. 南京: 东南大学, 2015.

    LIU Fei. Theoretical and experimental research of one-side bolt connection and prefabricated steel structure nodes[D]. Nanjing: Southeast University, 2015. (in Chinese)
    [24] 王春生, 翟慕赛, 唐友明, 等. 钢桥面板疲劳裂纹耦合扩展机理的数值断裂力学模拟[J]. 中国公路学报, 2017, 30(3): 82-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703009.htm

    WANG Chun-sheng, ZHAI Mu-sai, TANG You-ming, et al. Numerical fracture mechanical simulation of fatigue crack coupled propagation mechanism for steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 82-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703009.htm
    [25] 陈世鸣, 陆云, 周聪, 等. 正交异性钢桥面横向焊接接头的疲劳寿命估算[J]. 中南大学学报(自然科学版), 2015, 46(9): 3461-3467. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201509040.htm

    CHEN Shi-ming, LU Yun, ZHOU Cong, et al. Fatigue life prediction of weld connection in longitudinal ribs of steel orthotropic decks[J]. Journal of Central South University (Science and Technology), 2015, 46(9): 3461-3467. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201509040.htm
    [26] CHEN S M, HUANG Y, ZHOU C, et al. Experimental and numerical study on fatigue performance of U-rib connections[J]. Journal of Constructional Steel Research, 2019, 163: 105796.
    [27] 陈世鸣, 马家欢, 程栋柱. 正交异性钢桥面板纵肋对接焊缝疲劳性能研究[J]. 桥梁建设, 2018, 48(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201801009.htm

    CHEN Shi-ming, MA Jia-huan, CHENG Dong-zhu. Study of fatigue performance of butt weld joints for longitudinal ribs of orthotropic steel bridge deck[J]. Bridge Construction, 2018, 48(1): 48-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201801009.htm
    [28] RYBICKI E F, KANNINEN M F. A finite element calculation of stress intensity factors by a modified crack closure integral[J]. Engineering Fracture Mechanics, 1977, 9(4): 931-938.
    [29] 杨绍林, 卜一之, 崔闯, 等. U肋对接焊缝三维疲劳裂纹应力强度因子分析[J]. 桥梁建设, 2015, 45(5): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201505010.htm

    YANG Shao-lin, BU Yi-zhi, CUI Chuang, et al. Analysis of stress intensity factors of 3-dimensional fatigue crack in butt weld joint of U rib[J]. Bridge Construction, 2015, 45(5): 54-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201505010.htm
    [30] GOSZ M, MORAN B. An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions[J]. Engineering Fracture Mechanics, 2002, 69(3): 299-319. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0013794401000807&originContentFamily=serial&_origin=article&_ts=1433023603&md5=7867a36f841f384e5b6e8e9813bc8ff9
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  466
  • HTML全文浏览量:  155
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2022-12-25

目录

    /

    返回文章
    返回