留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用横向预应力的装配式空心板桥受力性能与设计计算方法

吴庆雄 黄宛昆 王渠 陈康明 陈宝春

吴庆雄, 黄宛昆, 王渠, 陈康明, 陈宝春. 采用横向预应力的装配式空心板桥受力性能与设计计算方法[J]. 交通运输工程学报, 2022, 22(6): 130-142. doi: 10.19818/j.cnki.1671-1637.2022.06.008
引用本文: 吴庆雄, 黄宛昆, 王渠, 陈康明, 陈宝春. 采用横向预应力的装配式空心板桥受力性能与设计计算方法[J]. 交通运输工程学报, 2022, 22(6): 130-142. doi: 10.19818/j.cnki.1671-1637.2022.06.008
WU Qing-xiong, HUANG Wan-kun, WANG Qu, CHEN Kang-ming, CHEN Bao-chun. Mechanical performance and design calculation method of prefabricated voided slab bridge with transverse post-tensioning[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 130-142. doi: 10.19818/j.cnki.1671-1637.2022.06.008
Citation: WU Qing-xiong, HUANG Wan-kun, WANG Qu, CHEN Kang-ming, CHEN Bao-chun. Mechanical performance and design calculation method of prefabricated voided slab bridge with transverse post-tensioning[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 130-142. doi: 10.19818/j.cnki.1671-1637.2022.06.008

采用横向预应力的装配式空心板桥受力性能与设计计算方法

doi: 10.19818/j.cnki.1671-1637.2022.06.008
基金项目: 

国家重点研发计划 2017YFE0130300

国家自然科学基金项目 51808126

国家自然科学基金项目 52078137

福建省自然科学基金项目 2019J06009

详细信息
    作者简介:

    吴庆雄(1973-),男,福建南靖人,福州大学研究员,工学博士,从事桥梁工程研究

    通讯作者:

    黄宛昆(1982-),男,安徽庐江人,福州大学实验师,工学博士

  • 中图分类号: U443.3

Mechanical performance and design calculation method of prefabricated voided slab bridge with transverse post-tensioning

Funds: 

National Key Research and Development Program of China 2017YFE0130300

National Natural Science Foundation of China 51808126

National Natural Science Foundation of China 52078137

Natural Science Foundation of Fujian Province 2019J06009

More Information
    Author Bio:

    WU Qing-xiong (1973–), male, born in Nanjing, Fujian Province, researcher at Fuzhou University, PhD in engineering. He is engaged in research on bridge engineering. E-mail: wuqingx@fzu.edu.cn

    HUANG Wan-kun (1982–), male, born in Lujiang, Anhui Province, experimentalist of Fuzhou University, PhD in engineering. E-mail: huangwankun@fzu.edu.cn

  • 摘要: 为了提高铰缝结合面的开裂荷载和破坏荷载,解决空心板桥横桥向受力问题,研究了采用横向预应力的装配式空心板桥的受力性能,采用局部模型试验的方法分析了铰缝结合面受力机理,采用足尺模型试验的方法研究了空心板桥整体受力性能,并基于铰缝结合面受力机理,确定了横向预应力的上、下限,进而提出了横向预应力设计计算公式。试验结果表明:采用横向预应力结合面的法向和切向黏结强度分别为1.40~1.45和0.50~0.62 MPa,较未采用横向预应力分别提高了8.1%~12.5%和12.4%~38.3%,而且提高横向预应力可以提高结合面的法向和切向黏结强度;采用横向预应力的空心板桥足尺试验模型的破坏模式表现为空心板的开裂破坏,试验过程中未出现铰缝开裂现象;横向预应力的施加可以提高空心板之间的横桥向联系,避免结构由于铰缝结合面损伤而丧失横向传递荷载的能力并导致结构破坏,提高空心板桥的极限荷载;提出的横向预应力设计计算公式可以较好地计算空心板桥横向预应力的设计值。

     

  • 图  1  试件尺寸和加载方式(单位:cm)

    Figure  1.  Sizes of specimens and loading patterns (unit: cm)

    图  2  结合面弯曲破坏形态

    Figure  2.  Bending failure modes of junction surface

    图  3  结合面剪切破坏形态

    Figure  3.  Shearing failure modes of junction surface

    图  4  空心板构造(单位:cm)

    Figure  4.  Structures of voided slab (unit: cm)

    图  5  试验过程照片

    Figure  5.  Photos of test process

    图  6  空心板荷载-挠度曲线

    Figure  6.  Load-deflection curves of voided slabs

    图  7  底板混凝土荷载-应变曲线

    Figure  7.  Load-strain curves of bottom plate concrete

    图  8  空心板跨中截面钢筋应变实测结果

    Figure  8.  Steel strain test results of voided slabs in mid-span section

    图  9  空心板跨中截面挠度比较

    Figure  9.  Deflection comparison of voided slabs in mid-span section

    图  10  跨中截面钢筋应变比较

    Figure  10.  Steel strain comparison of mid-span section

    图  11  有限元模型

    Figure  11.  Finite element model

    图  12  有限元分析结果

    Figure  12.  Analysis results of finite element model

    图  13  横向预应力设计值与桥宽和跨径的关系

    Figure  13.  Relationship between TPT designing value and bridge width/span

    图  14  横向预应力与桥梁宽跨比的关系

    Figure  14.  Relationship between TPT and bridge width-span ratio

    图  15  横向预应力的设计计算

    Figure  15.  Designing calculation of TPT

    表  1  局部模型试验试件分组

    Table  1.   Specimen grouping of local model test

    序号 试件编号 极限状态 横向预应力P/kN
    1 WS-1-1~WS-1-3 法向 0
    2 WS-2-1~WS-2-3 40
    3 WS-3-1~WS-3-3 50
    4 WS-4-1~WS-4-3 70
    5 JS-1-1~JS-1-3 切向 0
    6 JS-2-1~JS-2-3 40
    7 JS-3-1~JS-3-3 50
    8 JS-4-1~JS-4-3 70
    下载: 导出CSV

    表  2  抗弯试验结果

    Table  2.   Bending test result

    试件编号 Mc/(kN·m) ft/MPa ft/ftw
    实测值 有效值 实测值 有效值
    WS-1-1 10.3 1.42 1.29 0.43 0.39
    WS-1-2 10.0 1.38 0.42
    WS-1-3 9.5 1.31 0.40
    WS-2-1 11.0 1.52 1.40 0.46 0.43
    WS-2-2 11.4 1.57 0.48
    WS-2-3 10.3 1.42 0.43
    WS-3-1 11.2 1.54 1.45 0.47 0.44
    WS-3-2 11.6 1.60 0.49
    WS-3-3 10.7 1.47 0.45
    WS-4-1 10.7 1.47 1.44 0.45 0.44
    WS-4-2 10.9 1.50 0.46
    WS-4-3 11.5 1.58 0.48
    下载: 导出CSV

    表  3  抗剪试验结果

    Table  3.   Shearing test result

    试件编号 Vc/kN fv/MPa fv/fcw
    实测值 有效值 实测值 有效值
    JS-1-1 75 0.52 0.45 0.018 0.015
    JS-1-2 66 0.46 0.016
    JS-1-3 70 0.49 0.017
    JS-2-1 77 0.53 0.50 0.019 0.017
    JS-2-2 74 0.51 0.018
    JS-2-3 82 0.57 0.020
    JS-3-1 80 0.56 0.53 0.019 0.018
    JS-3-2 83 0.58 0.020
    JS-3-3 92 0.64 0.022
    JS-4-1 90 0.63 0.62 0.022 0.021
    JS-4-2 95 0.66 0.023
    JS-4-3 98 0.68 0.024
    下载: 导出CSV

    表  4  未采用与采用横向预应力的试验现象对比

    Table  4.   Comparison of test phenomena with and without TPT

    荷载/kN 未采用横向预应力 采用横向预应力
    70 结合面开裂
    80 空心板跨中截面开裂
    140 结合面通缝形成,单板受力并失去承载能力 3#空心板板底应变测点因混凝土开裂而失效
    240 跨中截面板底混凝土应变测点全部失效
    380 空心板出现大量通缝,失去承载能力,未发现结合面开裂
    下载: 导出CSV

    表  5  实测与计算结果比较

    Table  5.   Comparison between test and calculated results

    序号 测点位置 实测挠度/mm 计算挠度/mm 校验系数
    1 1#空心板跨中 1.57 1.96 0.80
    2 2#空心板跨中 1.50 2.27 0.66
    3 3#空心板跨中 1.41 2.36 0.60
    4 4#空心板跨中 1.47 2.27 0.65
    5 5#空心板跨中 1.52 1.96 0.78
    下载: 导出CSV

    表  6  有限元模型参数

    Table  6.   Parameters of finite element model

    参数 参数取值
    跨径/m 10、13、16、20
    桥宽/m 8、10、12、14、16、18、20
    下载: 导出CSV

    表  7  跨径10 m空心板桥计算结果

    Table  7.   Calculated result of 10 m-span voided slab bridge

    桥宽/m 最不利正弯矩控制/kN 最不利负弯矩控制/kN 预应力设计/kN
    底缘控制 顶缘控制 底缘控制 顶缘控制 下限 上限
    8 413 1 920 1 767 566 566 1 767
    10 616 1 717 1 578 755 755 1 578
    12 737 1 596 1 601 732 737 1 596
    14 794 1 538 1 681 652 794 1 538
    16 822 1 511 1 782 551 822 1 511
    18 835 1 498 1 887 446 835 1 498
    20 844 1 489 1 835 498 844 1 489
    下载: 导出CSV

    表  8  跨径13 m空心板桥计算结果

    Table  8.   Calculated result of 13 m-span voided slab bridge

    桥宽/m 最不利正弯矩控制/kN 最不利负弯矩控制/kN 预应力设计/kN
    底缘控制 顶缘控制 底缘控制 顶缘控制 下限 上限
    8 331 2 390 2 241 481 481 2 241
    10 520 2 202 2 061 661 661 2 061
    12 661 2 060 1 963 758 758 1 963
    14 758 1 964 1 927 795 795 1 927
    16 822 1 900 1 941 781 822 1 900
    18 860 1 862 2 000 722 860 1 862
    20 884 1 838 2 069 653 884 1 838
    下载: 导出CSV

    表  9  跨径16 m空心板桥计算结果

    Table  9.   Calculated result of 16 m-span voided slab bridge

    桥宽/m 最不利正弯矩控制/kN 最不利负弯矩控制/kN 预应力设计/kN
    底缘控制 顶缘控制 底缘控制 顶缘控制 下限 上限
    8 293 2 818 2 668 443 443 2 668
    10 462 2 648 2 513 598 598 2 513
    12 598 2 513 2 396 715 715 2 396
    14 707 2 404 2 320 791 791 2 320
    16 790 2 321 2 285 826 826 2 285
    18 850 2 260 2 286 825 850 2 260
    20 891 2 220 2 316 795 891 2 220
    下载: 导出CSV

    表  10  跨径20 m空心板桥计算结果

    Table  10.   Calculated result of 20 m-span voided slab bridge

    桥宽/m 最不利正弯矩控制/kN 最不利负弯矩控制/kN 预应力设计/kN
    底缘控制 顶缘控制 底缘控制 顶缘控制 下限 上限
    8 244 3 449 3 324 370 370 3 324
    10 389 3 305 3 186 508 508 3 186
    12 510 3 184 3 067 626 626 3 067
    14 615 3 079 2 973 721 721 2 973
    16 701 2 993 2 904 790 790 2 904
    18 773 2 921 2 865 829 829 2 865
    20 829 2 865 2 852 842 842 2 852
    下载: 导出CSV
  • [1] 吴庆雄, 陈悦驰, 陈康明. 结合面底部带门式钢筋的铰接空心板破坏模式分析[J]. 交通运输工程学报, 2015, 15(5): 15-25. doi: 10.3969/j.issn.1671-1637.2015.05.003

    WU Qing-xiong, CHEN Yue-chi, CHEN Kang-ming. Failure mode analysis of hinged voided slab with gate-type steel rebars at bottom of junction surface[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 15-25. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.05.003
    [2] 吴庆雄, 黄宛昆, 陈宝春, 等. 结合面底部设开孔钢板的铰接空心板力学性能[J]. 交通运输工程学报, 2017, 17(4): 45-54. doi: 10.3969/j.issn.1671-1637.2017.04.005

    WU Qing-xiong, HUANG Wan-kun, CHEN Bao-chun, et al. Mechanical property of hinged voided slab with perforated steel plates at bottom of junction surface[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 45-54. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.04.005
    [3] HUSSEIN H H, WALSH K K, SARGAND S M, et al. Interfacial properties of ultrahigh-performance concrete and high-strength concrete bridge connections[J]. Journal of Materials in Civil Engineering, 2016, 28(5): 04015208. doi: 10.1061/(ASCE)MT.1943-5533.0001456
    [4] 冷艳玲, 张劲泉, 程寿山, 等. 装配式混凝土空心板梁桥单板受力问题的数值解析[J]. 公路交通科技, 2013, 30(5): 63-66, 73. doi: 10.3969/j.issn.1002-0268.2013.05.011

    LENG Yan-ling, ZHANG Jin-quan, CHENG Shou-shan, et al. Numerical analysis on single plate loading effect of precast hollow plate girder bridge[J]. Journal of Highway and Transportation Research and Development, 2013, 30(5): 63-66, 73. (in Chinese) doi: 10.3969/j.issn.1002-0268.2013.05.011
    [5] 卫军, 李沛, 徐岳, 等. 空心板铰缝协同工作性能影响因素分析[J]. 中国公路学报, 2011, 24(2): 29-33. doi: 10.3969/j.issn.1001-7372.2011.02.006

    WEI Jun, LI Pei, XU Yue, et al. Influencing factor analysis on coordinated working performance of hinge joint in hollow slab[J]. China Journal of Highway and Transport, 2011, 24(2): 29-33. (in Chinese) doi: 10.3969/j.issn.1001-7372.2011.02.006
    [6] 王玉田, 姜福香, 李福如. 铰缝损伤对斜交空心板桥自振特性的影响[J]. 公路, 2014, 59(3): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201403013.htm

    WANG Yu-tian, JIANG Fu-xiang, LI Fu-ru. Influence of hinge joint damage on the self-vibration characteristics of skew hollow slab bridge[J]. Highway, 2014, 59(3): 48-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201403013.htm
    [7] 吴庆雄, 黄宛昆, 王渠, 等. 新型装配式倒T形空心板桥受力性能[J]. 交通运输工程学报, 2019, 19(4): 12-23. doi: 10.3969/j.issn.1671-1637.2019.04.002

    WU Qing-xiong, HUANG Wan-kun, WANG Qu, et al. Mechanical property of new type of prefabricated inverted T-shape voided slab bridge[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 12-23. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.04.002
    [8] HUSSEIN H H, SARGAND S M, STEINBERG E P. Shape optimization of UHPC shear keys for precast, prestressed, adjacent box-girder bridges[J]. Journal of Bridge Engineering, 2018, 23(4): 04018009. doi: 10.1061/(ASCE)BE.1943-5592.0001220
    [9] 韩智强, 郭茂泉, 晋民杰, 等. 装配式空心板体外横向预应力加固力学性能研究[J]. 中外公路, 2021, 41(3): 171-174. doi: 10.14048/j.issn.1671-2579.2021.03.035

    HAN Zhi-qiang, GUO Mao-quan, JIN Min-jie, et al. Study on mechanical properties of exterior transverse prestressed reinforcement of prefabricated hollow slabs[J]. Journal of China and Foreign Highway, 2021, 41(3): 171-174. (in Chinese) doi: 10.14048/j.issn.1671-2579.2021.03.035
    [10] HUSSEIN H H, SARGAND S M, AL-JHAYYISH A K, et al. Contribution of transverse tie bars to load transfer in adjacent prestressed box-girder bridges with partial depth shear key[J]. Journal of Performance of Constructed Facilities, 2017, 31(2): 04016100. doi: 10.1061/(ASCE)CF.1943-5509.0000973
    [11] 潘钻峰, CHUNG C F, 吕志涛. 装配式板桥的横向预应力设计[J]. 东南大学学报(自然科学版), 2010, 40(6): 1264-1270. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201006027.htm

    PAN Zuan-feng, CHUNG C F, LYU Zhi-tao. Study on transverse post-tensioning in assembly slab bridges[J]. Journal of Southeast University (Natural Science Edition), 2010, 40(6): 1264-1270. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201006027.htm
    [12] EL-REMAILY A, TADROS M K, YAMANE T, et al. Transverse design of adjacent precast prestressed concrete box girder bridges[J]. PCI Journal, 1996, 41(4): 96-113. doi: 10.15554/pcij.07011996.96.113
    [13] YAMANE T, TADROS M K, ARUMUGASAMY P. Short to medium span precast prestressed concrete bridges in Japan[J]. PCI Journal, 1994, 39(2): 74-100. doi: 10.15554/pcij.03011994.74.100
    [14] LALL J, ALAMPALLI S, DICOCCO E. Performance of full-depth shear keys in adjacent prestressed box beam bridges[J]. PCI Journal, 1998, 43(2): 72-79. doi: 10.15554/pcij.03011998.72.79
    [15] 吕思忠, 章清涛, 王晓然, 等. 20 m跨径的横向张拉装配式空心板桥试设计研究[J]. 水利与建筑工程学报, 2022, 20(3): 134-139. doi: 10.3969/j.issn.1672-1144.2022.03.021

    LYU Si-zhong, ZHANG Qing-tao, WANG Xiao-ran, et al. Trial-design of 20 m span prefabricated voided slab bridge with transverse post-tensioning[J]. Journal of Water Resources and Architectural Engineering, 2022, 20(3): 134-139. (in Chinese) doi: 10.3969/j.issn.1672-1144.2022.03.021
    [16] STEINBERG E P, SEMENDARY A A. Evaluation of transverse tie rods in a 50-year-old adjacent prestressed concrete box beam bridge[J]. Journal of Bridge Engineering, 2017, 22(3): 05016010. doi: 10.1061/(ASCE)BE.1943-5592.0001001
    [17] GRACE N F, JENSEN E A, BEBAWY M R. Transverse post-tensioning arrangement for side-by-side box-beam bridges[J]. PCI Journal, 2012, 57(2): 48-63. doi: 10.15554/pcij.03012012.48.63
    [18] HUSSEIN H H, SARGAND S M, AL RIKABI F T, et al. Laboratory evaluation of ultrahigh-performance concrete shear key for prestressed adjacent precast concrete box girder bridges[J]. Journal of Bridge Engineering, 2017, 22(2): 04016113. doi: 10.1061/(ASCE)BE.1943-5592.0000987
    [19] HUSSEIN H H, SARGAND S M, KHOURY I, et al. Environment-induced behavior of transverse tie bars in adjacent prestressed box-girder bridges with partial depth shear keys[J]. Journal of Performance of Constructed Facilities, 2017, 31(5): 1-13.
    [20] 邹兰林, 蔡睿, 周兴林, 等. 装配式斜交空心板桥横向预应力加固[J]. 武汉科技大学学报, 2019, 42(6): 474-477. doi: 10.3969/j.issn.1674-3644.2019.06.012

    ZOU Lan-lin, CAI Rui, ZHOU Xing-lin, et al. Reinforcement of prefabricated skew hollow slab bridge by transverse prestressing[J]. Journal of Wuhan University of Science and Technology, 2019, 42(6): 474-477. (in Chinese) doi: 10.3969/j.issn.1674-3644.2019.06.012
    [21] 陈淮, 张云娜. 施加横向预应力加固装配式空心板桥研究[J]. 公路交通科技, 2008, 25(10): 58-62. doi: 10.3969/j.issn.1002-0268.2008.10.013

    CHEN Huai, ZHANG Yun-na. Research on strengthening fabricated hollow slab bridge by applying transverse prestress[J]. Journal of Highway and Transportation Research and Development, 2008, 25(10): 58-62. (in Chinese) doi: 10.3969/j.issn.1002-0268.2008.10.013
    [22] ANNAMALAI G, CLARKE A, GERSTLE K H. Shear strength of post-tensioned grouted keyed connections[J]. PCI Journal, 1990, 35(3): 64-73. doi: 10.15554/pcij.05011990.64.73
    [23] 宋尧, 许健. 装配式空心板桥板间铰缝破坏加固方法研究[J]. 中外公路, 2016, 36(3): 216-220. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201603047.htm

    SONG Yao, XU Jian. Research on strengthening method of shearkey damage in prefabricated voided slab bridge[J]. Journal of China and Foreign Highway, 2016, 36(3): 216-220. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201603047.htm
    [24] 项贻强, 邢骋, 邵林海, 等. 横向加固空心板梁桥荷载横向分布计算方法与试验研究[J]. 中国公路学报, 2013, 26(2): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201302010.htm

    XIANG Yi-qiang, XING Cheng, SHAO Lin-hai, et al. Calculating method and experimental research on lateral load distribution of transversely strengthened hollow slab bridge[J]. China Journal of Highway and Transport, 2013, 26(2): 63-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201302010.htm
    [25] 项贻强, 邢骋, 邵林海, 等. 铰接预应力混凝土空心板梁桥的空间受力行为及加固分析[J]. 东南大学学报(自然科学版), 2012, 42(4): 734-738. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201204031.htm

    XIANG Yi-qiang, XING Cheng, SHAO Lin-hai, et al. Spatial behavior and strengthening analysis of fabricated PC hollow slab beam bridge with hinge joints[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(4): 734-738. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201204031.htm
    [26] 魏洋, 胡胜飞, 吴刚, 等. 横向预应力与压浆加固装配式空心板梁桥试验研究[J]. 公路, 2014, 59(6): 143-149. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201406031.htm

    WEI Yang, HU Sheng-fei, WU Gang, et al. Test and study of assembly hollow slab bridges strengthened with transverse prestressing and grouting[J]. Highway, 2014, 59(6): 143-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201406031.htm
    [27] 沈标河. 横向张拉装配式空心板桥试设计研究[D]. 福州: 福州大学, 2017.

    SHEN Biao-he. Research on trial design of assembly voided slab bridge with transverse post-tensioning[D]. Fuzhou: Fuzhou University, 2017. (in Chinese)
    [28] 王渠, 吴庆雄, 陈宝春. 装配式空心板桥铰缝破坏模式试验研究[J]. 工程力学, 2014, 31(增): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2014S1022.htm

    WANG Qu, WU Qing-xiong, CHEN Bao-chun. Experimental study on failure mode of hinged joint in assembly voided slab bridge[J]. Engineering Mechanics, 2014, 31(S): 115-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2014S1022.htm
    [29] SEMENDARY A A, STEINBERG E P, WALSH K K, et al. Live-load moment-distribution factors for an adjacent precast prestressed concrete box beam bridge with reinforced UHPC shear key connections[J]. Journal of Bridge Engineering, 2017, 22(11): 04017088.
    [30] HANNA K E, MORCOUS G, TADROS M K. Transverse post-tensioning design and detailing of precast prestressed concrete adjacent-box-girder bridges[J]. PCI Journal, 2009, 54(4): 159-174.
    [31] YUAN J Q, GRAYBEAL B. Full-scale testing of shear key details for precast concrete box-beam bridges[J]. Journal of Bridge Engineering, 2016, 21(9): 04016043.
  • 加载中
图(15) / 表(10)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  128
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-19
  • 刊出日期:  2022-12-25

目录

    /

    返回文章
    返回